# Disegni longitudinali e personalità

Corso da 6 cfu A.A. 2017/18 prof.ssa Lisa Di Blas

# 1

# Programma

## Obiettivi e Contenuti:

- Il corso si propone di presentare allo studente modelli e tecniche di analisi di medio livello per lo studio delle differenze individuali, con particolare riferimento ai disegni longitudinali e ai modelli dinamici per lo studio delle fluttuazioni.
- Contenuti principali: modelli e analisi degli effetti di moderazione e mediazione attraverso analisi della regressione multipla (ARM); forme di continuità e cambiamento delle differenze individuali di personalità; ARM e Multilevel e Longitudinal Modeling (MLM) per disegni longitudinali con 2 o più misurazioni per lo studio degli antecedenti temporali e del cambiamento correlato, dell'impatto degli eventi di vita e della relazione tra personalità e psicopatologia; analisi disegni di ricerca con misurazioni ripetute per lo studio delle fluttuazioni o delle dinamiche intra-personali mediante MLM, approfondendo gli approcci between-people e within-people allo studio delle differenze individuali. Il corso prevede esercitazioni pratiche per la raccolta e analisi di dati.

# Programma

# Bibliografia

R. W. Robins, R. C. Fraley, R. F. Krueger (a cura di) (2007). Handbook of research methods in personality psychology. Capp. 2, 29,30, 31, 34.

A. Caspi, B.W. Roberts (2001). Personality Development Across the Life Course: The Argument for Change and Continuity. Psychological Inquiry, 12, 49-66.

Lilenfeld, L.R.R., Wonderlich, S. et al. (2006). Eating disorders and personality: A methodological and empirical review. *Clinical Psychology Review*, 26, 299-320.

Luhmann, M, Orth, U, et al. (2014). Studying changes in life circumstances and personality: It's about time. *European Journal of Personality*, 28, 256-266.

Winer, E.S., Cervone, D., et al. (2016). Distinguishing mediational models and analyses in clinical psychology: Atemporal associations do not imply causation. *Journal of Clinical Psychology*.

In lingua italiana è di supporto il testo di M. Gallucci e L. Leone (2012). "Modelli statistici per le scienze sociali" (capp. 2, 3, 5, 7) Pearson Italia, Milano-Torino.

# Modalità d'esame

Orale.

Ai frequentanti si richiede un lavoro di gruppo di raccolta e analisi dati da svolgere in itinere; il lavoro e la sua presentazione costituiscono parte integrante della prova e contribuiscono alla valutazione

# Introduzione

Descrivere, Spiegare, Ruoli e relazioni tra variabili

# Che cosa impareremo?

- un po' di analisi dei dati
- · soprattutto elementi di metodologia della ricerca, utili
  - per capire come rispondere a domande di ricerca
  - ma ancor prima a porci domande di ricerca in modo corretto
- servendoci della ricerca sviluppata nell'ambito della personalità

# Due prospettive sull'individuo

Prima di altre considerazioni, Anticipiamo come vi siano due principali modi di guardare alla persona

- confrontandola con gli altri individui e collocandola lungo un continuum ("Mario è una persona molto aggressiva) > approccio between people
- confrontandola con sé stessa ("Mario oggi è meno aggressivo del solito") → approccio within person

Noi ci occuperemo di queste due prospettive

# Due prospettive sull'individuo

Prima di altre considerazioni, anticipiamo come vi siano due principali modi di guardare alla persona

- approccio between people → co-variazioni e leggi generali di funzionamento, eventualmente condizionate, applicate per poi precedere e comprendere il singolo individuo
- approccio whithin person → co-variazioni e leggi individuali di funzionamento, spesso condizionate, dalle quali astrarre covariazioni e leggi generali di funzionamento

# Descrivere e spiegare per valutare la personalità

Diversi approcci teorici privilegiano
piuttosto l'uno che l'altro dei due approcci.
Nella psicologia della personalità, sempre più la ricerca
si preoccupa di utilizzare entrambe le prospettive
per descrivere e comprendere le differenze e il funzionamento
della personalità,

integrando i diversi approcci metodologici

# Descrivere e spiegare per valutare la personalità

Anche descrivere e spiegare sono due concetti basilari:

- Descrivere ≠ spiegare
- la scelta delle categorie descrittive è inscindibilmente legata ad una scelta teorica
- · così l'approccio metodologico di ricerca
- $\bullet$  le categorie sono interpretative e implicano domande e scelte esplicative preferite
- idealmente però approcci e risultati dovrebbero integrarsi
- una cartina di tornasole è la questione basilare: personality consistency

Noi lavoreremo principalmente facendo riferimento a teorie dei tratti e a teorie social-cognitive della personalià o self-theories

# Descrivere e spiegare per valutare la personalità

Nella psicologia della personalità, queste prospettive generali si traducono in 3 questioni principali,

- Differenze individuali: quali sono le categorie utili a descrivere e comprendere le caratteritiche distintive delle persona?
- Processi: quali sono i meccanismi che sottendono il funzionamento psicologico degli individui e ne spiegano le differenze?
- Unicità: quali le caratteristiche e i meccanismi che contraddistinguono la singola persona?

Benchè inscindibili l'una dall'altra,

sono state oggetto di attenzione diverso da approccio ad approccio, così come ogni approccio ha trovato risposte non sempre integrabili con quelle sviluppate da altri approcci

# 3 aree principali d'interesse: approcci, questioni e apporti essenziali

- Differenze individuali
  - variabilità delle risposte comportamentali
  - aggregazione
    - Item
    - Occasioni
    - Contesti
    - Rater
  - Partecipanti
  - categorie descrittive
  - tecniche correlazionali
  - Che cosa:
  - Trait theories (ma anche social-cognitive theories)

# 3 aree principali d'interesse: approcci, questioni e apporti essenziali

- Processi
  - fattori individuali che guidano il comportamento
  - anche in interazione con l'esterno
  - $\bullet$ aggregazione within person e between people
- categorie esplicative
- tecniche sperimentali e quasi-sperimentali
- Quali dinamiche? Perché? Come attraverso il tempo?
- Social sognitive thoeries (ma sempre più anche trait theories)

# 3 aree principali d'interesse: approcci, questioni e apporti essenziali

- Differenze individuali
  - variabilità delle risposte comportamentali
  - aggregazione per occasioni / contesti
  - categorie descrittive
  - · tecniche correlazionali
- Che cosa?
- Processi
  - fattori individuali che guidano il
  - anche in interazione con l'esterno
  - aggregazione per persone
  - categorie esplicative
  - tecniche sperimentali e quasi-sperimentali
  - Quali dinamiche? Perché? Come attraverso il
- Unicità
  - individuo nella sua interezza e complessità
  - tema unitario
  - caso singolo
  - Quali le rappresentazioni e dinamiche uniche della persona?
  - Social sognitive theories of the self

# E noi ci occuperemo ...

Per lo studio dello sviluppo delle differenze individuali e dei processi che sottendono le differenze individuali e comportamentali ci occuperemo di

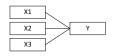
- Moderazione e mediazione
- Disegni longitudinali
- · Disegni per lo studio delle dinamiche intrapersonali

Disegni di ricerca correlazionali Tecniche psicometriche: Analisi della regressione multipla Multi-level modelling

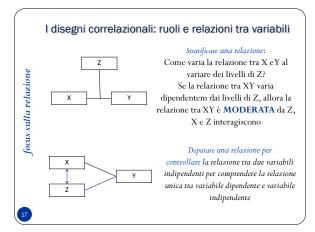


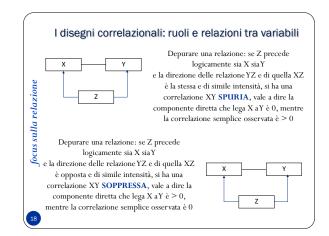
# Disegni correlazionali

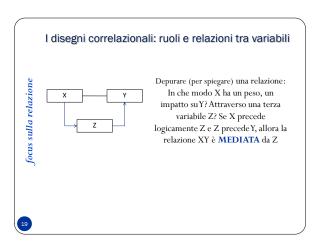
- · ricerche che descrivono una relazione o una rete di relazioni
- · una relazione viene descritta in termini di
  - intensità o effect size
- · si avvalgono di un'ampia serie di tecniche d'analisi statistica che rispondono a vari scopi
- · non permettono, in generale, inferenze di natura causale
- ma permettono di attuare una serie di controlli sulla relazione tra variabili (moderazione, mediazione,...)
  - scomponendo la relazione in componente diretta o componente indiretta (mediazione)
  - stratificando la relazione attraverso i livelli di una terza variabile
- di indagare le relazioni nel tempo a lungo termine (studi longitudinali) o a breve termine (studi sulle fluttuazioni o dinamiche intrapersonali)




# I disegni correlazionali: ruoli e relazioni tra variabili


X2 хз


Spiegare una variabile: Peso o impatto unico di ogni stimatore


Prevedere una varabile: la combinazione più efficiente





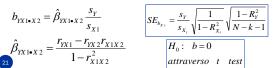




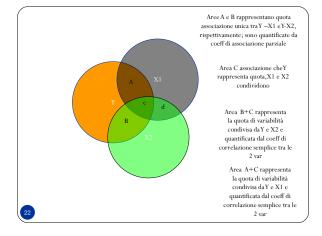


Analisi della regressione multipla per le relazioni moderate

# Regressione multipla: per un ripasso essenziale


equazione di previsione di Y con 2 VI:

$$\begin{split} \hat{Y_i} &= a + b_{yX1 \bullet X2} X_{1i} + b_{yX2 \bullet X1} X_{2i} \\ Y_i &= a + b_{yX1 \bullet X2} X_{1i} + b_{yX2 \bullet X1} X_{2i} + e_i \end{split}$$


coefficienti di regressione parziale, b e  $\hat{\beta}$  : rappresentano il peso o impatto unico di ciascuna VI nell'equazione di previsione di Y

$$\hat{\beta}_{YX1\bullet X2} = \frac{r_{YX1} - r_{YX2}r_{X1X2}}{s_{X1}}$$

$$\hat{\beta}_{YX1\bullet X2} = \frac{r_{YX1} - r_{YX2}r_{X1X2}}{1 - r^2}$$



attraverso t test



# Regressione multipla: per un ripasso essenziale

# Coefficiente di correlazione semi-parziale:

rappresenta la quota di variabilità (sr2 = quota di varianza) che ogni VI, parzializzata dalle altre VI, spiega della varianza totale di Y

$$r_{YX1\bullet X2(s)} = \frac{r_{YX1} - r_{YX2}r_{X1X2}}{\sqrt{1 - r_{X1X2}^2}}$$

# • Coefficiente di correlazione parziale:

rappresenta la quota di variabilità (pr2 = quota di varianza) che ogni VI, parzializzata dalle altre VI, spiega della varianza di Y, parzializzata dalle altre VI

$$r_{YX1\bullet X2} = \frac{r_{YX1} - r_{YX2}r_{X1X2}}{\sqrt{1 - r^2}_{YX2}\sqrt{1 - r^2}_{X1X2}}$$

# Regressione multipla: per un ripasso essenziale

ullet R<sup>2</sup> rappresenta un indice quantitativo di RPE o riduzione proporzionale dell'errore

$$r_{rx}^{2} = \frac{\sum (Y_{i} - \overline{Y})^{2} - \sum (Y_{i} - \hat{Y}_{i})^{2}}{\sum (Y_{i} - \overline{Y})^{2}} = \frac{\sum (\hat{Y}_{i} - \overline{Y})^{2}}{\sum (Y_{i} - \overline{Y})^{2}} = r_{r\dot{Y}}^{2}$$

· Coefficiente di determinazione multiplo, secondo un modello gerarchico

$$R_{Y \bullet X1X2X3}^2 = r_{YX1}^2 + r_{YX2 \bullet X1}^2 + r_{YX3 \bullet X1X2}^2$$

