
3. Intrinsic generators

Consider the subroutine that generates random numbers: e.g., in For-
tran 90 random number() is an intrinsic procedure generating real random
numbers in the range [0,1[. The argument of the subroutine random number()
is real, has intent out, and can be a scalar or an array.
See for instance rantest intrinsic.f90 (don’t worry about the seed of
the sequence). Note in the example the use of the dynamical allocation
of memory (the instruction allocatable) for the array x and the use of
print instruction with a specified format.

(a) Produce a sequence (long enough) of random numbers in [0,1[ with
the intrinsic generator of your favorite compiler. Test uniformity and
correlation (see points b) e c) of Ex. 2) on this sequence. What do
you see? Any di↵erence with respect to Ex. 2?

(b) (optional) For a quantitative test of uniformity consider the moment
of order k:

hxki = 1

N

NX

i=1

x

k
i =

Z 1

0
dx x

k
P (x) + O(1/

p
N).

For the uniform distribution pu(x) in [0,1[, i.e. for

pu(x) =
n
1 for 0  x  1
0 outside

we have hxki = 1/(k + 1). Consider the sequence

�����
1

N

NX

i=1

x

k
i � 1

k + 1

�����

and study the asymptotic behaviour for large N . If the behaviour is
⇠ 1/

p
N , then the distribution is random and uniform. Do the test

for k=1, 3, 7, and N=100, 10.000, 100.000.

(c) (optional) A quantitative test for correlation is to calculate

C(k) =
1

N

NX

i=1

xixi+k ⇡
Z 1

0
dx

Z 1

0
dy xy P (x, y).

For the uniform distribution pu(x) with x and y totally uncorrelated,
we have C(k) = 1/4. If our random number distribution is uniform
enough and with small correlation, we expect C(k) � 1/4 ⇠ 1/

p
N .

What can you tell about the sequence above?
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��hxkicalc � hxkith
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for the expected moment of order k and study its asymptotic beha-
viour for large N . If the behaviour is ⇠ 1/

p
N , then the distribution

is random and uniform. Do the test for k=1, 3, 7, and N=100,
10.000, 100.000.

(c) A quantitative test for correlation is to calculate

C(k)calc =
1

N

NX

i=1

xixi+k; C(k)th =

Z 1

0
dx

Z 1

0
dy xy P (x, y).

For the uniform distribution pu(x) with x and y totally uncorrelated,
we have C(k)th = 1/4. If our random number distribution is uni-
form enough and with small correlation, we expect

��
C(k)calc � 1/4

�� ⇠
1/
p
N . What can you tell about the sequence above?
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past week:



how to calculate the sum of the series for increasing N?

no need of recalculating again the sum from scratch;
print out partial sums:

allocate(rnd(N)) 
call random_number(rnd)
sum=0

do i=1, N
sum=sum+rnd(i)
print*,  i,  sum/i
end do

print out the result as a 
function of  “i”
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numerically calculated 

from the sequence

expected if the sequence 

was

 truly uniform

deviation of <x>k = 

log(deviation of <x>k) ~ -1/2  log(N) + cost.’    

+ cost.

check the slope of the log-log !!!

do you want to check a power law?

linear regression: much better



gnuplot> f(x) = a * x + b

gnuplot> fit f(x) 'data.dat' u (log($1)):(log($2)) via a,b

gnuplot> plot f(x), 'data.dat'

do you want to fit with gnuplot?
Suppose you have the data in two columns, x and y, and you 
suspect a power low y = xa + const

Consider that:     log(y) = a *  log(x) + b



very small deviations from the expected 
behavior could be accidental; 

check the overall behavior, and try also 
changing the seed!



k=1
k=3
k=7

the higher is the order of the momentum, the 
more meaningful is the test
(two functions may have the same average 
(<x>) although they are very different!):

check the behavior for higher-order momenta!



I) Random numbers 
with non uniform 
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II) random processes
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last lecture:

generation of real (pseudo)random numbers
with uniform distribution in [0;1[

@⇢

@t

= r

pu(x) =

n
1 0  x < 1

0 otherwise

1

@⇢

@t

= r

pu(x) =

n
1 0  x < 1

0 otherwise

1

@⇢

@t

= r

pu(x) =

n
1 0  x < 1

0 otherwise

1



Part I - Random numbers 
with non uniform distributions:

How can we generate random numbers with 
a given distribution p(x) ?

