


What chemistry needs

The chemical industry relies on six basic
chemicals or chemical groups including ethylene,
propylene, the C4 olefins (butadiene and butenes),
the aromatics (benzene and toluene), the xylenes
(ortho, meta and para) and methane.
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Fig. 1 Base chemicals and derivatives produced from petroleum (production capacities were taken from the journal Chemical Engineering News" and
unit prices were taken from the ICIS Indicative chemical prices”).
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By 2030, the market value of bio-based building blocks is expected to
reach $3.2 billion, whereas the demand for fermentation-based
chemical building blocks was less than s700 million in 2013.

Such building blocks could either be produced from renewable carbon
through green chemical conversion routes or via microbial conversions.

The percentage of chemical production based on biotechnology is
estimated to increase from less than 2% in 2005 to approximately a quarter
of all chemical production by 2025.

The largest contribution will come from the conversion of renewable carbon
Into chemicals via biotechnological routes.

The incorporation of fermentative production of basic building blocks as
unit operations in integrated biorefineries is dependent on intense
research activities ranging from microbial strain development and
engineering to fermentation and down-stream processing optimization.

The EU demand in 2030 for biobased plastics:
5.2 BEUR

http://www.industrialbiotech-europe.eu/new/wp-content/uploads/2015/06/BIO-TIC-roadmap.pdf



Biotecnological production of monomers:
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Scheme 1. Most important bio-based dicarboxylic acids and pelyols cur-
rently available for the enzymatic synthesis of polyesters.
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Figure 2. Most common commercial polymeric products derived from the
bio-based monomer adipic acid.
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Some bio-based monomers for polymer production

Application of the
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Bio-based monomers for polyesters plastics:
PLA (polylactic acid)
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Among polymers, polyesters are a widely used class with applications
ranging from clothing to food packaging and from the car industry to
biomedical applications. The possibility to synthesize polyesters from
bio-based monomers is demonstrated by PLA, currently the most

Important bio-based polyester in terms of volume, with a capacity of
approximately 180 000 tonsly.



Lactic acid (2-hydroxypropionic acid), CH3—CHOHCOOH, is a simple chiral
molecule which exists as two enantiomers.
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Chemical synthesis of lactic acid is mainly based on the hydrolysis of
lactonitrile by strong acids, which provide only the racemic mixture of D-
and L-lactic acid.

PLA was discovered in 1932 by Carothers (DuPont) who produced
a low molecular weight product by heating lactic acid under
vacuum. In 1954 Du Pont produced the polymer with a molecular
weight greater and patented.



From lactic acid to PLA
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Companies, e.g. Cargill Dow Polymer LLC, Shimadzu Corp, Mitsui
Chemicals, Musashino Co. Are now producing PLA-targeting markets for
packaging materials, films, textile fibers, along with pharmaceutical
products. The US Food and Drug Administration (FDA) and European
regulatory authorities have approved the PLA resins for all food type
applications and some chirurgical applications such as drug releasing

systems

PLLA has gained great attention because of its excellent biocompatibility
and mechanical properties. It has extensive applications in biomedical
fields, including suture, bone fixation material, drug delivery microsphere,

and tissue engineering.

However, its long degradation times coupled with the high crystallinity of its
fragments can cause inflammatory reactions in the body. In order to overcome
this, PLLA can be used as a material combination of L-lactic and D, L-lactic acid
monomers, being the latter rapidly degraded without formation of crystalline

fragments during this process.



Approximately 90% of the total lactic acid produced worldwide is
made by bacterial fermentation and the remaining portion is produced
synthetically by the hydrolysis of lactonitrile.

The fermentation processes to obtain lactic acid can be classified
according to the type of bacteria used. The carbon source for microbial
production of lactic acid can be either sugar in pure form such as
glucose, sucrose, lactose or sugar containing materials such as
molasses, whey, sugarcane bagasse, cassava bagasse, and starchy
materials from potato, tapioca, wheat and barley. Sucrose-containing
materials such as molasses are commonly exploited raw materials for
lactic acid production because they represent cheaper alternatives.
Sugarcane bagasse is reported to be used as support for lactic acid
production by Rhizopus oryzae and Lactobacillus in solid-state

fermentation by supplementing sugars or starch hydrolysates as carbon
source.