• Test F per  $R^2$ 

$$F = \frac{dev.regress / k - 1}{dev.residua / N - k - 1}$$

Multicollinearità tra VI

# Analisi della regressione multipla: Strategie analitiche

- Regressione simultanea o standard (enter)
  - tutte le VI sono inserite contemporaneam
  - per ogni VI si tiene sotto controllo la relazione con tutte le altre VI
- Regressione gerarchica
  - 1 o più VI vengono inserite secondo una successione predefinita, in base a obiettivi specifici
- · Regressione statistica
  - Forward: 1 VI alla volta, incominciando da quella con corr semplice più alta con VD; poi di volta in volta VI con part corr maggiore con VD; una volta immessa una VI non viene più tolta
  - Backward: tutte le VI inserite simultaneam e poi tolte una alla volta, ogni volta quella che spiega minore quota di varianza di VD non significativa;
  - Stepwise: procede come forward, ma di volta in volta viene valutata ogni VI inserita nel modello e può essere tolta come in backward

# Analisi della regressione: Alcune assunzioni

- VI quantitativa o dicotomica eVD almeno scala a intervalli equivalenti
- ridotta multicollinearità
- ridotto errore di misurazione
- assenza di errore di specificazione
- inclusione VI irrilaventi e omissione VI rilevanti
- non linearità della relazione tra VI e VD
  - $\rightarrow$  rimedio: si rende la relazione lineare (es.,  $Y_i = a + b_1 X_1 + b_2 X_1^2$ )
- non additività della relazione tra VD e VI (i.e., interazione tra VI)
- $\Rightarrow$  si rende la relazione additiva (i.e.,  $Y_i = a + b_1 X_1 + b_2 X_2 + b_3 X_1 X_2$ )
- controllo sui residui (distribuzione omoschedastica)
- · controllo sui casi outlier

# L'analisi della moderazione

- Le differenze sistematiche tra sottogruppi nella relazione tra X eY possono dipendere da variabili moderatrici (se escluse, errore di specificazione)
- che possono essere inserite nel modello di previsione



Z stratifica la relazione Y-X per i possibili livelli o

sottogruppi di Z

- (dis)equità della misura
- (dis)equità della misura
  - e della relazione
- $\hat{Y}_i = a + b_1 X + b_2 D$

$$\hat{Y}_i = a + b_1 X + b_2 D + b_3 X D$$

# L'analisi della moderazione La verifica quando Z è categoriale e X continua

- Verifica dell'equità della misura (modello ridotto)
  - Z viene ricodificata (ad es.) in una variabile dummy: si creano tante variabili dummy quante sono le categorie k -1
  - · e viene inserita nell'equazione di previsione

$$\hat{Y}_i = a + b_1 X + b_2 D$$

 ${}^{\bullet}$ se Z ha 3 e pertanto devono essere create 2 variabili dummy per rappresentare l'effetto complessivo di Z

$$\hat{Y}_i = a + b_1 X + b_2 D_1 + b_3 D_2$$

# L'analisi della moderazione La verifica quando Z è categoriale e X continua

Codifica e creazione di var dummy (D):

 le var D devono essere tanti quanti g-1 per rappresentare l'effetto complessivo della VM categoriale

• si usano i valori "0" e "1" per ogni var D

- al G<sub>RIF</sub> si assegna sempre "0"
- per ogni var D si sceglie un gruppo specifico che viene codificato con "1"

| $\hat{Y}_i = a + b_1 X + b_2 L$ | $D_a + h_a D_a + h_a D_a$ |
|---------------------------------|---------------------------|
| 1, a 10,11 10,22                | 1 10322 10423             |

Esempi:

| Sesso                | D1 |
|----------------------|----|
| M (G <sub>RIF)</sub> | 0  |
| F                    | 1  |

| Relig                   | D1 | D2 | D3 |
|-------------------------|----|----|----|
| CAT                     | 1  | 0  | 0  |
| PRO (G <sub>RIF</sub> ) | 0  | 0  | 0  |
| EBR                     | 0  | 1  | 0  |
| MUS                     | 0  | 0  | 1  |

# L'analisi della moderazione La verifica quando Z è categoriale e X continua

- · Verifica dell'equità della relazione
  - · all'equazione di previsione si aggiunge il termine d'interazione

$$\hat{Y}_i = a + b_1 X + b_2 D + b_3 X D$$

$$=(a+b_2D)+(b_1+b_3D)X$$

• se vi sono 2 variabili dummy per rappresentare l'effetto complessivo di Z, allora l'effetto d'interazione è dato da

$$\hat{Y}_i = a + b_1 X + b_2 D_1 + b_3 D_2 + b_4 D_1 X + b_5 D_2 X$$

# L'analisi della moderazione La verifica quando Z è categoriale e X continua

- Verifica dell'equità della misura
   a parità di punteggio osservato per X, sono statisticam uguali i livelli
   medi attesi di Y per individui appartenenti a classi nominali distinte di Z?
   No, se b associato a variabile dummy (ovvero R² associato alle variabili
   dummy) è significativo(effetti principale della variabile Z)
- Verifica dell'equità della relazione
  al variare dei livelli di Z varia l'intensità della relazione tra X eY è
  costante? No, se b associato a termine d'interazione è significativo
  (interazione tra X e Z)

# L'analisi della moderazione La verifica quando Z è categoriale e X continua

 È preferibile centrare la VI continua, per semplificare la lettura dell'output; il centramento consiste nel trasformare i punteggi osservati per la VI in punteggi espressi in deviazione dalla media:

$$X_i - \overline{X}$$

(cfr l'inclusione di una VI continua modifica le medie e le differenze tra le medie osservate per i gruppi e tale modifica dipende dal processo di parzializzazione proprio dell'ARM; la VI continua funge da covariata ovvero la VI categ funge da covariata)

# L'analisi della moderazione La verifica quando Z è categoriale e X continua

Passaggio preliminare obbligato è il centramento delle VI continue

- "0" è un punto di una scala raram davvero interpretabile
- semplifica l'interpretazione di  $b_i$  che rappresenta
  - il peso di una VI su Y quando le altre VI = 0
  - l'effetto medio di una VI su VD rispetto all'intero range di valori assunti da altre VI che fungono da moderatori
- minimizza la multicollinearità tra VI e temine d'interazione, rimuovendo la multicollinearità non essenziale
- non modifica
  - associato all'effetto d'interazione
  - significatività e forza dell'effetto d'interazione
  - simple slopes definite in base ai valori non centrati

# L'analisi della regressione con una var dummy e una var continua: un esempio

- VI ora sono rappresentate da
  - Var dummy = sesso partecipante (Maschi = 0)
  - Var continua=Orientamento temporale al Passato, in punti z
  - Var Dipendente: Depressione (BDI) (M = 0.41; min = 0 max = 1.67; sd = 0.36)
- I due modelli ridotti sono

|   |         |            |                  |                                  | Coefficient                    | i <sup>a</sup> |      |             |             |                          |
|---|---------|------------|------------------|----------------------------------|--------------------------------|----------------|------|-------------|-------------|--------------------------|
| ſ |         |            | Coefficienti noi | n standardizzati                 | Coefficienti<br>standardizzati |                |      |             | Correlazion | Ni .                     |
|   | Madella |            | В                | Deviazione<br>standard<br>Errore | Beta                           | t              | Sig. | Ordine zero | Parziali    | Parziali<br>indipendenti |
| Γ | 1       | (Costante) | ,436             | .033                             |                                | 13,284         | .000 |             |             |                          |
| L |         | OT_passato | ,168             | .034                             | ,442                           | 4,928          | .000 | ,442        | .442        | ,442                     |

|              |                 |                                  | Coefficient                    | 1"     |      |             |             |                          |
|--------------|-----------------|----------------------------------|--------------------------------|--------|------|-------------|-------------|--------------------------|
|              | Coefficienti no | n standardizzati                 | Coefficienti<br>standardizzati |        |      |             | Correlazion | ni                       |
| Modello      | В               | Deviazione<br>standard<br>Errore | Beta                           | t      | Sig. | Ordine zero | Parziali    | Parziali<br>indipendenti |
| 1 (Costante) | ,436            | .033                             |                                | 13,284 | ,000 |             |             |                          |
| OT_passato   | ,168            | .034                             | ,442                           | 4,928  | .000 | ,442        | .442        | ,442                     |
|              |                 |                                  |                                |        |      |             |             |                          |

# L'analisi della regressione con una var dummy e una var continua: un esempio

# Riepilogo del modello

|         |                   |            |                        | Deviazione                        |                             | Variazione         | dell'adattam | ento |                            |
|---------|-------------------|------------|------------------------|-----------------------------------|-----------------------------|--------------------|--------------|------|----------------------------|
| Modello | R                 | R-quadrato | R-quadrato<br>corretto | standard<br>Errore della<br>stima | Variazione di<br>R-quadrato | Variazione di<br>F | dΠ           | df2  | Sig.<br>Variazione di<br>F |
| 1       | ,456°             | ,208       | ,192                   | ,32820                            | ,208                        | 12,963             | 2            | 99   | ,000                       |
| 2       | ,467 <sup>b</sup> | ,218       | ,194                   | ,32769                            | ,010                        | 1,306              | 1            | 98   | ,256                       |

a. Predittori: (Costante), OT\_passato, sesso b. Predittori: (Costante), OT\_passato, sesso, PassatoBYsex

# Coefficient

| Modello |              | Coefficienti noi | n standardizzati                 | Coefficienti<br>standardizzati |        |      |             | Correlazioni |                          |  |
|---------|--------------|------------------|----------------------------------|--------------------------------|--------|------|-------------|--------------|--------------------------|--|
|         |              | В                | Deviazione<br>standard<br>Errore | Beta                           | t      | Sig. | Ordine zero | Parziali     | Parziali<br>indipendenti |  |
| 1       | (Costante)   | ,396             | ,046                             |                                | 8,590  | ,000 |             |              |                          |  |
|         | sesso        | ,080             | ,065                             | .110                           | 1,230  | .221 | .111        | ,123         | ,110                     |  |
|         | OT_passato   | ,168             | ,034                             | ,442                           | 4,940  | ,000 | .442        | ,445         | ,442                     |  |
| 2       | (Costante)   | ,401             | ,046                             |                                | 8,673  | ,000 |             |              |                          |  |
|         | sesso        | ,070             | ,065                             | ,097                           | 1,074  | ,286 | .111        | ,108         | ,096                     |  |
|         | OT_passato   | ,208             | ,049                             | ,547                           | 4,270  | .000 | .442        | ,396         | ,381                     |  |
|         | PassatoBYsex | -,078            | ,068                             | -,147                          | -1,143 | ,256 | ,235        | -,115        | -,102                    |  |

L'analisi della moderazione La verifica quando Z è categoriale e X continua

l'eq. di regressione è  $\hat{Y}_i = 0.40 + 0.07D_1 + 0.21X_1 + (-0.08)D_1X_1$ 

inserire i termini di interazione significa mettere direttamente a confronto sia media (intercetta) sia slope della VI continua del  $G_{\rm RIF}\,{\rm con}\,{\rm intercetta}\,{\rm e}\,{\rm slope}\,{\rm degli}\,{\rm altri}\,{\rm gruppi},$ 

significa verificare l'effetto principale delle VI e l'effetto di moderazione della VI categoriale

- eq. regressione per i soli Maschi:  $\hat{Y}_i = 0.40 + 0.21X_1$
- eq. regressione per le sole Femmine:  $\hat{Y_i} = 0.47 + 0.13X_1$

# Ancora un esempio

 $\ensuremath{\mathrm{VD}} = \ensuremath{\mathrm{Problemi}}$  di tipo internalizzante nei bambini

VI = Depressione MMPI

VM = sesso genitore

Domanda: L'intensità dell'associazione tra il livello di depressione del genitore e

la percezione di problemi internalizzanti nel proprio figlio varia  $% \left( 1\right) =\left( 1\right) \left( 1\right)$ 

tra madri e padri?