@⇢

@t

= r

pu(x) =

n
1 0  x < 1

0 otherwise

p(x)

1

@⇢

@t

= r

pu(x) =

n
1 0  x < 1

0 otherwise

1



Part I - Random numbers 
with non uniform distributions:

1) inverse transformation method (general)
2) rejection method (general)
3) some “ad hoc” methods: the Box-Muller 
algorithm for the gaussian distribution

@⇢

@t

= r

pu(x) =

n
1 0  x < 1

0 otherwise

p(x)

1

@⇢

@t

= r

pu(x) =

n
1 0  x < 1

0 otherwise

1



Non uniform random numbers distribution:
1) inverse transformation method (general)

Inverse transform method 3 – 2

Generating random numbers

Problem: Generate sample of a random variable X with a given
density f . (The sample is called a random variate)

What does this mean ?

Answer: Develop an algorithm such that if one used it repeatedly
(and independently) to generate a sequence of samples
X1, X2, . . . , Xn then as n becomes large, the proportion of samples
that fall in any interval [a, b] is close to P(X ∈ [a, b]), i.e.

#{Xi ∈ [a, b]}
n

≈ P(X ∈ [a, b])

Solution: 2-step process

• Generate a random variate uniformly distributed in [0, 1] .. also
called a random number

• Use an appropriate transformation to convert the random number
to a random variate of the correct distribution

why is this approach good ?

Answer: Focus on generating samples from ONE distribution only.

Problem: Generate sample of a random variable  
(or variate)  x  with a given distribution   p . 



Non uniform random numbers distribution:
1) inverse transformation method - algorithm

3.2.2 Transformation Method http://homepage.univie.ac.at/Franz.Vesely/cp0102/dx/node40.html

1 of 1 18-10-2005 0:14

   
Next: 3.2.3 Generalized Transformation Method: Up: 3.2 Other Distributions Previous: 3.2.1 Transformation of probability 

3.2.2 Transformation Method

Given a probability density : 

Find a bijective mapping  such that the distribution of  is : 

$\displaystyle 
p(x)$

 

It is easy to see that 

 

fulfills this condition, with . 

EXAMPLE: Let 

$\displaystyle 
p(x)$

 

Then , with the inverse . Therefore: 

Sample  equidistributed in .

Compute .

Geometrical interpretation: 

 is sampled from an equidistribution  and . 

 The regions where  is steeper (i.e.  is large) are hit more frequently. 

Franz J. Vesely Oct 2005
See also: "Computational Physics - An Introduction," Kluwer-Plenum 2001

∫ +∞

−∞

p(x)dx = 1

y = P (x) =⇒ dy = dP (x) =⇒ pu(y)dy = dP (x) (since pu(y) = 1 for 0 ≤ y ≤ 1)

cumulative distribution function P(x)

But : dP (x) = p(x)dx, therefore p(x)dx = pu(y)dy

@⇢

@t

= r

p

u

(x) =

n
1 0  x < 1

0 otherwise

Let p(x) be a desired distribution, and y = P (x) =

Z
x

�1
p(x

0
)dx

0
the corresponding cumulative distribution.

Assume that P

�1
(y) is known.

• Sample y from an equidistribution in the interval (0,1). (i.e., use p

u

(y))

• Compute x = P

�1
(y).

The variable x then has the desired probability density p(x).

1
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Given a probability density : 

Find a bijective mapping  such that the distribution of  is : 

$\displaystyle 
p(x)$

 

It is easy to see that 

 

fulfills this condition, with . 

EXAMPLE: Let 

$\displaystyle 
p(x)$

 

Then , with the inverse . Therefore: 

Sample  equidistributed in .

Compute .

Geometrical interpretation: 

 is sampled from an equidistribution  and . 

 The regions where  is steeper (i.e.  is large) are hit more frequently. 