More on PLA: http://www.galateabiotech.com/it/



Besides high product specificity, as it produces a desired optically
pure L-(+)- or D-(-)-lactic acid, the biotechnological production of
lactic acid offers several advantages compared to chemical
synthesis like low cost of substrates, low production temperature,

and low energy consumption

PLA-based products had already been developed by the 1940s and
1950s, but their production became economically viable only 70 years
later. This demonstrates the importance of optimizing the productivity
and robustness of bioconversions to achieve cost-effective production.

The success of bio-based polyesters does not rely solely on their
capacity to replace fossil-based polymers while being economically
competitive. Rather, the next generation of bio-based polyesters
should bring entirely new advanced chemical and functional properties

to the polymer scenario.



Biotecnological production of di-carboxylic acids:

o CH, 0

. _OH Lﬁ . OH
HO" J\)\T HO™ e e Tf
o O
ltaconic acid (1A Adipic acid (AA)

Q
HGIJJ\#&TI/D H
O

Succinic acid (SA)

I

o 0 O

r =" TOH /” o L
HD_‘_\T’,.- “‘Hf:’ HO *-.__,,1-:" ‘xrr__.s “OH

O
Terephthalic acid (TA)  Furandicarboxylic acid (FDCA)

OH

Succinic acid

Microbial strain able to convert
raw hydrolysates from biomass to
succinate (US Patent 6,743,610).

The high interest in SA is because of the
fact that this dicarboxylic
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adhesives, printing inks, magnetic tapes,
coating resins, plasticizers, emulsifiers,
deicing compounds and chemical

and pharmaceutical intermediates.
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Succinic acid (SA)
Since 2008, various companies (such as DSM, BASF and Purac)

have shown an interest in the production of bio-based SA at

an industrial scale.

For SA the most important production process from renewable feedstock is
microbial fermentation of various glucose sources by a variety of
microorganisms such as genetically engineered microorganisms:

Escherichia coli, OH
Actinobacillus succiniproducens and
Anaerobiospirillum succiniproducens

The processes are in use by two companies: the Myriant SA biorefinery in Lake
Providence (Louisiana, USA) that employs grain sorghum grits as its saccharificable
starting material32 and the Reverdia process (used by DSM+Roquette) where
ethanol and SA are co-produced through glucose fermentation.

Both processes run with genetically modified anaerobic bacteria, in such a way that
alcoholic fermentation sustains the SA production.Theoretical calculations
performed by Pinazo et al. concluded that, despite having a lower material
efficiency, fermentative SA production is attracting attention due to its very
competitive cost and market position close to competitiveness with an important
petrochemical feedstock such as maleic anhydride. o O _o

X7
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From succinic acid (SA) to 1,4-butandiol and to adipic acid (AA)

Sugars oy [\ /J\/\r C— O~y O ., o
Amino acids i e
Hydrogenation Biobased 1,4-BDO Carbonylation
Biobased Eﬂ ‘ Biobased AA

Fermentation ‘

Biobased polyesters

Figure 3. Biotechnological process for the production of bio-based succinic acid (SA) and its derivatives 1 4-butanediol (1,4-BD0) and adipic acid (AA).
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1,4-Butanediol (1,4-BDO)

1,4-BDO is an important chemical that is used for the manufacture
of over 2.5 million tons of polymers annually. Nowadays its
production is almost entirely based on fossil carbon resources
(production via the Reppe process in which acetylene is reacted
with formaldehyde) with the exception of BASF and Bioamber that
started production via hydrogenation of SA which is accessible
from biogenic sources as described below.

Amino acids
Hydrogenation Biobased 1,4-BDO Carbonylation
Bicbased AA

E‘fugars_ jg \\ ,j /J\/YGH |:- HO_ -~~~ oy :- OH
|

) Biobased EH

Fermentati_cm

Biobased polyesters

Figure 3. Biotechnological process for the production of bio-based succinic acid (5A) and its derivatives 1 4-butanediol (1,4-BDO) and adipic acid (AA).

In September 2016 Novamont opened the first plant at commercial scale
in the world for the direct fermentation of sugar to produce 1,4-butandiol.
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Harry Yim"3, Robert Haselbeck'?, Wei Niu'?, Catherine Pujol-Baxley'*, Anthony Burgard'?, Jeff Boldt’,
Julia Khandurina', John D Trawick’, Robin E Osterhout’, Rosary Stephen’, Jazell Estadilla’, Sy Teisan’,
H Brett Schreyer’, Stefan Andrae’, Tae Hoon Yang', Sang Yup Lee? Mark J Burk' & Stephen Van Dien™