### Model Summary

|       |                   |          |          |               | Change Statistics |          |              |      |               |
|-------|-------------------|----------|----------|---------------|-------------------|----------|--------------|------|---------------|
|       |                   |          | Adjusted | Std. Error of | R Square          |          | Ondingo Otdi | dioo |               |
| Model | R                 | R Square | R Square | the Estimate  | Change            | F Change | df1          | df2  | Sig. F Change |
| 1     | ,438ª             | ,192     | ,188     | 8,3174        | ,192              | 45,144   | 1            | 190  | ,000          |
| 2     | ,446 <sup>b</sup> | ,199     | ,191     | 8,3026        | ,007              | 1,678    | 1            | 189  | ,197          |
| 3     | ,466°             | ,217     | ,205     | 8,2307        | ,018              | 4,318    | 1            | 188  | ,039          |

a. Predictors: (Constant), MMPldepress

b. Predictors: (Constant), MMPIdepress, SESSOGEN

c. Predictors: (Constant), MMPIdepress, SESSOGEN, interazione

| Ancora | un | esempio |
|--------|----|---------|
|        |    |         |

|       |             | Unstand<br>Coeffi | dardized<br>cients | Standardized<br>Coefficients |        |      | Correlations |         |       |
|-------|-------------|-------------------|--------------------|------------------------------|--------|------|--------------|---------|-------|
| Model |             | В                 | Std. Error         | Beta                         | t      | Sig. | Zero-order   | Partial | Part  |
| 1     | (Constant)  | 44,317            | 1,021              |                              | 43,408 | ,000 |              |         |       |
|       | MMPIdepress | ,714              | ,106               | ,438                         | 6,719  | ,000 | ,438         | ,438    | ,438  |
| 2     | (Constant)  | 42,885            | 1,504              |                              | 28,520 | ,000 |              |         |       |
|       | MMPIdepress | ,706              | ,106               | ,433                         | 6,648  | ,000 | ,438         | ,435    | ,433  |
|       | SESSOGEN    | 1,897             | 1,464              | ,084                         | 1,295  | ,197 | ,109         | ,094    | ,084  |
| 3     | (Constant)  | 40,014            | 2,032              |                              | 19,689 | ,000 |              |         |       |
|       | MMPIdepress | 1,106             | ,220               | ,679                         | 5,039  | ,000 | ,438         | ,345    | ,325  |
|       | SESSOGEN    | 5,716             | 2,342              | ,255                         | 2,441  | ,016 | ,109         | ,175    | ,157  |
|       | interazione | -,520             | ,250               | -,335                        | -2,078 | ,039 | ,323         | -,150   | -,134 |

a. Dependent Variable: TCBCLinternalizz

Se padri (GR = 0):  $Y' = 40,014+1,106MMPI\_Dep$ 

Se madri (GR = 1): Y' = (40,014+5,716)+(1,106-0,520)MMPI\_Dep



# L'analisi della moderazione La verifica quando Z è continua e X continua

Eq di regressione con VM continua = Z

$$\hat{Y} = a + b_1 X + b_2 Z + b_3 X Z$$

Per un qualsiasi valore di Z, l'eq di regressione semplice è data da

$$\hat{Y} = a + b_2 Z + (b_1 + b_3 Z)X$$

# L'analisi della moderazione La verifica quando Z è continua e X continua

Descriptive Statistics

|           | Mean   | Std. Deviation | N   |
|-----------|--------|----------------|-----|
| internal  | 7,4786 | 5,70683        | 140 |
| thdomsf   | ,0285  | ,98741         | 140 |
| thdomgct  | ,0725  | 2,61247        | 140 |
| thdomsfgn | ,9525  | 2,72914        | 140 |
|           |        |                |     |

THDOMSF=VM=DOMINANZA SELF-RATED BIMBO THDOMGN=VI=DOMINANZA RATED GENITORE  $\label{eq:thdomsfgn} THDOMSFGN \equiv termine\ moltiplicativo\ o\ di\ interazione$ 

Domanda: L'intensità dell'associazione tra Dominanza valutata dal enitore e Problemi internalizzanti varia in funzione della Dominanz ercepita dal bimbo stesso? Se si, la MV svolge un ruolo "antagonista"

|                     |           | Correlation | s       |          |           |
|---------------------|-----------|-------------|---------|----------|-----------|
|                     |           | internal    | thdomsf | thdomgct | thdomsfgn |
| Pearson Correlation | internal  | 1,000       | -,219   | -,433    | ,284      |
|                     | thdomsf   | -,219       | 1,000   | ,371     | -,173     |
|                     | thdomgct  | -,433       | ,371    | 1,000    | -,248     |
|                     | thdomsfgn | ,284        | -,173   | -,248    | 1,000     |
| Sig. (1-tailed)     | internal  |             | ,005    | ,000     | ,000      |
|                     | thdomsf   | ,005        |         | ,000     | ,021      |
|                     | thdomgct  | ,000        | ,000    |          | ,002      |
|                     | thdomsfgn | ,000        | ,021    | ,002     |           |
| N                   | internal  | 140         | 140     | 140      | 140       |
|                     | thdomsf   | 140         | 140     | 140      | 140       |
|                     | thdomgct  | 140         | 140     | 140      | 140       |
|                     | thdomsfgn | 140         | 140     | 140      | 140       |

# L'analisi della moderazione La verifica quando Z è continua e X continua

# Model Summary

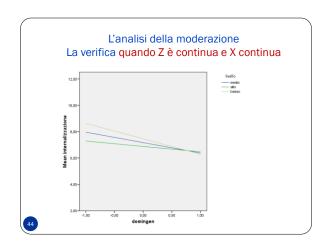
|       |       |          |                      |                               | Change Statistics  |          |     |     |               |  |
|-------|-------|----------|----------------------|-------------------------------|--------------------|----------|-----|-----|---------------|--|
| Model | R     | R Square | Adjusted<br>R Square | Std. Error of<br>the Estimate | R Square<br>Change | F Change | df1 | df2 | Sig. F Change |  |
| 1     | ,437a | ,191     | ,179                 | 5,17010                       | ,191               | 16,179   | 2   | 137 | ,000          |  |
| 2     | ,472b | ,223     | ,206                 | 5,08651                       | ,032               | 5,540    | 1   | 136 | ,020          |  |

- a. Predictors: (Constant), thdomgct, thdomsf b. Predictors: (Constant), thdomgct, thdomsf, thdomsfgn c. Dependent Variable: internal

|       | ANOV Æ     |                   |     |             |        |       |  |  |  |  |  |
|-------|------------|-------------------|-----|-------------|--------|-------|--|--|--|--|--|
| Model |            | Sum of<br>Squares | df  | Mean Square | F      | Sig.  |  |  |  |  |  |
| 1     | Regression | 864,940           | 2   | 432,470     | 16,179 | ,000ª |  |  |  |  |  |
|       | Residual   | 3661,996          | 137 | 26,730      |        |       |  |  |  |  |  |
|       | Total      | 4526,936          | 139 |             |        |       |  |  |  |  |  |
| 2     | Regression | 1008,261          | 3   | 336,087     | 12,990 | ,000b |  |  |  |  |  |
|       | Residual   | 3518,674          | 136 | 25,873      |        |       |  |  |  |  |  |
|       | Total      | 4526,936          | 139 |             |        |       |  |  |  |  |  |

- a. Predictors: (Constant), thdomgnct, thdomsf b. Predictors: (Constant), thdomgnct, thdomsf, domgnsf
- C. Dependent Variable: internal

# L'analisi della moderazione La verifica quando Z è continua e X continua

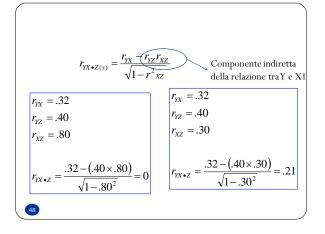

## Coefficie nts

|       |            | Unstandardized<br>Coefficients |            | Standardized<br>Coefficients |        |      |            | Correlations |       |
|-------|------------|--------------------------------|------------|------------------------------|--------|------|------------|--------------|-------|
| Model |            | В                              | Std. Error | Beta                         | t      | Sig. | Zero-order | Partial      | Part  |
| 1     | (Constant) | 7,554                          | ,437       |                              | 17,278 | ,000 |            |              |       |
|       | thdomsf    | -,391                          | ,478       | -,068                        | -,818  | ,415 | -,219      | -,070        | -,063 |
|       | thdomgnct  | -,890                          | ,181       | -,407                        | -4,924 | ,000 | -,433      | -,388        | -,378 |
| 2     | (Constant) | 7,178                          | ,459       |                              | 15,641 | ,000 |            |              |       |
|       | thdomsf    | -,292                          | ,472       | -,050                        | -,617  | ,538 | -,219      | -,053        | -,047 |
|       | thdomgnct  | -,804                          | ,182       | -,368                        | -4,429 | ,000 | -,433      | -,355        | -,335 |
|       | domgnsf    | ,386                           | ,164       | ,184                         | 2,354  | ,020 | ,284       | ,198         | ,178  |

a. Dependent Variable: internal



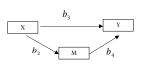
|                                                                                                                                                   |                                                                 |                                                                    | continu                       |                                            |   |
|---------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------|--------------------------------------------|---|
| $\hat{Y} = a + b_2 Z + (b_1 + b_3 Z)X$                                                                                                            |                                                                 |                                                                    | Descript                      | ive Statistics                             |   |
| $I = a + b_2 Z + (b_1 + b_3 Z) X$                                                                                                                 |                                                                 |                                                                    | Mean                          | Std. Deviation                             | N |
|                                                                                                                                                   |                                                                 | internal                                                           | 7,4786                        | 5,70683                                    | 1 |
| ^                                                                                                                                                 |                                                                 | thdomact                                                           | ,0285<br>.0725                | ,98741<br>2.61247                          | 1 |
| Y = 7.18 + (29Z) + (80X) +                                                                                                                        | 386 <i>ZX</i>                                                   | thdomsfgn                                                          | ,9525                         | 2,72914                                    | 1 |
| se $Z = 0$<br>$\hat{Y} = 7.18804X$<br>se $Z = 1$<br>$\hat{Y} = (7.18 - 0.29) + (80 + .38)X$<br>se $Z = -1$<br>$\hat{Y} = (7.18 + 0.29) + (8038)X$ | Z (sd)<br>0,00<br>0,00<br>0,00<br>0,99<br>0,99<br>0,99<br>-0,99 | X (<br>2,/<br>0,/<br>-2,<br>2,/<br>0,/<br>-2,<br>2,/<br>0,/<br>0,/ | 61 00 61 61 00 61 61 61 61 61 | Y' 5,09 7,18 9,27 5,80 6,89 7,99 4,38 7,47 |   |




# Tipi di effetti d'interazione

- effetto sinergico:
  - VI e VM assieme producono un effetto sulla VD superiore a quello prodotto dai soli effetti principali
  - i segni di tutti i coefficienti di regressione sono uguali (es. A+ e stile genitoriale caloroso su resilienza)
- effetto buffering.
  - VI e VM presentano coeff regressione di segno opposto, per cui l'impatto di una VI diminuisce quello dell'altra;
  - tipicam, VI agisce da fattore di rischio su VD, mentre VM da fattore protettivo su VD (es. impatto low SES su Problemi comportamentali è moderato da QI bimbo)
- effetto antagonista:
  - il termine d'interazione è di segno opposto rispetto a VI e VM che sono invece dello stesso segno (cfr nostro esempio su Dominanza e Internalizzazione)
  - l'effetto della VI può essere annullato da quello della VM, per determinati livelli

Analisi della regressione multipla per le relazioni mediate






# L'analisi della mediazione

- VMe o variabile interveniente
- Effetto mediato o effetto indiretto
- Quali condizioni cambiano la relazione semplice diretta tra VI e VD? Come/Perché VI influenza VD?
- Equazioni fondamentali:





# L'analisi della mediazione

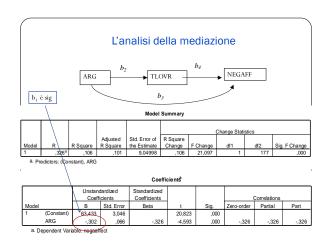
- Stimate le 3 equazioni, le info essenziali sono:
  - VI deve essere legata a VD  $(b1 \neq 0)$
  - VI deve essere legata a VMe (b2 ≠ 0)
  - se b4 ≠ 0, allora vi è mediazione
  - effetto indiretto è dato da bi b3

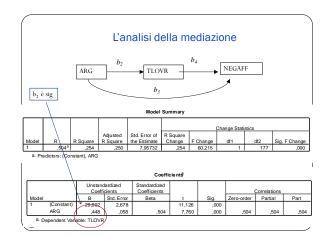
Ma quale mediazione? E se vi è mediazione, allora *b1* è statisticam superiore a *b3? La quota indiretta è superiore a 0?* 

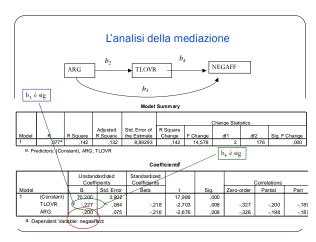
- se *b3* = *0*, allora vi è mediazione completa (ma possibile bassa potenza del test)
- *b*<sub>3</sub> < *b*<sub>1</sub>? Non esiste un test diretto per calcolare se la differenza è statist significativa ovvero se l'effetto diretto è inferiore a quello indiretto , ma test di Sobel

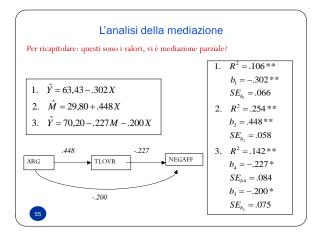
# L'analisi della mediazione

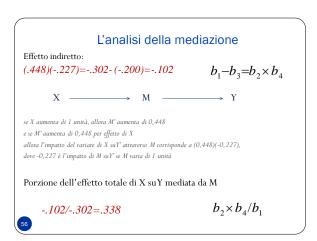
Effetto indiretto:  $b_1 - b_3 = b_2 \times b_4$ 


Test di Sobel per testare la significatività statistica dell'effetto indiretto:


$$Z = (b_2 \times b_4) / \sqrt{(b_2^2 \times SE_{b4}^2) + (b_4^2 \times SE_{b2}^2) + (SE_{b4}^2 \times SE_{b2}^2)}$$


Porzione dell'effetto totale di X $\operatorname{su} Y$ mediata da M


 $b_2 \times b_4/b_1$ 


seppure è anche più importante parlare di *forza dell'effetto* di mediazione piuttosto che di mediazione totale o parziale





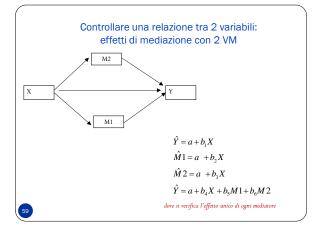


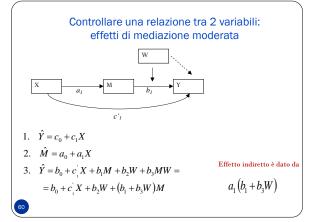




# L'analisi della mediazione

L'effetto indiretto è significativo? Test di Sobel


$$\begin{split} SE_{b_2b_4} &= \sqrt{(-.227)^2(.058)^2 + (.448)^2(.084)^2 + (.058)^2(.084)^2} = .040 \\ z &= -.102 / .040 = -2.55 \quad (p = .011) \\ me &= SE_{b_2b_4}z_{1-\alpha/2} \\ me &= .040 (1.96) = .078 \\ CI &- .180 \leq -.102 \leq -.024 \end{split}$$


# L'analisi della mediazione

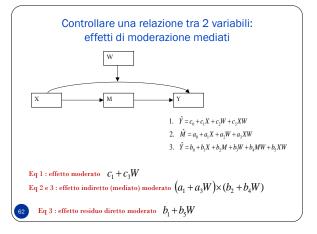
Considerazioni generali

- Il concetto di mediazione è centrale nella ricerca sia sperimentale sia correlazionale
  - Perché? La relazione causale e relative inferenze sono più solide nei disegni sperimentali grazie al controllo e alla randomizzazione
- La direzione della mediazione va definita logicamente, ma può essere rovesciata nei disegni correlazionali (vs. disegni longitudinali)
- Modelli mediazione moderata
- Modelli mediati multipli








# Controllare una relazione tra 2 variabili: effetti di mediazione moderata

• Relazione mediata moderata:

Nella relazione mediata moderata, la relazione tra X eY non varia in funzione dei livelli di W, non è moderata da W, pertanto in un'equazione che verifica l'effetto di moderazione di W tra X eY, il temine moltiplicativo XW dovrebbe risultare statisticamente pari a  $0\,$ 

• Relazione moderata mediata:

Nella relazione moderata mediata invece l'impatto di X su Y varia in funzione dei livelli di W



# La relazione tra 3 variabili: depurare la relazione tra 2 variabili

La depurazione consiste nel confrontare correlazioni osservate con correlazioni dirette

Se componente diretta e indiretta sono di segno opposto:

- Relazione deflazionata quando la componente diretta ancora prevale, ma viene indebolita da quella indiretta:  $|d_{xx}| > |i_{yx}|$
- Relazione rovesciata: la componente indiretta è di segno opposto e maggiore di quella diretta e la "sommerge" d<sub>1X</sub> <-i<sub>1X</sub>
- Relazione soppressa: la corr osservata è la somma  $d_{xx} \neq 0$ di due componenti di pari intensità ma di segno opposto  $d_{xx} = -i_{xx}$
- Relazione spuria la corr osservata è solo relazione indiretta:  $d_{xx}=0$   $i_{tx}\neq 0$

# La relazione tra 3 variabili: le variabili di controllo nella depurazione

Per determinare il ruolo di una variabile di controllo (VC) in una relazione tra due variabili occorre stabilire un ordine tra VI e VC:

- quando Z o VC fa apparire la relazione tra X eY, la VC è detta suppressor
- quando Z o VC fa cambiare di segno la relazione tra X e Y, la VC è detta distorter
- quando Z o VC indebolisce o fa sparire la relazione tra X e Y, la VC è detta mediatrice o interveniente se X precede logicamente Z che a sua volta precede Y
- quando Z o VC fa sparire la relazione tra X e Y, la VC è detta confounding se Z precede Y e X (relazione spuria)

Analisi della regressione multipla per disegni longitudinali con 2 misurazioni

# I disegni longitudinali

- Come si sviluppa una qualità attraverso il tempo?
- · La personalità cambia attraverso il tempo?
- Vi sono gap maturazionali?
- Quali relazioni intercorrono tra le variabili attraverso il tempo?
  - in che modo i contesti situazionali e gli eventi influenzano le qualità psicologiche? (P reagisce ad A)
  - in che modo le qualità psicologiche contribuiscono a mantenere o a stimolare lo sviluppo di contesti situazionali ed eventi attraverso il tempo? (P evoca A)
  - in che modo le qualità psicologiche guidano il comportamento selezionando o creando contesti situazionali ed eventi attraverso il tempo? (P agisce su A)

# I disegni longitudinali

I disegni longitudinali permettono di cogliere

- traiettorie di sviluppo
- antecedenti temporali del cambiamento
- cambiamenti correlati

superando limiti legati a studi sia *cross-sectional* sia sperimentali e riuscendo a definire la direzione della relazione tra variabili colta attraverso il tempo

# I disegni longitudinali

Cambiamento come processo complesso, combinazione di azioni ed eventi, con relazioni a catena, dove un evento può pesare su un altro, in una successione temporale

# I disegni longitudinali: scelte metodologiche

- Cosa misurare e come misurare
  - quali costrutti psicologici e quali relazioni (obiettivi)
  - quali strumenti da utilizzare da T1 a Tn:
    - continuità strutturale (invarianza delle misure)
    - e continuità concettuale o eterotipica
    - preservare sotto-insieme item uguali da una misura all'altra
  - quali analisi statistiche
  - studio pilota

# I disegni longitudinali: scelte metodologiche

- Quando e quante volte valutare?
  - almeno 2 volte (metodo correlazioni incrociate)
  - possibilmente non meno di 3 (modelli multilivello e della curva latente di sviluppo)
  - distanza temporale (in funzione degli obiettivi e della rapidità del cambiamento atteso)
- Quali fonti informative?
  - approccio multi-rater
  - e multi-metodo

# I disegni longitudinali: scelte metodologiche

- Quale campione e di quale grandezza?
  - popolazione di interesse
  - N appropriato alle analisi,
  - anche in considerazione della perdita di Ss
    - mantenere il campione (staff, condivisione, ricompensa)

# I disegni longitudinali: concezioni e approcci d'indagine al cambiamento nel tempo

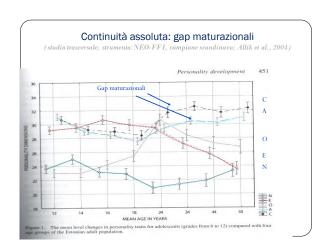
- manifesto di tipo quantitativo (grado di ...)
  - manifesto con continuità latente
- in funzione di variazioni vs. regolarità
  - decomponendo la catena di eventi / la macchina in parti e apportando alterazioni
- in termini di sviluppo
  - storicismo lineare: gli eventi sono connessi nel tempo
  - cambiamento teleologico
  - progressione di tipo cumulativo
- coerenza
  - "intraindividuale" tra passato, presente e futuro
  - · con contenuti motivazionali

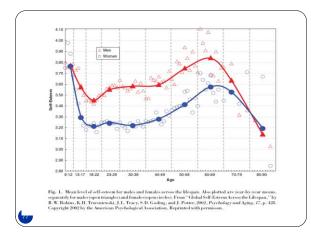


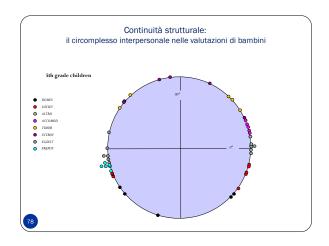
# Quantificare la continuità e il cambiamento delle differenze individuali attraverso il tempo

- Continuità differenziale o gerarchica: stabilità degli ordini di rango (test-retest)
- Continuità assoluta:

   andamento dei livelli medi nel tempo (studi trasversali e studi longitudinali)
   gap maturazionali
- Continuità strutturale: stabilità dei patter di relazioni tra variabili
- Continuità ipsativa: stabilità dei profili individuali rispetto a più variabili (shape ed elevazione)
- 5. Continuità individuale stabilità di una singola variabile a livello individuale (RCI)
- Continuità eterotipica o coerenza "latente" concettuale


# Continuità differenziale


verifica la stabilità degli ordini di rango e si misura mediante coefficiente di correlazione (test-retest)


- Qual è la relazione tra età e stabilità dei tratti?
- A quale età si osserva il picco della stabilità?
- Qual è il livello di questo picco? Sufficientemente elevato per dire che non si cambia più?
- Ci sono differenze per tipi di tratto?