Franz J. Vesely Oct 2005
See also: "Computational Physics - An Introduction," Kluwer-Plenum 2001

Non uniform random numbers distribution:
1) inverse transformation method - the concept

intuitive rationale: also a regular uniform sampling in y
gives a sampling in x with density proportional to p(x)

cumulative distribution 
function P(x)



Non uniform random numbers distribution:
1) inverse transformation method - examples

1)

2)

p(x) =

{

1

b−a
a ≤ x ≤ b

0 otherwise

P (x) =

{

0 x ≤ a
∫ x

a

1

b−a
dx′ = x−a

b−a
a ≤ x ≤ b

1 x > b

P (x) =
{ 0 x ≤ 0

1 − e−ax x ≥ 0

p(x) =
{ 0 x ≤ 0

ae
−ax

x ≥ 0

y =

y =

x = −

1

a
ln(1 − y) or (same distribution!) x = −

1

a
ln y

x = y(b − a) + a



Non uniform random numbers distribution:
2) rejection method (general)

Due to Von Newmann (1947).  
Applicable to almost all distributions.
Can be inefficient if the area of the 
rectangle                  is large compared
to the area below the curve p(x)

3.2.4 Rejection Method http://homepage.univie.ac.at/Franz.Vesely/cp0102/dx/node42.html

1 of 2 18-10-2005 0:38

   
Next: 3.2.5 Multivariate Gaussian Distribution Up: 3.2 Other Distributions Previous: 3.2.3 Generalized Transformation Method: 

3.2.4 Rejection Method

A classic: created by John von Neumann, applicable to almost any . 

Here is the original formulation: 

               

And this is how we read it today: 

The method is simple and fast, but it becomes inefficient whenever the area of the rectangle  is large compared to the area below the graph of 

. Otherwise, the ``Improved Rejection Method'' may be applicable:  

@⇢

@t

= r

pu(x) =

n
1 0  x < 1

0 otherwise

Let [a, b] be the allowed range of values of the variate x, and pm the maximum of the distribution p(x).

1. Sample a pair of equidistributed random numbers, x 2 [a, b] and y 2 [0, pm].

2. If y  p(x), accept x as the next random number, otherwise return to step 1.

The variable x then has the desired probability density p(x).

1

p(x)
accept

reject

pm

a bx

(x,y)

(x,y)



Non uniform random numbers distribution:
3) gaussian distribution 

@⇢

@t

= r

pu(x) =

n
1 0  x < 1

0 otherwise

p(x)

1

@⇢

@t

= r

pu(x) =

n
1 0  x < 1

0 otherwise

1

How to produce numbers with gaussian distribution?

- Inverse transformation method: impossible
The cumulative distribution function P(x) cannot be analytically calculated!

- Rejection method: inefficient

p(x) =
1

σ

1
√

2π
e
−x2/(2σ2)



Non uniform random numbers distribution:
3) gaussian distribution - Box-Muller technique 

p(x) =
1

σ

1
√

2π
e
−x2/(2σ2)

Hint: consider the distribution in 2D instead of 1D  (here  σ =1 ):

p(x)p(y)dxdy = (2π)−1 e−(x2+y2)/2 dxdy



Hint: consider the distribution in 2D instead of 1D  (here  σ =1 ):

Non uniform random numbers distribution:
3) gaussian distribution - Box-Muller technique 

r =

√

x2 + y2 θ = arctan (y/x) ρ ≡ r2/2Use polar coordinates:                          ,                             ;  def.:

(x,y)

θ
r

p(x) =
1

σ

1
√

2π
e
−x2/(2σ2)

p(x)p(y)dxdy = (2π)−1 e−(x2+y2)/2 dxdy



Hint: consider the distribution in 2D instead of 1D  (here  σ =1 ):

Non uniform random numbers distribution:
3) gaussian distribution - Box-Muller technique 

r =

√

x2 + y2 θ = arctan (y/x) ρ ≡ r2/2

p(x)p(y) dx dy = p(ρ, θ) dρ dθ = (2π)−1 e−ρ dρ dθ

Use polar coordinates:                          ,                             ;  def.:
dxdy = r dr dθ = dρ dθ

and therefore:

p(x) =
1

σ

1
√

2π
e
−x2/(2σ2)

p(x)p(y)dxdy = (2π)−1 e−(x2+y2)/2 dxdy



Non uniform random numbers distribution:
3) gaussian distribution - Box-Muller technique 

Hint: consider the distribution in 2D instead of 1D  (here  σ =1 ):

r =

√

x2 + y2 θ = arctan (y/x) ρ ≡ r2/2

p(x)p(y) dx dy = p(ρ, θ) dρ dθ = (2π)−1 e−ρ dρ dθ

Use polar coordinates:                          ,                             ;  def.:

If                                                     
{

ρ exponentially distributed
θ uniformly distributed in[0, 2π]











x = r cos θ =
√

2ρ cos θ
y = r sin θ =

√
2ρ sin θ

x, y have gaussian distribution
with 〈x〉 = 〈y〉 = 0 and σ = 1

dxdy = r dr dθ = dρ dθ
and therefore:

p(x)p(y)dxdy = (2π)−1 e−(x2+y2)/2 dxdy

p(x) =
1

σ

1
√

2π
e
−x2/(2σ2)



Non uniform random numbers distribution:
3) gaussian distribution - Box-Muller recipe #1

X, Y ∈ [0, 1[⇒

{

ρ = − ln(X) distributed with p(ρ) = e−ρ

θ = 2πY distributed with (2π)−1pu

{

x = r cos θ =
√

−2 lnX cos(2πY )
y = r sin θ =

√

−2 lnX sin(2πY )

Recipe #1 (BASIC FORM):                                                   

If                                                     
{

ρ exponentially distributed
θ uniformly distributed in[0, 2π]











x = r cos θ =
√

2ρ cos θ
y = r sin θ =

√
2ρ sin θ

x, y have gaussian distribution
with 〈x〉 = 〈y〉 = 0 and σ = 1

X, Y unif. distrib. in [0, 1[

{

NOTE:
x, y are normally distributed and statistically independent. Gaussian variates with given variances σx,  
σy  are obtained by multiplying x and y by σx and  σy respectively 



Non uniform random numbers distribution:
3) gaussian distribution - Box-Muller recipe #2

Recipe #2 (POLAR FORM) (implemented in  boxmuller.f90) :                                 

If                                                     
{

ρ exponentially distributed
θ uniformly distributed in[0, 2π]











x = r cos θ =
√

2ρ cos θ
y = r sin θ =

√
2ρ sin θ

x, y have gaussian distribution
with 〈x〉 = 〈y〉 = 0 and σ = 1

X
Y R .

Advantages: avoids the calculations 
of sin and cos functions

@⇢

@t
= r

8
><

>:

X, Y uniformly distributed in [�1,1];

take (X,Y ) only within the unitary circle;

) R2
= X2

+ Y 2
is

uniformly distributed in [0,1]

1

@⇢

@t

= r
8
><

>:

X, Y uniformly distributed in [�1,1];

take (X,Y ) only within the unitary circle;

) R

2
= X

2
+ Y

2
is

uniformly distributed in [0,1]

8
>>>>>><

>>>>>>:

x =

p
�2 lnR

2
X

R

y =

p
�2 lnR

2
Y

R

since:

cos ✓ =

X

R

, sin ✓ =

Y

R

1



on moodle2  or on INFIS account:
$/home/peressi/comp-phys/III-random-non-
uniform-and-processes/f90  
[do: $cp /home/peressi/...  .../f90/* .]

expdev.f90         boxmuller.f90  

Some programs: 



subroutine expdev(x)
    REAL, intent (out) :: x
    REAL :: r
    do
       call random_number(r)
       if(r > 0) exit
    end do
    x = -log(r)
  END subroutine expdev

r is generated in [0,1[ ;
but r=0 has to be discarded;
if r=0, generate another random number;
if not, exit from the unbounded loop 
and calculate its log

A look at the expdev.f90 code



SUBROUTINE gasdev(rnd)
    IMPLICIT NONE
    REAL, INTENT(OUT) :: rnd
    REAL :: r2, x, y
    REAL, SAVE :: g
    LOGICAL, SAVE :: gaus_stored=.false.
    if (gaus_stored) then
       rnd=g
       gaus_stored=.false.
    else
       do
          call random_number(x)
          call random_number(y)
          x=2.*x-1.
          y=2.*y-1.
          r2=x**2+y**2
          if (r2 > 0. .and. r2 < 1.) exit
       end do
       r2=sqrt(-2.*log(r2)/r2)
       rnd=x*r2
       g=y*r2
       gaus_stored=.true.
    end if
END SUBROUTINE gasdev

Every two calls
uses the random number 
already generated in the previous call

A look at the boxmuller.f90 code

@⇢

@t

= r
8
><

>:

X, Y uniformly distributed in [�1,1];

take (X,Y ) only within the unitary circle;

) R

2
= X

2
+ Y

2
is

uniformly distributed in [0,1]

x =

p
�2 lnR

2
X

R

= X

p
�2 lnR

2
/R

2

1

since:
(thus avoiding the calculation of 

another √  to calculate R separately)

2 examples of optimization!