'Genomatica, Inc., San Diego, California, USA. ?Department of Chemical and Biomolecular Engineering (BK21 program), Center for Systems and Synthetic
Biotechnology, Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, South Korea. *These authors contributed
equally to this work. *e-mail: svandien@genomatica.com

1,4-Butanediol (BDO) is an important commodity chemical used to manufacture over 2.5 million tons annually of valuable poly-
mers, and it is currently produced exclusively through feedstocks derived from oil and natural gas. Herein we report what are
to our knowledge the first direct biocatalytic routes to BDO from renewable carbohydrate feedstocks, leading to a strain of
Escherichia coli capable of producing 18 g |7 of this highly reduced, non-natural chemical. A pathway-identification algorithm
elucidated multiple pathways for the biosynthesis of BDO from common metabolic intermediates. Guided by a genome-scale
metabolic model, we engineered the E. coli host to enhance anaerobic operation of the oxidative tricarboxylic acid cycle, thereby
generating reducing power to drive the BDO pathway. The organism produced BDO from glucose, xylose, sucrose and biomass-
derived mixed sugar streams. This work demonstrates a systems-based metabolic engineering approach to strain design and
development that can enable new bioprocesses for commodity chemicals that are not naturally produced by living cells.
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1,4-BDO is an important chemical that is used for the manufacture

of over 2.5 million tons of polymers annually1,4-BDO and its
derivatives represent a market ripe for the introduction of a competitive
bio-based route.

derivatives:

« tetrahydrofuran

* p~butyrolactone

* N-methylpyrrolidone
« 2-pyrrolidone.



Thanks to an investment of 100 million euro, Novamont has managed to revive
an abandoned manufactory site of Bioitalia, former Ajinomoto, who was
acquired in 2012 by Novamont, safeguarding 27 jobs, which later became 51 at
the end of 2015.

The plant of Bottrighe di Adria is the first facility in the world capable of
producing butanediol (BDO) directly from sugars (30 thousand tons yearly).

BDO produced by the plant enables Novamont to deliver its fourth-generation of
Mater-Bi bioplastics with greater sustainability (e.g. renewable components).

The products made with this new BDO will save an estimated 56 percent of
greenhouse gas emissions compared to the use of conventional BDO.

https://www.youtube.com/watch?v=awxsW2nzsN8
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Chemical platform for 3-hydroxypropionic acid
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Figure 8 — Derivatives of 3-HFA
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Production of Bio-acrylic acid

Propylene — Acrylic acid _

Starch — > Glucose — 3-hydroxypropionic acid — Bio-

(biomasses) A 4 Acrylic Acid
Enzymatic Optimized _
technology microorganism Chemical
downstream
processing

(source Novozymes communication)




« Equivalent to fossil based PE

* 100 % biobased (ASTM 6866)

* Not biodegradable

Sugar Cane
 Braskem 2009, 200.000 t/a d fermentation, distillation

 Dow 2011, 350,000 t/a Ethanol
« Solvay PVC ! dehydration
Ethylene

xL polymerization

PE

» Ethanol fermentation carbon efficiency?
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1,3-Propanediol (1,3-PDO)

The microbial production of 1,3-PDO is one of the oldest processes
reported in the literature.

This diol has a wide range of possible applications, e.g. composites, adhesives,
solvents, monomers for aliphatic polyesters, and as an anti-freezing agent. In
addition, 1,3-PDO is used for the production of poly(trimethylene
terephthalate), a polymer with remarkable ‘stretch—recovery’ properties

that is used in specialty resins and other applications.

Various bacteria including Klebsiella pneumoniae, Enterobacter agglomerans,
Lactobacillus brevis and Clostridium butyricum have been reported to produce
1,3-PDO during anaerobic growth on glycerol.45 The highest concentration of
1,3-PDO was obtained using a K. pneumonia strain that led to a concentration
of 73.3 g L-1.
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Itaconic acid (l1A) ltaconic acid (IA)
IA has been known since 1837 when Baup first described the
thermal decomposition of citric acid, leading to IA.

Neither thermal decomposition nor alternative chemical
methods are used for commercial production since

fermentation
by fungi is economically more profitable.

Biosynthesis of 1A was first described by Kinoshita in 1932
who isolated the product from cultivation media of the
osmophile eukaryotic Aspergillus itaconicus.

Various Aspergillus terreus strains were found more suitable
for the fermentation process.



The best yields of IA production were achieved using glucose or
sucrose as substrates, but for the economic sustainability of the
process, complex carbon sources like starch, molasses and
hydrolysates of corn syrup or wood were also tested and found to be
suitable.