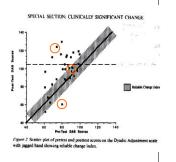


# Continuità differenziale Roberts e Del Vecchio, 2000: meta-analiss di 152 studi longitudinali con oltre 3000 correlazioni test-retest (min = 1 anno, max = 53 anni, media = 6,7 con sd = 7,5), età da 6 settimane a 73 anni; categorie BF e 5 fattori di Martin e Presley (1994) BANIC GROBER CONSUSTENCY OF PERSONALITY TRAITS 15 Figur 1. Popularina naturanza ul roma cominima parama que compulse (n. 1910) villi 1970 confidenza brud








# Continuità individuale

Si riferisce al livello di cambiamento mostrato dal singolo individuo sul singolo tratto Indice quantitativo è il RCI (reliable

change index):

$$\begin{aligned} RCI &= \frac{x_2 - x_1}{s_{DIFF}} \\ s_{DIFF} &= s_E \sqrt{2} \\ s_E &= s_X \sqrt{1 - r_{tt}} \end{aligned}$$

$$s_{E} = s_{X} \sqrt{1 - r_{t}}$$



# Disegni longitudinali per lo studio dello sviluppo di problemi clinici in relazione alle differenze individuali

Possibili modelli esplicativi della relazione tra personalità e sviluppo di condizioni cliniche:

# A) Vulnerabilità o predisposizione

- · alcuni tratti possono predisporre l'individuo a maggiore rischio di condizioni/tratti clinici (Personalità → Disturbo)
- personalità e psicopatologia sono indipendenti l'una dall'altra in termini di fattori sottesi latenti
- Disegni longitudinali: se al T0 i partecipanti NON presentano caratteristiche cliniche, possibile verificare come la personalità influenza l'insorgenza di stati clinici (personalità è un antecedente)
- · Disegni longitudinali: se al T0 i partecipanti presentano caratteristiche cliniche, possibile verificare come la personalità influenza il decorso della condizione clinica

# Disegni longitudinali per lo studio dello sviluppo di problemi clinici in relazione alle differenze individuali

B) Modello della "complicazione"

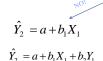
- · una condizione/tratto clinico può lasciare conseguenze e modificare caratteristiche di personalità (Disturbo → Personalità)
  - Scar model: effetti a lungo termine
  - State model: effetti transitori
- personalità e psicopatologia sono indipendenti l'una dall'altra in termini di fattori sottesi latenti
- Metodi:
  - Disegni longitudinali: se al T0 i partecipanti presentano una condizione psicopatologica, ma non una caratteristica di personalità che emerge in seguito, allora è possibile verificare come condizione clinica influenza personalità;
    - anche l'effetto di interazione tra personalità premorbosa e condizione clinica è informativo rispetto alla "cicatrice"
    - se i pazienti sono seguiti fino all'esito e oltre, è possibile distinguere tra scar e state models. (condizione clinica è un antecedente)
  - Disegni su persone "Recovered":

    - Guariti vs clinici: state model
       Guariti vs mai avuta condizione clinica: scar model

# Disegni longitudinali per lo studio dello sviluppo di problemi clinici in relazione alle differenze individuali

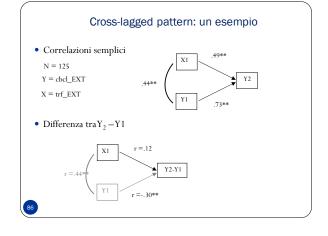
# Patoplasticità

- · alcuni tratti normali possono influenzare lo sviluppo di condizioni/ tratti clinici,
- pur essendo da questi distinti (indipendenza dei fattori causali latenti)
- Metodi
  - · Disegni longitudinali: se T0 presenza del disturbo ma tratti di personalità a livelli di premorbidità, allora possibile valutare come tratti influenzano il decorso e l'esito (personalità è un antecedente)

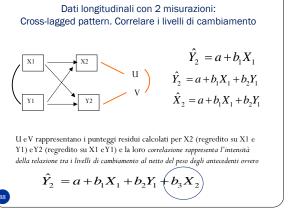

# Disegni longitudinali per lo studio dello sviluppo di problemi clinici in relazione alle differenze individuali

# Modello della causa comune

- Modello del "terzo" fattore comune: stessa causa con manifestazioni fenotipiche qualitativamente differenti (es., stessa base genetica)
- Modello spettro: manifestazioni quantitativamente differenti dello stesso tratto clinico (es., schizotipi → schizofrenia)
- Metodi:
  - Within family, compreso il metodo dei gemelli
  - (studi su basi bologiche)

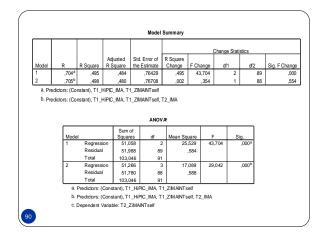

# Dati longitudinali con 2 misurazioni: I cross-lagged pattern.

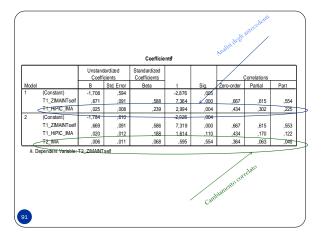





X1 rappresenta l'impatto unico della variabile antecedente (causale) su Y2, al netto del peso di Y1 e pertanto l'impatto sul livello di cambiamento di Y daT1 aT2, in termini presumibilm causali

# Perché non usare semplicem la differenza tra i punteggi Y2 – Y1 e poi correlare il livello di cambiamento con X1? 1 punteggi Y2 – Y1 correlano con Y1 2 e pertanto possono anche correlare con X1: Non è pulita la VD, la relazione con VI è impura, la relazione causale debole Perché non regredire Y2 suY1 e usare i residui? 2 non controllo la relazione tra X1 e Y1 2 e indebolisco peso X1 suY2 a causa varianza irrilevante 3 il metodo proposto (slide precedente) controlla varianza condivisa tra antecedenti e stima impatto netto X1 suY2





# Cross-lagged pattern: un esempio • Residui di Y2: $\hat{Y}_2 = a + b_1 Y_1$ • Pattern corretto: $X1 \qquad r = .26*$ res Y2 $Y1 \qquad r = .00$

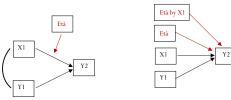


# Dati longitudinali con 2 misurazioni: Cross-lagged pattern. Correlare i livelli di cambiamento

- Se si correlano tra loro le differenze nei punteggi osservatiY2-Y1 e X2-X1
  - $\bullet$ gli scarti correlano con le rispettive variabili rilevate al T1
  - $\bullet$ e pertanto correlano anche con l'altra variabile al T1 in virtù del legame che c'è tra le variabili X eY al T1
  - non rappresentano così cambiamento puro
  - la correlazione tra gli scarti è pertanto impura
- Se si regredisce Y2 su Y1 solamente e X2 su X1 solamente
  - $\bullet$  non si controlla la relazione tra i residui di una variabile (Y) e l'altra variabile (X) al T1, relazione che dipende dal legame tra le due variabili (X eY) al T1
  - la correlazione tra i residui è pertanto impura



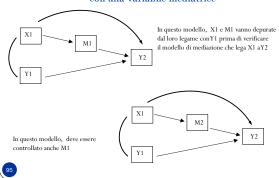



| V (T3)  | IV                   | T2 (1 yr     | apart)      | T1 (2 yrs apart)    |             |  |
|---------|----------------------|--------------|-------------|---------------------|-------------|--|
|         |                      | sr           | $R^2_{adj}$ | sr                  | $R^2_{adj}$ |  |
| Dom     | Dom<br>HiPIC_Ext     | .68**<br>.22 | .46**       | .41**<br>.25        | .18*        |  |
| Lov     | Lov<br>HiPIC Ben     | .26<br>.26   | .16*        | .45**<br>.15        | 18*         |  |
| Con     | Con<br>HiPIC Con     | .55**<br>.08 | .49**       | .31 <b>*</b><br>.18 | .09*        |  |
| EmS     | EmS<br>HiPIC EmS     | .41*<br>.11  | .14*        | .37*<br>.01         | .09         |  |
| Ima/Abi | Ima/Abi<br>HiPIC Ima | .41*         | .37**       | .09                 | .20**       |  |

# Interpersonal associations across time for matching BF domains: Correlated changes

|         |           | T1 <b>→</b> T2 | T1 <b>→</b> T3 |
|---------|-----------|----------------|----------------|
| Dom     | HiPIC_Ext | .08            | .28            |
| Lov     | HiPIC Ben | .16            | 16             |
| Con     | HiPIC Con | .40*           | .48*           |
| EmS     | HiPIC EmS | .06            | .08            |
| Ima/Abi | HiPIC Ima | .29            | .28            |
| N       |           | 28/33          | 23/27          |
|         |           |                |                |
|         |           |                |                |
|         |           |                |                |
|         |           |                |                |

# Dati longitudinali con 2 misurazioni: Cross-lagged pattern.


Può essere utile valutare l'impatto di variabili moderatrici (es. età)



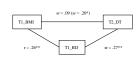
 $\hat{Y}_2 = a + b_1 X_{1:Y1} + b_2 V M_{1:Y1} + b_3 X_{1:Y1} V M_{1:Y1}$ 

controllando anche la moderatrice per la sua relazione con Y1

# Disegni longitudinali (2 misurazioni) con una variabile mediatrice



Ai fini dell'analisi della mediazione,


 $\mbox{\ \ ^{\circ}}$  la relazione T1\_BMI e T2\_DT è stata controllata rispetto a T1\_DT (eq 1)

$$\hat{Y}_{T2\_DT} = a + b_1 X_{T1BMI} + b_2 V X_{T1DT}$$

• eq 2  $\hat{Y}_{T1\_BD} = a + b_1 X_{T1BMI}$ • così nel modello di mediazione tra gli stimatori si è inserito T1\_DT

$$\hat{Y}_{T2}|_{DT} = a + b_1 X_{T1BMI} + b_2 V X_{T1DT} + b_3 V M e_{T1BD}$$

z test = 1.99 (p < .05) per l'effetto di mediazione (De Caro e Di Blas, 2016)



disegni longitudinali con almeno 3 misurazioni Longitudinal Modeling

# Dati longitudinali con 3 o più misurazioni: elementi di metodologia

Limiti dei disegni longitudinali con 2 misurazioni

- è un approccio between people
- non rivela andamento nel tempo (forma delle traiettorie di sviluppo)

Disegni longitudinali con 3 o più misurazioni permettono di

- superare limiti metodologici dei disegni trasversali e con 2 misure ripetute (ad es. rivelare effetto di selezione)
- definire traiettorie di sviluppo di una variabile, anche non lineari
- lavorare integrando approccio between e approccio within, rivelando la variabilità individuale intorno all'andamento normativo

# Dati longitudinali con 3 o più misurazioni: Svelare l'effetto di selezione

Lo studio della relazione tra persona ed eventi di vita è un utile esempio metodologico: come stimare l'impatto di un evento di vita sulle differenze individuali di personalità?

Molti studi trasversali confrontano i livelli medi di una variabile rilevati in individui che hanno esprito vs non hanno esperito un determinato evento di vita. Il disegno è pre-sperimentale.

Quale il limite metodologico?