#include <math.h>

float gasdev(long *idum)
{
    float ran1(long *idum);
    static int iset=0;
    static double gset;
    double fac,rsq,v1,v2;

    if (iset == 0) {
        do {
            v1=2.0*ran1(idum)-1.0;
            v2=2.0*ran1(idum)-1.0;
            rsq=v1*v1+v2*v2;
        } while (rsq >= 1.0 || rsq == 0.0);
        fac=sqrt(-2.0*log(rsq)/rsq);
        gset=v1*fac;
        iset=1;
        return (float)(v2*fac);
    } else {
        iset=0;
        return (float)gset;
    }
}

Every two calls
uses the random number 
already generated in the previous call

A look at the gasdev.c code

@⇢

@t

= r
8
><

>:

X, Y uniformly distributed in [�1,1];

take (X,Y ) only within the unitary circle;

) R

2
= X

2
+ Y

2
is

uniformly distributed in [0,1]

x =

p
�2 lnR

2
X

R

= X

p
�2 lnR

2
/R

2

1

since:
(thus avoiding the calculation of 
another √  to calculate R separately)

2 examples of optimization!



(optional, but useful!)

random.f90  (is a module)
t_random.f90

to compile: 
$gfortran random.f90 t_random.f90
(the module first!)

Other programs: 

in the same directories indicated before:



Part II - 
Using random numbers

to simulate 
random processes



Random processes: 
radioactive decay

Atoms present at time  
Probability for each atom to decay in
Atoms which decay between      and 

t

∆N(t)

∆N(t) = −λN(t)∆t

N(t) = N(t = 0)e−λt

t + ∆t

N(t)

t

we use the probability        of decay of each atom
to simulate the behavior of the number of atoms left;
we should be able to obtain (on average):

λ

λ

∆t



      DO                                      ! loop on time
         DO  i = 1, nleft                  ! loop on all the nuclei left
            call random_number(r)
            IF (r <= lambda) THEN     ! BASIC   ALGORITHM
               nleft = nleft -1               !  update the nuclei left (*)
            ENDIF
         END DO
      WRITE (unit=7,fmt=*) t , nleft          
         if (nleft == 0) exit
         t = t + 1
      END DO

Radioactive decay:
numerical simulation

A scheme for the

simulation

1. Assign a value to the decay constant �  1 (the

probability for each nucleus to decay in a given

interval of time �t)

� establishes the time scale; one iteration in the “do loop”

corresponds to one time step �t

2. Start with Nleft = Nstart= total number of

nuclei at time t = 0

3. Basic algorithm: for each nucleus left (not yet

decayed):

• Generates a random number 0  x  1

• if x  �, the nucleus decays and Nleft =

Nleft - 1, otherwise it remains and Nleft is

unchanged.

4. Repeat for each nucleus

5. Repeat the cycle for the next time step

A scheme for the

simulation

1. Assign a value to the decay constant �  1 (the

probability for each nucleus to decay in a given

interval of time �t)

� establishes the time scale; one iteration in the “do loop”

corresponds to one time step �t

2. Start with Nleft = Nstart= total number of

nuclei at time t = 0

3. Basic algorithm: for each nucleus left (not yet

decayed):

• Generates a random number 0  x  1

• if x  �, the nucleus decays and Nleft =

Nleft - 1, otherwise it remains and Nleft is

unchanged.

4. Repeat for each nucleus

5. Repeat the cycle for the next time step

Note: “exit” ≠ “cycle”

Note:  unbounded loop

(*) Notice that the upper bound of the inner loop (nleft) is changed within the execution of the 
loop; but with most compilers, in the execution the loop goes on up to the initial value of nleft; 
this ensures that the implementation of the algorithm is correct. The program checkloop.f90 is a 
test for the behavior of the loop. Look also at decay_checkloop.f90. If nleft would be changed 
(decreased) during the execution, the effect would be an overestimate of the decay rate. 
CHECK with your compiler!



decay.f90    
decay_checkloop.f90  

checkloop.f90

Programs: 

in the same directory indicated before:



         [name:] DO
                     exit [name]

     or [name:] DO
	

 	

        END DO [name]

(name is useful in case of nested loops for explicitly indicating from which loop to exit) 

possible forms of "do while":
      DO
       if (condition)exit
      END DO
or:
      DO WHILE (.not. condition)
       ...
      END DO
   
NOTE: first is better (“if () ..exit” can be placed everywhere in the loop,
           whereas DO WHILE must execute the loop up to the end)

- Additional note:
Difference between EXIT and CYCLE

Details on Fortran:  unbounded loops



plot of the results of decay 
simulation  (N vs t)
with N=1000

N(t) ~ N0 exp(- a t)

semilog plot (log(N) vs t)
=> log(N(t)) = log N0 - a t
=> slope is -a

Radioactive decay:
results of numerical simulation
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Semilog plot of the results of 
decay simulation for the same 
decay rate and different initial 
number of atoms:
almost a straight line, but with
important deviations 
(stochastic) for small N

Radioactive decay:
results of numerical simulation

Page P002.html http://www.physics.orst.edu/~rubin/CPbook/chap7/P002.html
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numerical simulations: 
OK on average and for large numbers



Other random processes: 
order and disorder

A box is divided into two parts communicating through a 
small hole. One particle randomly can pass through the hole 
per unit time, from the left to the right or viceversa.

Nleft(t): number of particles present at time t in  the left side
Given Nleft(0), what is Nleft(t) ? 
(see later, lectures on the statistical ensembles)
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Random Walk Simulation

Random walk of 1000 steps going nowhere

Many physical processes such as Brownian motion, electron transport through metals, and round off
errors on computers are modeled as a random walk. In this model, many steps are taken with the
direction of each step independent of the direction of the previous one. For our model, we start at the
origin and take steps of lengths (not coordinates) in the x and y directions of

where there are a total of N steps. The distance from the starting point R is related to these steps by

 

Now while (2) is quite general for any walk you may take, if it is a random walk then you are equally
likely to move forwards as backwards in each step - as well as to the right or left. So on the average, 
for a large number of steps, all the cross terms in (2) will vanish and we are left with

 

where  is the square root of the average squared step size or root mean squared step size. Note, the
same result obtains for a three dimensional walk. According to (3), even though the total distance 

walked is , on the average, the distance from the starting point is only .

  Here are different methods to generate 2-D unit steps.

Project

Next: Project
Up: MONTE-CARLO TECHNIQUES
Previous: Project

(see next lecture)

Other random processes: 
random walks



Part III - Fitting data



Least-square method

• Suppose to have ND data (independent measure-
ments of the variable y which is function of the
variable x):

(xi, yi ± �i), i = 1, ND

with ±�i error associated to the i value of y.

• Purpose: determine the function y = f(x) which
better described these data. If the analytic form of
the function is known, a part from a set MP of pa-
rameters {a1, a2 . . . , aMP

}, i.e., f(x) = f(x; {am}),
the goal is to find the best set of parameters.

• To test whether the data fit via f(x) is good or
not calculate the quantity

⇥2 :=
NDX

i=1

 
yi � f(xi; {am})

�i

!2

Note that by dividing by �i, data with larger errors
have smaller weight in this weighted average.

• The smallest ⇥2, the better the fit is.
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• Purpose: determine the function y = f(x) which
better described these data. If the analytic form of
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Note that by dividing by �i, data with larger errors
have smaller weight in this weighted average.

• The smallest ⇥2, the better the fit is.



• Least-squares fitting: The parameters MP that
minimize ⇥2 are found by:

⌅⇥2

⌅am
= 0 (m = 1, MP )

=⇤
ND�

i=1

yi � f(xi)

�2
i

⌅f(x; {am})
⌅am

= 0 (1)

• If f(x; a, b) = ax+b (linear regression), the equa-
tions giving ⇥2 minimum reduce to:

a =
SSxy � SxSy

�
, b =

SxxSy � SxSxy

�

S =
ND�

i=1

1

�2
i

, Sx =
ND�

i=1

xi

�2
i

Sy =
ND�

i=1

yi

�2
i

, Sxx =
ND�

i=1

x2
i

�2
i

Sxy =
ND�

i=1

xiyi

�2
i

, � = SSxx � S2
x (2)

example:  see program fit.f90
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radioactive decay:
N(t) ~ N0 exp(- a t)

we can fit with the exp.
but it is better to fit:

log(N(t)) = log N0 - a t

Examples - linear regression

Random walk:
<x2N> ~ Na

but it is better to fit:

log <x2N> = a log N
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Figure 7.2: Plot of ln〈x2
N 〉 versus ln N for the data listed in Table 7.2. The straight line y =