During the fermentation process, the pH drops below 2 and IA becomes
the main fermentation product.

For an optimal reaction setup the temperature is usually maintained at
around 37 oC. An adequate oxygen supply is essential since anaerobic
conditions will irreversibly kill the cells.

Economically speaking, the most productive process was established by
Pfizer which involves a submerged fermentation process using suspended A.
terreus biomass, inoculated as spores on pretreated molasses.

|A is currently used in paper-coating and carpet-backing,
which are the primary consumers at the industrial scale. Some
|A derivatives are used in medicines, cosmetics, lubricants and
herbicides.



1. Polycondensation
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J\ )J\ * Ho” ToH __ Biocatalyst R)I\Of?mﬂ
x~ RT X -

X= -OH, -OCH,, -OCH,CH,, etc.

R. Y= linear moieties, aromatic moieties, eic.

2. Ring Opening Polymerization (ROP)
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Biocatalyst
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m

Scheme 3. Routes for the enzymatic synthesis of bio-based polyesters.
(1) Polycondensation reaction of diacids (or their diesters) with polyols.
(2) Ring-opening polymerization of lactones.



Trends for polyester synthesis
and functionalyzation




Table 2. Most recent enzymatic processes for synthesis and functionalization/hydrolysis of bio-based polyesters.

Biocatalyst Material class Goal
Lactic-acid based ROP of D,D-lactide
Terephthalic acid-based
Ethylene glycol-based Synthesis of aromatic/aliphatic polyesters
2,5-furandicarboxylic acid-based
Sorbitol-based Synthesis of hydroxy-functional polyesters
Adipic acid-based
calB 1,4-butanediol-based Synthesis of aliphatic polyesters
Isosorbide-based
ltaconic acid-based Synthesis of vinyl-functional polyesters
1,4-butanediol-based y y e
Glycerol-based Branched-controlled polyesters, epoxide-
Itaconic acid-based containing polyesters
Malic acid-based Copolymers of L-malic acid, adipic acid and
Adipic acid-based 1,8-octanediol
1":‘13';?;:;;)?_1221 q Synthesis of aliphatic polyesters
HiC Terephthalic acid-based PET hydrolysis

Ethylene glycol-based

Lactic-acid based

Surface functionalization of PLA films

Thermobifida cellulosilytica
cutinase 1

Terephthalic acid-based
Ethylene glycol-based

Surface functionalization of PET films

Thermobifida fusca cutinase

Terephthalic acid-based
Ethylene glycol-based

Degradation of PET nanoparticles

Thermobifida halotolerans
esterase

Terephthalic acid-based
Ethylene glycol-based

PET hydrolysis

Lactic-acid based

PLA hydrolysis

Thielavia terrestris cutinase

Succinic acid-based
1,4-butanediol-based

PBS hydrolysis

Terephthalic acid-based
Ethylene glycol-based

PET hydrolysis
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Why enzymes in polyester synthesis?
» Selective and efficient under mild conditions

»> No need of toxic metal catalysts
» Solvent-free processes feasible

(Polycondensation) o cH, o
o HOM(OH HO)MOH
HO~_h-OH" MeO P! : JAR N A
’ \n)\/u\OME Llpase . - ) Itaconic acid (I1A) . Adipic acid (AA)
0 > SH O MOH
HO

(RO P) Succnnlc acid (SA)

cee e o
Initiation o
ﬁﬁcm R Jx:fk
R—OH + —_— (o) OH
Propagation

)I\N\ Terephthallc acid (TA) Furandicarboxylic acid (FDCA)
—» \ HO
/PJ\AA M Ho\/\OH \/\/\OH

Ethylene glycol (EG) 1,4-butanediol (1,4-BDO)
Mn < 20000 N s
0
> Tailored pre-polymers Ho _h_on HO__~_-O"
Glycerol (GLC) O 1,3-propanediol (1,3-PDO)
for advanced HO  H

o o 0 Isosorbide (ISO)
functionalities OH OH

. Industrial applications? w0l (50 2:3buanediol @800)




Challenges for the solvent-free enzymatic

synthesis of polyesters in general

0}

OH
HO 0|
Adipic acid
o o}
. CalB _ RlEo/v\/ MRl + MO
60C, 20h n

(0]
HOW\
OH

1,4-butanediol Polymer Mn: 1490
Mw: 2227

- Adsorption

Novozyme 435: lipase B
from Candida antarctica
adsorbed on acrylic resin

I

: I Biocatalysts damaged under operational conditiol

C. Korupp, R. Weberskirch, J. J. Miiller, A. Liese and L. Hilterhaus, Org. Process Res. Dev., 2010, 14, 1118—-1124.
F. Binns, S. M. Roberts, A.Taylor and C. F. Williams. J. Chem. Soc., Perkin Trans. 1, 1993, 899.