# Dati longitudinali con 3 o più misurazioni: Svelare l'effetto di selezione

Le differenze possono essere pre-esistenti: uno studio cross-sectional focalizza l'attenzione su T1 o post-evento e non pertanto controlla se le differenze sono un effetto (A) o già pre-esistenti (B):

Uno studio longitudinale permette di controllare l'effetto selezione:



To Evento T1



To Evento T1

# Dati longitudinali con 3 o più misurazioni: elementi di metodologia

La relazione tra persona ed eventi di vita: effetto della selezione

Le persone possono essere diverse tra loro prima che l'evento accada:

 uno studio longitudinali può dimostrare se l'effetto (le differenze individuali) è dovuto all'evento o piuttosto al possibile effetto della selezione: a parità di livelli a TO/concorrente Tevento, vi è effetto se si rilevano differenze dopo l'esposizione all'evento (linea verde) vs nonevento (linea blu) (A)





# Dati longitudinali con 3 o più misurazioni: elementi di metodologia

La relazione tra persona ed eventi di vita: : l'effetto della selezione

Metodologicamente va anche considerato:

- le differenze di P possono moderare le <u>traiettorie</u> di cambiamento (A: in seguito ad un evento, la traiettoria di sviluppo di una var potrebbe variare in funzione dei livelli di una var moderatrice)
- l'età può essere una variabile confounding rispetto all'impatto che un evento vs non evento ha sulla <u>traiettoria</u> di cambiamento (B: le traiettorie di sviluppo, legate all'età, sono parallele per individui con differenze preesistenti l'evento)





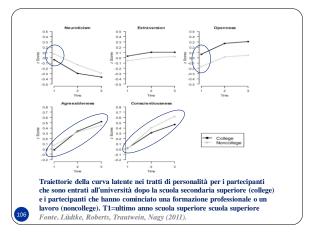
# Dati longitudinali con 3 o più misurazioni: elementi di metodologia

La relazione tra persona ed eventi di vita: uno studio longitudinale svela non linearità dell'effetto

- Le traiettorie di cambiamento potrebbero essere non-lineari:
  - l'impatto è maggiore ossia l'intensità del cambiamento è maggiore nei primi mesi dopo l'evento, ma poi l'effetto si attenua
  - potendo modificarsi anche rapidamente da un momento all'altro
  - Il cambiamento potrebbe essere rapido subito dopo l'evento e mantenersi nel tempo
  - Il cambiamento potrebbe iniziare già prima dell'evento, avvenire gradualmente e rientrare gradualmente (direzione diversa)
  - Îl cambaimento potrebbe avvenire in seguito all'evento, essere dapprima più rapido e poi più graduale, seppure nella stessa direzione

# Dati longitudinali con 3 o più misurazioni: elementi di metodologia

La relazione tra persona ed eventi di vita: *non linearità dell'effetto* Metodologicamente,


- occorrono almeno 3 misurazioni
- con occasioni di misurazione ripetute a (relativ) breve distanza per cogliere dinamiche
- per archi temporali che potrebbero essere anche lunghi



# Dati longitudinali con 3 o più misurazioni: elementi di metodologia

# La relazione tra persona ed eventi di vita

- il cambiamento potrebbe essere reversibile, avere effetti temporanei brevi → occorrono diverse misurazioni (prima e) dopo l'evento, l'una a breve distanza temporale dall'altra
- il cambiamento potrebbe avvenire prima dell'evento, per cui è la P che anticipa l'evento cambiando in funzione anticipatoria (eventi normativi, ma non sono noti pattern relativi ai tratti disposizionali)
- occorrono più misurazioni precedenti l'evento (oltre a misurazioni successive)



# Dati longitudinali con 3 o più misurazioni: elementi di metodologia

# La relazione tra persona ed eventi di vita

# Ulteriori elementi da considerare

- gruppo di controllo (non evento, es. età come var confounding)
- tipo di eventi
- normativi , non- normativi
- non eventi (normativi) attesi
- eventi multipli
- eventi maggiori o minori
- esperienze ripetute di eventi maggiori , in (relativ) brevi archi temporali

# Dati longitudinali con 3 o più misurazioni: elementi di metodologia

# Disegni longitudinali con 3 o più misurazioni:

# Le tecniche

- ANOVA per misure ripetute (trend analysis)
- $\bullet\,$  modelli MLM o modello dello sviluppo individuale
- modelli SEM o modello della curva latente di sviluppo

# Disegni sperimentali within con 1 VI DEV K tra le prove $(gl = k \cdot 1)$ DEV\_SS $gl = N \cdot 1$ DEV\_RES $gl = (N \cdot 1) (k \cdot 1)$ Nell'ANOVA per misure ripetute il rapporto F corrisponde a $F = (DEV_K/gl) \ / \ (DEV_{RES}/gl)$

# Un'introduzione al Longitudinal MLM

Premesse generali: cosa possiamo indagare?

- Data continuum
- cambiamento entro archi temporali (relativ) lunghi:
  - traiettorie di sviluppo
  - co-variazioni nelle traiettorie di sviluppo
- Livelli di analisi possibili
  - approccio between
  - approccio within → vale a dire?

# 110

# MLM: livelli di analisi

Livelli d'analisi:

Between people: che cosa già sappiamo ©

- 1 sola misurazione: studi trasversali
  - relazioni tra variabili che valutano differenze inter-individuali
  - variabili e relazioni relativam indipendenti dal tempo (time-invariant)
  - livello di misurazione macro (Livello 2)
- 2 misurazioni (o più): studi longitudinali
  - relazioni tra variabili che valutano differenze inter-individuali
  - antecedenti temporali
  - cambiamento correlato
  - livello di misurazione macro



# MLM: livelli di analisi

Disegni longitudinali between: permettono di osservare come le variabili sono mediamente associate tra loro nel tempo tenendo conto delle differenze inter-individuali, vale a dire, come a maggiori livelli di X (stress) rispetto al livello medio di X del campione si associano maggiori (o minori) livelli di Y (NA) rispetto al livello medio di Y del campione (rank order associations)



# MLM: livelli di analisi

Che cosa possiamo domandarci, oltre a quanto già considerato?

- Quale la traiettoria di sviluppo? (ANOVA per misure ripetute, ma MLM presenta dei vantaggi)
- Vi è variabilità a livello individuale intorno a una traiettoria di sviluppo?
- Come si associa l'andamento di una variabile nel tempo all'andamento di un'altra?
- Vi è variabilità intorno a questa associazione?



### MLM: livelli di analisi

- ... e ancora
- la variabilità di una traiettoria di sviluppo da un individuo all'altro da cosa dipende?
- e la variabilità nell'associazione tra 2 variabili nel tempo, da cosa dipende?

Le tecniche MLM per dati longitudinali permettono di rispondere a queste domande ©

introducendo il livello di analisi within person che tiene conto della  $\underline{variabilit\`a}$  intorno all'andamento medio osservato



# MLM: le due fondamentali informazioni descrittive

Nei modelli di analisi psicometrica di cui ci occupiamo, due sono le informazioni statistiche descrittive di base:

media e varianza

- MEDIA e modello per le medie
  - come un valore atteso (Y') varia in funzione del suo stimatore
    - media diY (Y = a + e)
  - media condizionata (Y = a + bX + e)
  - effetti fissi nei disegni longitudinali
  - Unconditional model: media generale
  - Effetti fissi che descrivono l'andamento o traiettoria attraverso il tempo (VI = tempo), avendo stabilito un tempo baseline
  - Effetti fissi dovuti ad altri stimatori (co-variabilità delle variabili indagate attraverso il tempo)

# MLM: le due fondamentali informazioni descrittive

- Varianza
  - residui intorno al valore di Y'
  - CFR sono considerati errori di stima negli approcci between e analisi quali ANOVA o ARS e ARM, che sono applicabili se si rispettano assunzioni sui residui quali omogeneità della varianza tra le persone e distribuzione normale dei residui intorno al valore atteso
  - sono elementi informativi negli approcci within e MLM



- effetti random
- ogni persona ha la sua traiettoria
- in ogni persona l'associazione tra le variabili ha una sua propria intensità (e forma)



# MLM: le due fondamentali informazioni descrittive

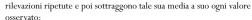
Nei disegni  $\it between$  la varibilità intorno all'andamento medio è un'informazione che viene persa, ma

### effetti fissi ed effetti random si possono combinare nel MLM

- offrendo risultati che descrivono
  - l'andamento mediamente osservato nel campione
  - · la variabilità intorno a quell'andamento
- I dati indagati sono di tipo
  - within (livello 1): variabili con misurazioni ripetute nel tempo
  - between (livello 2): variabili relativamente stabili
  - interazioni cross-level vale a dire tra I e II livello



### MLM: le due fondamentali informazioni descrittive


- Ancora sui residui intorno al valore diY': i residui da un'occasione di misurazione all'altra sono correlati a livello individuale (non vi è indipendenza dei residui) poiché
  - le differenze nei livelli medi tra le persone tendono a essere costanti: differenze nei livelli di intercetta quantificate dalla varianza intorno all'intercetta (effetto random intorno all'intercetta)
  - vi sono le differenze nei livelli degli effetti dello stimatore sulla VD: differenze nei livelli di slope quantificate dalla varianza intorno alla slope (effetto random intorno alla slope)
  - fattori non controllati e non noti



# MLM: data continuum

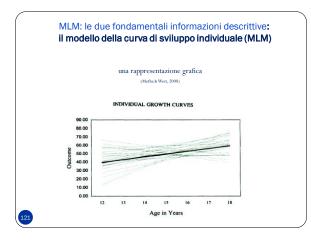
Lo studio dell'andamento di una variabile nel tempo

- se si indagano traiettorie di sviluppo, il cambiamento di una variabile (VD) è atteso in *funzione del tempo* (che funge da VI)
  - come cambia un variabile nel tempo?
  - quale la forma della traiettoria?
  - quale l'intensità del cambiamento?
- se si indagano co-variazioni nelle traiettorie di sviluppo,
   l'andamento di una variabile (VD) viene indagato rispetto a quello di un'altra variabile (VI), centrata però intorno alla media dell'individuo stesso, per cogliere la co-variabilità a livello individuale
  - l'andamento o traiettoria di una variabile si associa a quello di un'altra variabile?



MLM: data continuum

Lo studio dell'andamento di una variabile nel tempo


Xcentrato<sub>mario</sub>=X-X<sub>MEDIA mario</sub>

• ... la VI (NON la VD) centrata però intorno alla media dell'individuo stesso,

vale a dire che per ogni individuo calcolo la media delle sue sole

- se si indagano possibili fonti di variabilità attorno ad una traiettoria media di sviluppo, allora si verificano possibili effetti di interazione tra variabili di I livello o within e variabili di II livello o between
  - forma e/o intensità del cambiamento variano in funzione di un'altra variabile (es., genere, between)?





# Indagare la traiettoria di sviluppo individuale mediante MLM

- Modelli MLM: modello della curva di sviluppo individuale
  - $\bullet\,$ è un approccio bottom-up: specifica un modello che descrive la traiettoria di sviluppo dei punteggi della VD attraverso il tempo
  - attraverso l'analisi delle traiettorie di sviluppo dei singoli individui;
  - parametri: intercetta, slope medi e loro variabilità e covarianza
  - permette di gestire intervalli di tempo non regolari e dati missing
  - permette di testare traiettorie non lineari



# MLM: La traiettoria individuale di sviluppo

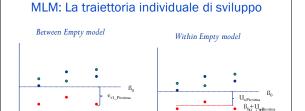
- Quali variabili quando indaghiamo una traiettoria di sviluppo?
  - VD oggetto di studio
  - ullet VI = variabile tempo
- Quali ipotesi statistiche:
  - ${\cal H}_0$  non vi è cambiamento, il Tempo non ha effetti
- Quale traiettoria? Quale la forma della relazione tra VD e tempo? Traiettorie possibili:
  - lineare: si verifica l'intensità del cambiamento (rate of change) in un intervallo temporale, cambiamento costante da un tempo all'altro
  - quadratica: si verifica il cambiamento nell'intensità del cambiamento (come accelera e decelera) in un intervallo di tempo, cambiamento che dunque non è costante da un tempo all'altro

# MLM: La traiettoria individuale di sviluppo

- La VI tempo va centrata su una baseline (es., I misurazione) per agevolare l'interpretazione degli stimatori dei parametri
- · Quali parametri statistici? L'effetto totale
  - Effetti fissi: descrivono le traiettorie di sviluppo a livello del campione
    - intercetta: livello medio della VD quando la variabile temporale (VI) è zero (dove 0 rappresenta la baseline intorno cui la var Tempo è stata centrata)
  - slope: intensità o grado di cambiamento nella VD al variare di ogni unità
     (1) temporale
  - Effetti random: variabilità delle traiettorie di sviluppo attraverso i singoli individui
    - intercetta: variabilità intorno al livello medio
  - slope: variabilità nell'intensità del cambiamento

