
Exercise n. I
Basics

1. Overflow and underflow
In order to investigate which are (within a factor of 2) the overflow (the
greatest number that can be stored) and underflow (the smallest) limits,
you can write a code doing something like that (note: this is a pseudocode
to have an idea of the algorithm, it is not written in a precise language):

under = 1.

over = 1.

do until.... (or: do N times, with N =...)

under = under/2.

over = over * 2.

write: number of iteration, over, under

end of cycle

If you want, you can use the available codes (where r=real, s=single
precision, d=double precision) which can be compiled with gfortran (or
g95, F, fort, or other fortran compilers).

(a) Check overflow and underflow for floating point numbers in single
precision. (see rs under over.f90)

(b) Do the same in double precision. (see rd under over.f90)

(c) Do the same for integers (Hint: to be more precise, consider also the
numbers obtained by multiplying times 2 and subtracting 1. . . ) (see
i min max.f90):

(d) (Optional) Some compilers convert “underflow” with “0”; same are
able to handle exceptions. . . If you have other fortran compilers in-
stalled, compare what you obtain in (a)–(c) using different compil-
ers. (For instance, if you use F instead of g95: use F without/with
the option -ieee=full (for exception handling): F -o test.out

-ieee=full. What do you get by compiling the code with/without
the option and running again?)

2. Machine precision
Write a program to determine the machine precision ε (i.e. the smallest
positive number that -added to the unit- does change its value stored in
memory). For instance you could do something like that (pseudocode):

eps = 1.

do until.... (or: do N times, with N =...)

eps = eps/2.

uno = 1. + eps

write: number of iteration, over, under

end of cycle
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(a) Check the machine precision for floating point in single precision. (see
rs limit.f90)

(b) Do the same in double precision. (see rd limit.f90)

(c) Check your results calling the intrinsic function epsilon() (see strano.f90
and d strano.f90).

3. Good and bad algorithms, truncation and roundoff
A typical numerical problem is to calculate a function for a given value of
a variable as the sum of a series. For instance:

e−x = 1 − x +
x2

2!
− x3

3!
+

x4

4!
+ . . .

(a) Write a program to calculate in single precision e−x as the sum of
the series above, with an absolute error that you choose, and save
the results in a table like this:

x i(no. of terms of sum) sum |sum-exp(-x)|/exp(-x)

where sum is the sum of the first i terms of the series and exp(-x) is
calculated with the intrinsic function, and it can be therefore consid-
ered as the value of the infinite series, so that |sum-exp(-x)|/exp(-x)
is the relative error.
As an exercise, you could write and compare different codes:

i. Using the factorial function (see test factorial.f90 for the use
of a recursive function). Make some tests fixing x but changing
the number of terms of the series, checking if (and up to which
term) the factorial is correctly calculated.

ii. Avoiding the use of the factorial. You have an example of code
avoiding the factorial: (exp-good.f90. It also avoids odd powers
of x, and does a smart use of the previous terms.

Which program works better?

(b) Consider the best code. Use it for small and large x, for instance
x=0.1, 1, 10, 100, 1000, and consider the results obtained. In partic-
ular: what about overflow o underflow? Change the code to calculate
e−x = 1/ex and not directly the series above. Is it better? Why?

(c) Consider the most efficient way to calculate e−x as a series of nega-
tive and positive terms; change the code using the double precision.
Compile, run, and comment on the results.
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4. Roundoff: derivative

• Write a code (e.g., see deriv.f90) to calculate the derivative of
f(x) = sin(x) in x = 1 with the formulas:

– 3-point symmetric: f ′(x) ∼ f1 − f−1
2h

– 2-point “forward”: f ′(x) ∼ f1 − f0
h

– 2-point “backwards”: f ′(x) ∼ f0 − f−1
h

where f0 = f(x), f1 = f(x + h), e f−1 = f(x− h).

• Use h = 0.5, 0.2, 0.1, then h/10, h/100, h/1000, h/10000, and reports
the results in a table to compare the three algorithms. It’s more
convenient to report the error (’calculated−exact’ value, since in this
case we know the exact value. . . )

• Comment the results. What about roundoff errors?

!ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

! calculates the factorial using a recursive function; use of module

!ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

module fact

public :: f

contains

recursive function f(n) result (factorial_result)

integer, intent (in) :: n

integer :: factorial_result

if (n <= 0) then

factorial_result = 1

else

factorial_result = n*f(n-1)

end if

end function f

end module fact

program test_factorial

use fact

integer :: n

print *, "integer n?"

read *, n

print "(i4, a, i10)", n, "! = ", f(n)

end program test_factorial
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!ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

! exp-good.f : a GOOD ALGORITHM to calculate e^-x

! as a FINITE sum of a series

! (to compare with exp-bad.f

! and with the machine intrinsic function)

!ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

program expgood

!

! variable declaration:

! x

! accuracy limit: min

!

implicit none

real :: element, sum, x, min = 1.e-10

integer :: n

open(unit=7,file="exp-good.dat",position="append",action="write")

write(unit=7,fmt=*) "x, n, sum, exp(-x), abs(sum-exp(-x))/sum"

!

! execute

!

write(*,*)’ enter x:’

read(*,*) x

sum = 1

element = 1

do n=1, 10000

element = element*(-x)/n

sum = sum + element

if((abs(element/sum) < min) .and. (sum /= 0)) then

write(*,*) x, n, sum, exp(-x), abs(sum-exp(-x))/sum

write(unit=7,fmt=*) x, n, sum, exp(-x), abs(sum-exp(-x))/sum

go to 10

endif

enddo

10 continue

close(7)

! stop "data saved in exp-good.dat"

end program expgood
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!ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

program deriv

!

! numerical derivative: left, right, symmetric in SINGLE PRECISION

!

!ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

real :: h(8)

real :: x, exact

integer :: i, N=8

data h/0.5, 0.2, 0.1, 0.01, 0.001, 0.0001, 0.00001, 0.000001 /

!

print*, " h, f’_ds, error, f’_sin, error, f’_simm, error "

x = 1.0 ! inizialize variables

exact = cos(x)

do i=1,N

deriv_ds = (sin(x+h(i))-sin(x)) / h(i)

deriv_sin = (sin(x)-sin(x-h(i))) / h(i)

deriv_simm = (sin(x+h(i))-sin(x-h(i))) / (2*h(i))

print*, h(i), deriv_ds, deriv_ds - exact, deriv_sin, deriv_sin - exact, &

& deriv_simm, deriv_simm - exact

end do

stop

end program deriv
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A few notes on these exercises:

• “do loops”:

do i=1,n

...(i)...

...

end do

or “named do”:

myloop : do

...

end do myloop

Note the condition to exit from a loop:

do i=1,n

if (...) then

...

exit

...

end do

interrupts the loop, which is the same of (older style):

do i=1,n

if (...) then

...

go to 10

...

end do

10 continue

whereas:

do i=1,n

if (...) then

...

cycle

...

end do

go to the next value of i (skipping lines after cycle) and continues the
loop.

• open/close files (remeber: default reading/writing units: 5/6)

• unformatted output (print* or write(...,fmt=∗))

• variable and type declarations (better to use implicit none+...)
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