Making lipase robust and recyclable:

covalent immobilization

Synthetic activity: 2400 U ¢! (PLU)

OH H;
Orientaed covalent
immobilization g H
H,

Leaching prevented

H3C\/O N + HO\/\/\ 80 Ads rbed EZ matiC
o Ch or Covalent ym
° L activity
1 o o
e I 40°C, 70mbar detected in
i the final
R1MOW°}R2 + HO” CH, product after
0 — biocatalyst
9(Q Time (min} 50 210 1200 .
No solvent filtration
Adsorbed
& Recyclable
Qovalent

Gardossi et al., WO2012085206 A 5
A. Pellis et al.Green Chem. 2015, 17, 1756-1766. I

V. Ferrario, et al, Biomolecules 2013, 3, 514-534




Combining robust biocatalysts with new process
configuration for preserving biocatalyst integrity

Thin film

A. Pellis et al.Green Chem. 2015, 17, 1756-1766.



The process:

covalent immobilised enzyme + turbo reactors

THIN LAYER TECHNOLOGY

v High efficiency in overcoming viscosity
(solvent-free conditions)

v' Easy water/alcohol removal

v' Mechanical integrity of the biocatalyst

v No protein leaching

& _‘ )

OPTIMAL HEAT In coliaboration wih |
AND ‘ i
MASS ey

TRANSFER {

Gardossi L., et al.. Patent EP 2 620 462 Al.


http://www.vomm.it/index.html

Preserving biocatalyst activity: two-step process

o)

HO OH
OH + HO/\/\/

o
Step 1 CalB 60 C? 1000mbar
& 44 min

R1MO/V\/°}R2

90°C, 1000 mbar
10 min

0
R1MO/\/\/O}R2
m

)

+ H,0

H,0

Biocatalyst: 9% w :
Specific activity: 300 U g

A. Pellis et al.Green Chem. 2015, 17, 17561766

“IMn (PDI)

Removing the

biocatalyst
/J

° {9 ¢

__ ‘-.n-’ o

1800 (1.33)

2900 (1.34)

30 U g1 monomers




The case study:

fully renewable polyesters of itaconic acid

0]

)
e o
0]

o

dimethyl itaconate (DMI) 1,4-butandiol (BDO)

mmobilized enzyme
T<70°C;

solvent-free
0

,’J\”/\ﬁ/OV\/\O/]' i
0]

o

poly(butandiol itaconate) (PBI)

Michael addition
Radical reactions

L. Corici, et al., Adv. Synth. Catal., 2015, 357, 1763—-1774.
A. Pellis et al., Polym. Int., 2016, 65, 861-871.

Renewable monomer:
produced by
fermentation of

Aspergillus terreus

0]
OH
HO
itaconic acid O
0 OH
1L
HO 4

citraconic acid

T>150°C

mesaconic acid

Grafting Biomolecules




Itaconic acid:
low reactivity of conjugated acyl carbon

10% w w!
Cov-CalLB

No L
clongation!

L. Corici, et al., Adv. Synth. Catal., 2015, 357, 1763-1774.

ABA
X
Fast acylation of second
hydroxyl group leads to
dead-end product ABA



Docking the AB intermediate

Only 2% of productive
poses leads to
elongation on the slow

L. Corici, et al., Adv. Synth. Catal., 2015, 357, 17631774 reacting acyl group



Introducing rigidity in the diol: CHDM

o lipase — ™ |
~— HSCON\ ——— /" H; Nc
O O OCHgs; /\Q\/
T T O CH, ©

e

.} Trp104
 —

» The bulky and rigid diol does
not fit in the alcoholic pocket
» 9% of productive poses leads to
elongation on slow reactive
acyl group

L. Corici, et al., Adv. Synth. Catal., 2015, 357, 1763-1774.



Enzymatic polycondensation of DMI + CHDM

H,CO
OCHs

(0] CH,
dimethyl itaconate

OH
HO
1,4-cyclohexane

Candida antarctica lipase B

for ]

poly(1,4-cyclohexane
dimethanol itaconate)

dimethanol
|n)l(elgse +MS, 0.0-0.1min #(1-4)
> 1:1,1 molar ratio of monomers
ABA), > 10% w/w immobilized CalLB
(AB), > 240 U/ g monomers
154 769.5 (o]
ABA), > 50°C
> No solvent