# MLM: La traiettoria individuale di sviluppo

Qualche passaggio, dal modello più semplice a modelli di stima più complessi


 modello nullo (between-people empty model) between: unico stimatore è la media generale del campione attraverso tutte le persone e le occasioni di misurazione (dove b<sub>0</sub> = intercetta)

$$Y_{ti} = b_0 + e_{ti}$$

• random intercept model o within-person empty model: la devianza totale viene scomposta in devianza between le persone ( $b_0$  è la media delle medie rilevate per ogni persona) e devianza within ( $U_{0i}$ ) ossia la variabilità delle medie delle persone intorno alla media generale + residuo:

$$Y_{ti} = b_0 + U_0 + e_{ti}$$





Occasioni di misurazione

Occasioni di misurazione

# MLM: La traiettoria individuale di sviluppo

- modello della traiettoria di sviluppo lineare (livello 1)
  - Modello per gli effetti fissi:

$$Y_{\scriptscriptstyle ti} = b_{\scriptscriptstyle 0} + b_{\scriptscriptstyle I} \ {\rm tim} e_{\scriptscriptstyle ti} + e_{\scriptscriptstyle ti}$$

dove  $b_0$  rappresenta l'intercetta o valore medio osservato alla baseline (tempo base di riferimento, indicato con tempo = 0)

 $b_I$ rappresenta la slope che lega la VD alla VI (tempo) e mostra l'intensità dell'incremento/ decremento della VD da un unità temporale all'altra

 $time_{ti}$ rappresenta lo scarto tra  $time_{osservato}$ e  $time_{baseline}$ 

(Modello per gli effetti fissi con traiettoria di sviluppo non lineare)  $Y_{ti} = b_0 + b_1 \operatorname{time}_{ti} + b_1 \operatorname{time}^2_{ti} + e_{ti}$ 

# MLM: La traiettoria individuale di sviluppo

- modello della traiettoria di sviluppo (livello 1)
  - modello per gli effetti random:

$$Y_{ti} = b_0 + b_1 time_{ti} + U_{0i} + U_{1} + e_{ti}$$

dove sono incluse le componenti di variabilità o effetti random per l'intercetta  $U_{0i}$  e per la slope  $U_{1i}$ 

In accordo con la regola generale, si sceglie infine il modello più parsimonioso:

Se gli effetti random non sono significativi, la traiettoria viene descritta dal modello per i soli effetti fissi

# MLM: La traiettoria individuale di sviluppo

• Esempio: Livello 1 (traiettoria lineare):

Quale la traiettoria di sviluppo della variabile Problemi di Esternalizzazione tra la III e la V elementare (7/10 anni)?

- Dati: 20 bambini, 1 misurazione all'anno, per 3 misurazioni
- Età centrata: 8,5 anni (età media del campione)

### Risultati

### Estimates of Fixed Effect's

|              |           |            |    |        |      | 95% Confidence Interval |             |  |
|--------------|-----------|------------|----|--------|------|-------------------------|-------------|--|
| Parameter    | Estimate  | Std. Error | df | t      | Sig. | Lower Bound             | Upper Bound |  |
| Intercept    | 55,375000 | 1,709253   | 19 | 32,397 | ,000 | 51,797492               | 58,952508   |  |
| AGE_centered | -1,170000 | ,469888    | 19 | -2,490 | ,022 | -2,153487               | -,186513    |  |

a. Dependent Variable: EXTERN.



# MLM: La traiettoria individuale di sviluppo

### Estimates of Fixed Effects

|              |           |            |    |        |      | 95% Confidence Interval |             |
|--------------|-----------|------------|----|--------|------|-------------------------|-------------|
| Parameter    | Estimate  | Std. Error | df | t      | Sig. | Lower Bound             | Upper Bound |
| Intercept    | 55,375000 | 1,709253   | 19 | 32,397 | ,000 | 51,797492               | 58,952508   |
| AGE_centered | -1,170000 | ,469888    | 19 | -2,490 | ,022 | -2,153487               | -,186513    |

- a. Dependent Variable: EXTERN.
- Effetti fissi:
  - Intercetta: 55,4 è il valore atteso alla baseline (8,5 anni)
  - Slope: -1,17 è il grado di cambiamento nei livelli attesi della VD al variare di 1
    unità (1 anno) della VI tempo → i livelli di problemi esternalizzanti tendono a
    diminuire a mano a mano che il bambino cresce



# MLM: La traiettoria individuale di sviluppo

# Estimates of Covariance Parameters

|                          | Estimates of Governance Farameters |           |            |        |      |                         |             |  |  |  |  |  |
|--------------------------|------------------------------------|-----------|------------|--------|------|-------------------------|-------------|--|--|--|--|--|
|                          |                                    |           |            |        |      | 95% Confidence Interval |             |  |  |  |  |  |
| Parameter                |                                    | Estimate  | Std. Error | Wald Z | Sig. | Lower Bound             | Upper Bound |  |  |  |  |  |
| Residual                 |                                    | 2,690000  | ,601502    | 4,472  | ,000 | 1,735473                | 4,169526    |  |  |  |  |  |
| Intercept + AGE_centered | UN (1,1)                           | 57,758421 | 18,958091  | 3,047  | ,002 | 30,354619               | 109,902062  |  |  |  |  |  |
| [subject = ID]           | UN (2,1)                           | ,609211   | 3,687789   | ,165   | ,869 | -6,618723               | 7,837144    |  |  |  |  |  |
| 1                        | UN (2,2)                           | 3,877895  | 1,437747   | 2,697  | ,007 | 1,875034                | 8,020157    |  |  |  |  |  |

- Dependent Variable: EXTERN.
- Effetti random:
  - UN (1,1) indica la varianza intorno all'intercetta: statisticam significativa, indica
    che vi è variabilità intorno alla media generale; in particolare, effetto fisso e
    random si possono leggere come segue: livello medio all' età di riferimento: 55,4
    con SD = √57,76 = 7,6 → per 2/3 dei partecipanti la VD varia tra 55,4 ± 7,6
  - UN (2,2) indica la varianza intorno alla slope: statisticam significativa, indica che vi è variabilità nelle traiettorie individuali di sviluppo intorno alla traiettoria generale: livello di crescita: -1,17, con SD =  $\sqrt{3}$ ,88= 1,97 $\Rightarrow$  Per 2/3 dei partecipanti il liv crescita varia tra -1,17 $\pm$ 1,97

# MLM: La traiettoria individuale di sviluppo

- Nella seconda tabella ci sono ancora 2 informazioni
  - UN (2,1) 0,61 ossia covarianza tra intercetta e slope: se significativa, indica che l'intensità delle traiettorie lineari di sviluppo cambia al variare dei livelli dell'intercetta per l'individuo al tempo base
  - Varianza residua, 2,69, quota d'errore che il modello ancora non cattura e
    che si potrebbe ridurre introducendo un secondo predittore, oltre al
    tempo, un predittore di tipo between (time-invariant, Livello 2): cross-level
    interaction effects



### MLM: La traiettoria individuale di sviluppo

· Esempio: Livello 2: gli stili genitoriali contribuiscono a spiegare la variabilità nei livelli di sviluppo?

Risultati: No, non c'è effetto di interazione (var residua rimane 2,69)

### Estimates of Fixed Effects

|                                |           |            |    |        |      | 95% Confidence Interval |             |  |
|--------------------------------|-----------|------------|----|--------|------|-------------------------|-------------|--|
| Parameter                      | Estimate  | Std. Error | df | t      | Sig. | Lower Bound             | Upper Bound |  |
| Intercept                      | 55,375000 | ,989919    | 18 | 55,939 | ,000 | 53,295257               | 57,454743   |  |
| AGE_centered                   | -1,170000 | ,463362    | 18 | -2,525 | ,021 | -2,143487               | -,196513    |  |
| PAR_centered                   | 6,806643  | 1,094920   | 18 | 6,217  | ,000 | 4,506302                | 9,106984    |  |
| AGE_centered *<br>PAR_centered | -,635796  | ,512511    | 18 | -1,241 | ,231 | -1,712542               | ,440949     |  |

a. Dependent Variable: EXTERN.

Lo stile genitoriale però è uno stimatore significativo dei livelli di Problemi esternalizzanti che al tempo baseline (8,5 anni) aumentano all'aumentare dello stile genitoriale negativo

MLM per l'analisi delle fluttuazioni e dei processi dinamici



# MLM: data continuum

L'indagine delle fluttuazioni entro un arco temporale ristretto, vale a dire

- la variabilità da un'occasione all'altra di misurazione: quale la forma di questa fluttuazione? Quale l'intensità?
- processi o dinamiche a breve termine e intra-personali: come co-variano 2 variabili in un breve arco temporale? La loro co-variabilità varia in funzione di una terza variabile (interazione)?
- Fluttuazione ≠ cambiamento
- L'andamento delle dinamiche o fluttuazioni non riflette necessariamente l'andamento del cambiamento o delle associazioni osservate negli studi

# L'analisi dei processi within people via MLM

Come differiscono tra loro le relazioni osservate between people da quelle osservate within person, nel tempo?

ovvero cosa ci chiediamo quando indaghiamo fluttuazioni wihin-person?

- · Obiettivi e domande:
  - B: qual è l'intensità e la direzione della relazione tra VD e VI?
  - · W: come la VD varia al variare costante e rapido della VI?
- Intervalli temporali:
  - B: dinamiche e relazioni anche attraverso ampi archi temporali
  - · W: rapidità dinamiche intra-individuali, brevi intervalli di tempo
- Causalità
  - B: permette cogliere relazioni causali
  - W: dinamiche troppo rapide per controllare relazioni tra le variabili e sostenere la plausibilità di relazioni causali
- Generalizzazione
  - B: dal generale al particolare
  - W: dal particolare al generale

Disegni between e disegni within non producono necessariamente risultati che vanno nella stessa direzione

# MLM: livelli di analisi

I disegni within per lo studio delle fluttuazioni permettono di osservare come le variabili sono associate tra loro nell'arco di tempo considerato, tenendo conto delle differenze intra-individuali, vale a dire, come il variare di Y (es., food craving che funge da VD) si associa al variare di X (es., umore negativo che funge da VI), laddove la variabilità di X viene definita rispetto alla baseline della persona singola e non del campione (vale a dire, i dati vengono centrati intorno alla media individuale e NON del campione)



# L'analisi dei processi within people via MLM

MLM permette di indagare i processi e le relazioni within per definire un modello generale che definisce l'andamento o fluttuazione e le covariazioni rapide per un individuo "medio"

- I dati:
  - poche VI
  - pochi Ss (20/50)
- molte misurazioni (25/200)
- · Quale trattamento preliminare dei dati?
- centrare la/le VI within Ss (per ripulire le relazioni within tra variabili da possibile variabilità between tra variabili)

Utilizzermo gli stessi parametri, la stessa logica già utilizzata per legare una var al tempo



# L'analisi dei processi within people via MLM

- Quali ipotesi e parametri statistici?
  - Effetti fissi: effetti costanti per ogni individuo:
    - intercetta: livello medio della VD quando la VI è zero (se centrata within, allora corrisponde alla baseline o liv medio del singolo individuo)
    - slope: intensità o grado di cambiamento nella VD al variare di ogni unità della VI
  - Effetti random: effetti che variano attraverso i singoli individui
    - intercetta: variabilità intorno al livello medio
    - slope: variabilità nell'intensità del cambiamento
- Esempio: come varia lo stato umorale positivo in funzione di comportamenti di tipo estroverso (Livello 1)? il tratto di Estroversione modera (spiega) la relazione VD/VI (cross- level interaction effect)?



# L'analisi dei processi within people via MLM

# Estimates of Fixed Effects

|                 |          |            |       |        |      | 95% Confidence Interval |             |
|-----------------|----------|------------|-------|--------|------|-------------------------|-------------|
| Parameter       | Estimate | Std. Error | df    | t      | Sig. | Lower Bound             | Upper Bound |
| Intercept       | 3,770216 | ,228212    | 9,066 | 16,521 | ,000 | 3,254532                | 4,285899    |
| ACTEXT_centered | ,488734  | ,090019    | 9,421 | 5,429  | ,000 | ,286476                 | ,690992     |

- a. Dependent Variable: PositiveAfect
- Effetti fissi:
  - Intercetta: 3,77 è il valore atteso quando VI = 0 vale a dire per il grado di azione estroversa che corrisponde alla media del singolo individuo
  - Slope: 0.49 è il grado di incremento nei livelli attesi della VD al variare di 1 unità della VI → l'umore positivo aumenta all'aumentare di azioni estroverse

# L'analisi dei processi within people via MLM

# Estimates of Covariance Parameter's

|                                                |          |          |            |        |      | 95% Confide | ence Interval |
|------------------------------------------------|----------|----------|------------|--------|------|-------------|---------------|
| Parameter                                      |          | Estimate | Std. Error | Wald Z | Sig. | Lower Bound | Upper Bound   |
| Residual                                       |          | ,640059  | ,082310    | 7,776  | ,000 | ,497459     | ,823536       |
| Intercept + ACTEXT_<br>centered [subject = ID] | UN (1,1) | ,471213  | ,244503    | 1,927  | ,054 | ,170430     | 1,302831      |
|                                                | UN (2,1) | -,036644 | ,070477    | -,520  | ,603 | -,174777    | ,101489       |
|                                                | UN (2,2) | ,032811  | ,034328    | ,956   | ,339 | ,004222     | ,255013       |

a. Dependent Variable: PositiveAfect

- Effetti random:
- UN (1,1) varianza intorno all'intercetta: statisticam tendente alla significatività, indica che vi è variabilità intorno al livello medio atteso a parità di /quando le persone mettono in atto azione estroverse di media intensità (rispetto alla loro stessa media)
- UN (2,2) indica la varianza intorno alla slope: statisticam non significativa, non vi è
  variabilità intorno all'intensità dell'associazione tra VI e VD che covariano in modo
  costante tra gli individui

# L'analisi dei processi within people via MLM

- Nella seconda tabella ci sono ancora 2 informazioni
  - UN (2,1) -0,04 ossia covarianza tra intercetta e slope: non è significativa, indica che l'intensità della relazione tra VD e VI non varia in funzione dei livelli dell'intercetta
  - Varianza residua(0,64) quota d'errore che il modello ancora non cattura e che si
    potrebbe ridurre introducendo un secondo predittore, di tipo between (timeinvariant, Livello 2): cross-level interaction effects → qui non significativo

### Estimates of Fixed Effects

|                                |          |            |       |        |      | 95% Confidence Interval |             |
|--------------------------------|----------|------------|-------|--------|------|-------------------------|-------------|
| Parameter                      | Estimate | Std. Error | df    | t      | Sig. | Lower Bound             | Upper Bound |
| Intercept                      | 3,760625 | ,234793    | 8,036 | 16,017 | ,000 | 3,219615                | 4,301634    |
| ACTEXT_centered                | ,482225  | ,095012    | 8,585 | 5,075  | ,001 | ,265701                 | ,698750     |
| EXT_centered                   | ,139124  | ,195993    | 8,277 | ,710   | ,497 | -,310215                | ,588463     |
| ACTEXT_centered * EXT_centered | ,024466  | ,079560    | 9,349 | ,308   | ,765 | -,154491                | ,203423     |

a. Dependent Variable: PositiveAfect

# Come legare fluttuazioni a cambiamento?

Si potrebbe ipotizzare che un tratto (ext) influenzi l'azione contestualizzata (acting ext),

la quale covaria con un'altra variabile (positive mood), e tale covariabilità contribuisce a legare attraverso il tempo e spiegare l'associazione attraverso il tempo tra tratto e un outcome di tratto (positive affect) (wwt. Noffle et al.,)

EXTRAVERSION (tratto) → Comportamento estroverso → umore positivo → Affettività positiva

# L'analisi dei processi within people

L'approccio MLM è adatto anche a cogliere dinamiche intra.individuali secondo una prospettiva cognitivo-sociale che indaga

sistemi unici di funzionamento individuale

Il comportamento dipende da un sistema complesso di variabili cognitivo-sociali che

- è unico da individuo a individuo
- dinamico
- contestualizzato



# Come cogliere le differenti dinamiche intra-individuali? La proposta di D. Cervone

# L'assessment si articola in più fasi :

- cogliere le rappresentazoni individuali uniche dei propri punti di forza e di debolezza, rispetto a situazioni definite in modo più o meno generale (produzione libera: approccio idiografico)
- cogliere le rappresentazioni individuali uniche che legano le proprie qualità a specifici contesti (rilevanza situazionale di una qualità individuale)

# Ipotesi generale

 la valutazione contingente circa la possibilità di agire con successo in un contesto (self-efficacy) varia in funzione di questi schemi individuali che legano caratteristiche salienti del sé al contesto

### Un esempio: uno studio italiano via ANOVA per misure ripetute

# Personal Strengths 1. Patient

2. Sociable
3. Kind



# Personal Strengths

- Talkative
   Intelligent
- Cheerful



1. Egocentric
2. Arrogant

Too generous

# 145

# Un esempio: uno studio italiano via ANOVA per misure ripetute

- Parte 2: valutazione idiografica della rilevanza situazionale di ciascuno di caratteristiche schematiche (punti forza e debolezza liberamente prodotti), assegnati individualmente a ogni partecipante, rispetto a situazioni interpersonali, selezionate in base a studi invece nomotetici (es. Essere pazienti generalmente
  - ostacola ... favorisce una persona ad agire come segue: andare a chiedere aiuto quando in difficoltà)
- Controllo: valutazione idiografica della rilevanza situazionale di ciascuno di caratteristiche aschematiche (con valenza positiva e negativa), assegnati individualmente a ogni partecipante, rispetto alle stesse situazioni interpersonali
- Parte3: Valutazione di self-efficacy nelle stesse situzioni (es, quanto sei davvero cpac di andare a chiedere aiuto quando in difficoltà?)

# Un esempio: uno studio italiano

Partecipanti

N=150~(96~F~e~54~M), per lo più studenti (142), di età compresa tra 18 e 31 anni ( $M=22.23,\,SD=3.14);$ 

- Procedura e Misure
  - Parte 1: approccio idiografico per identificare
  - 1 punto di forza personale schematico (es., paziente)
  - 1 punto di debolezza schematico (es. timido) nelle situazioni sociali ma anche qualità aschematiche
  - 1 aggettivo con valenza positiva, irrilevante per sé (e.g., affettuoso)
  - 1 aggettivo con valenza negativa, irrilevante per sé (e.g., egoista)



Risultati osservati per le caratteristiche rilevante di sé (punti di forza): come la self-efficacy varia in funzione della rilevanza situazionale dei punti di forza

# Estimates of Fixed Effects

|            |          |            |         |        |      | 95% Confidence Interval |             |
|------------|----------|------------|---------|--------|------|-------------------------|-------------|
| Parameter  | Estimate | Std. Error | df      | t      | Sig. | Lower Bound             | Upper Bound |
| Intercept  | 5,935417 | ,094363    | 149,000 | 62,900 | ,000 | 5,748955                | 6,121878    |
| SCHSTR_CWP | ,332464  | ,040521    | 132,584 | 8,205  | ,000 | ,252312                 | ,412615     |

- a. Dependent Variable: SELF EFFICACY.
  - · Effetti fissi:
    - Intercetta: 5,93 è il valore atteso quando VI = 0 vale a dire quando la forza schematica favorisce un'azione di successo in un determinato contesto ad un livello che corrisponde alla media osservata per la forza schematica/contesto per il singolo individuo
    - Slope: 0.33 è il grado di incremento nei livelli attesi della VD (self-efficacy) al variare di 1 unità della VI → il senso di efficacia personale aumenta all'aumentare tanto più quanto più la persona crede che quella forza schematica favorisca in generale un'azione di successo in un determinato contesto

# Rianalizzando i dati dello studio italiano via MLM anziché ANOVA ...

### Estimates of Covariance Parameter's

|                                           |          |          |            |        |      | 95% Confidence Interval |             |
|-------------------------------------------|----------|----------|------------|--------|------|-------------------------|-------------|
| Parameter                                 |          | Estimate | Std. Error | Wald Z | Sig. | Lower Bound             | Upper Bound |
| Residual                                  |          | 3,699782 | ,113858    | 32,495 | ,000 | 3,483220                | 3,929808    |
| Intercept + SCHSTR_<br>CWP [subject = ID] | UN (1,1) | 1,104408 | ,154907    | 7,129  | ,000 | ,838954                 | 1,453856    |
|                                           | UN (2,1) | -,069096 | ,047076    | -1,468 | ,142 | -,161363                | ,023170     |
|                                           | UN (2.2) | .117040  | .027712    | 4.223  | .000 | .073585                 | .186158     |

- a. Dependent Variable: SELF EFFICACY.
- · Effetti random:
  - UN (1,1) varianza intorno all'intercetta: statisticam significativa, indica che vi è variabilità intorno al livello medio atteso a parità di/ quando le persone valutano che la forza schematica favorisca mediamente (rispetto alla loro stessa media) l'azione
  - UN (2,2) indica la varianza intorno alla slope: statisticam significativa, vi è variabilità intorno
    all' intensità dell' associazione tra VI e VD che non covariano in modo costante tra gli individui,
    bensi intensità della relazione è data da
    0,33, con SD = √0,12=0,34 → Per 2/3 dei partecipanti l'intensità dell' associazione varia
    tra 0,33 ± 0,34



# Rianalizzando i dati dello studio italiano via MLM anziché ANOVA ...

- Nella seconda tabella ci sono ancora 2 informazioni
  - UN (2,1) -0.07 ossia covarianza tra intercetta e slope: non è significativa, indica che l'intensità della relazione tra VD e VI non varia in funzione dei livelli dell'intercetta
  - Varianza residua(3,70) quota d'errore che il modello ancora non cattura e che si potrebbe ridurre introducendo un secondo predittore, di tipo between (timeinvariant, Livello 2): cross-level interaction effects → qui significativo (ma non riduce errore che rimane 3,7)

# Estimates of Fixed Effects

|                        |          |            |         |        |      | 95% Confidence Interval |             |
|------------------------|----------|------------|---------|--------|------|-------------------------|-------------|
| Parameter              | Estimate | Std. Error | df      | t      | Sig. | Lower Bound             | Upper Bound |
| Intercept              | 5,935284 | ,086681    | 148,000 | 68,473 | ,000 | 5,763991                | 6,106577    |
| SCHSTR_CWP             | ,323796  | ,039973    | 137,494 | 8,100  | ,000 | ,244755                 | ,402838     |
| EXT_GMC                | ,398210  | ,074490    | 148,000 | 5,346  | ,000 | ,251009                 | ,545411     |
| SCHSTR_CWP<br>*EXT_GMC | ,100113  | ,033734    | 131,308 | 2,968  | ,004 | ,033380                 | ,166846     |

a. Dependent Variable: SELF EFFICACY.

# Rianalizzando i dati dello studio italiano via MLM anziché ANOVA ...

# Estimates of Fixed Effects

|                        |          |            |         |        |      | 95% Confidence Interval |             |
|------------------------|----------|------------|---------|--------|------|-------------------------|-------------|
| Parameter              | Estimate | Std. Error | df      | t      | Sig. | Lower Bound             | Upper Bound |
| Intercept              | 5,935284 | ,086681    | 148,000 | 68,473 | ,000 | 5,763991                | 6,106577    |
| SCHSTR_CWP             | ,323796  | ,039973    | 137,494 | 8,100  | ,000 | ,244755                 | ,402838     |
| EXT_GMC                | ,398210  | ,074490    | 148,000 | 5,346  | ,000 | ,251009                 | ,545411     |
| SCHSTR_CWP<br>*EXT_GMC | ,100113  | ,033734    | 131,308 | 2,968  | ,004 | ,033380                 | ,166846     |

a. Dependent Variable: SELF EFFICACY.

Come in un modello di regressione per effetti di moderazione

- la slope per EXT\_GMC mostra che i livelli medi attesi sono maggiori per persone più estroverse
- la slope per il termine d'interazione mostra che l'intensità della relazione tra Vd e VI è maggiore per persone più estroverse