B(AB), B(AB);
(AB),
05 (AB)2 A(BA)4

5315 643 881 B(AB s

405.5 \ [ ( 11)1;1 7é)5 (AB)G A(BA)G

L. Corici, et al., Adv. Synth. Catal., 2015, 357, 1763—-1774.



Enzyme distribution and accessibility is crucial in

viscous systems: working with less enzyme distributed

on a larger amount of carrier

30% wiw

dimethyl itaconate (DMI)

1,4-butandiol (BDO)

ABA - =
a - | 10% w/w immCalLB ImmeacabLB
240 U / g monomers 70 U/
AB
= A(BA);
(AB)2
(AB)» .z
4 b ABA . R ABA (AB)3
20% w/w immCalLB 3
480 U / g monomers B(AB), A(BA
T (m )a A(BA).
L || - hL L
(63)2 A(_Ef\)z i %0 E2 e B
O
CalB
A | O /ONO/ AN Ll I : O\/\/\O/h
T L - > L . L. ML i - - O . O

poly(butandiol itaconate) (PBI)

L. Corici, et al., Adv. Synth. Catal., 2015, 357, 1763-1774.



Sustainability of immobilized enzymes?

LCA: epoxy activated methacrylic resins represents the primary
greenhouse gas emission source for immobilized enzymes because of
the fossil based raw materials (glycidyl methacrylate, ethylene
dimethyl acrylate)

S. Kim, /nt. J. Life Cycle Assess., 2009, 14, 392—400.

Fossil based methacrylic resin Rice husk: cellulose, lignin, silica

The cost contribution of biocatalysts per kg product:
» Can varies from few hundred € (for pharmaceuticals)
» Down to few cents (for bulk chemicals)

» Depends on the number of recycles of the enzyme
M. C. R. Franssen, et al., Chem. Soc. Rev., 2013, 42, 6491-6533.




Less enzyme, more immobilization carrier:

need of renewable and inexpensive carrier

Biocatalyst support

v 4
847 ,-\ Rice Husk
% y ‘“?"v A
/A«,/ XA §"‘
5, “"’*4?. ‘
ﬁw
Industrial application
4t > |1t

Around 100 Mt accessible at large scale
and with continuous supply.

L. Corici et al. RSC Adv., 2016, 6, 63256



Rice Husk
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Comparing CaL.B on rice-husk

and on epoxy acrylic resin

. L . . Synthetic
Functionalizatio Loading Protein loaded thivity
N U gary?)* N
( gdry ) ( 0) (U g dry-l)**
Oxidized RH +
10,000 70 2,090
HMDA
Epoxy (EC-EP) 27,000 o - >90 2,000
120 —
E'-\:‘«100
% 80 -
g 60 -
% 40 -
*Tributyrin hydrolysis = ]
**Propyl laurate synthesis o |
1 3 4 5 6 7 8 9 10
L. Corici et al. RSC Adv., 2016, 6, 63256



Fully renewable solvent free synthesis of (poly)esters

catalyzed by RH-CaL.B on thin-film

)
o) 50°C,

dimethyl itaconate (DMI) 1,4-butandiol (BDO)

O
Hac\ok/\/Y “CH,
dimethyl adipate 5

HO)I\/\/\/\/H\OH

azelaic acid

HEEWD\"WEHH
]

Propyl laurate

RH-CalLB
30% w/w 5 0
\/\/\O/],n
70 mbar * O
thin film poly(butandiol itaconate) (PBI)
92% conv., Mw 970 Da
OH OH
HO _~_~_"
OH
OH OH
Ve
HO

Green Chem., 2017, 2017,19, 490-502. DOI: 10.1039/C6GC02142E
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In collaboration

Enlarging the tools for polycondensation: with G. Guebitz
cutinase from Thermobifida cellulosilytica @Kll

] hydrophobic

toluene

I:I water

A. Pellis, et al., Catal. Sci. Technol., 2016, 6, 3430-3442.



Enlarging the tools for polycondensation:

Qo

cutinase from Thermobifida cellulosilytica

In collaboration with

Thec_cut1
- Factors: 271Da 514Da
T 70/70/0 .O 70/1000/0
p 359Da
aw 70707110 ’:
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5 1007
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§ 716Da 417Da

; Mn product
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Green Chem., 2017, 2017,19, 490-502. DOI: 10.1039/C6GC02142E