1.02x + 0.83 through the points is found by minimizing the sum (7.19).

is that the most probable error in m and b, σm and σb respectively, is given by

σm =
1√
n

σy

∆x
(7.27a)

σb =
1√
n

(
x2

)1/2

∆x
σy, (7.27b)

where

σ2
y =

1
n − 2

n∑

i=1

d2
i , (7.27c)

and di is given by (7.18). Because there are n data points, we might have guessed that n rather
than n − 2 would be present in the denominator of (7.27c). The reason for the factor of n − 2 is
related to the fact that to determine σy, we first need to calculate two quantities m and b, leaving
only n − 2 independent degrees of freedom. To see that the n − 2 factor is reasonable, consider
the special case of n = 2. In this case we can find a line that passes exactly through the two data
points, but we cannot deduce anything about the reliability of the set of measurements because
the fit always is exact. If we use (7.27c), we see that both the numerator and denominator would
be zero, and hence σy = 0/0, that is, σy is undetermined. If a factor of n appeared in (7.27c)
instead, we would conclude that σy = 0/2 = 0, an absurd conclusion. Usually n >> 1, and the
difference between n and n − 2 is negligible.

For our example, σy = 0.03, σb = 0.07, and σm = 0.02. The uncertainties δm and δν are
related by 2δν = δm. Because we can associate δm with σm, we conclude that our best estimate



Suppose you want to fit your data (say, ‘data.dat’) with an exponential function.
You have to give: 1) the functional form ; 2) the name of the parameters

gnuplot> f(x) = a * exp (-x*b)

Then we have to recall these informations together with the data we want to fit:
it can be convenient to inizialize the parameters:
gnuplot> a=0. ; b=1.     (for example)

gnuplot> fit f(x) 'data.dat' via a,b

On the screen you will have something like:

    Final set of parameters Asymptotic Standard Error
    ======================= ==========================

    a = 1 +/- 8.276e-08 (8.276e-06%)
    b = 10 +/- 1.23e-06 (1.23e-05%)

    correlation matrix of the fit parameters:

    a b
    a 1.000
    b 0.671 1.000 

It’s convenient to plot together the original data and the fit:

gnuplot> plot f(x), 'data.dat'

Example: fit using gnuplot - I



If you prefer to use linear regression, use logarithmic data in the data file, or directly
fit the log of the original data using gnuplot:

gnuplot> f(x) = a + b*x

Then we have to recall these informations together with the data we want to fit
(in the following example: x=log of the first column; y=log of the second column):
 
gnuplot> fit f(x) 'data.dat' u (log($1)):(log($2)) via a,b

...
   Final set of parameters Asymptotic Standard Error
    ======================= ==========================  (...gnuplot will work for you....)
...

Also in this case it will be convenient to plot together the original data and the fit:

gnuplot> plot f(x), 'data.dat' u (log($1)):(log($2))

In case of needs, we can limit the set of data to fit in a certain range [x_min:x_max]:

gnuplot> fit [x_min:x_max] f(x) 'data.dat' u ... via ...

Example: fit using gnuplot - II



Part IV - 
more on fortran



Intrinsic functions:  
LOGARITHM
log  	

 	

 returns the natural logarithm
log10 	

	

 returns the common (base 10) logarithm
(NOTE: also in gnuplot,  log and log10 are defined with the 
same meaning)

INTEGER PART
nint(x)     and the others, similar but different (see Lect. II) => 
ex. II requires histogram for negative and positive data values

Arrays:
possible to label the elements from a negative number or 0:
dimension array(-n:m)   (e.g., useful for making histograms)
[default in Fortran:  n=1;    in c and c++: n=0]

A few notes on Fortran 
related to the exercises



AINT(A[,KIND]) 
• Real elemental function 
• Returns A truncated to a whole number.  AINT(A) is the largest integer which is smaller 
than |A|, with the sign of A.  For example, AINT(3.7) is 3.0, and AINT(-3.7) is -3.0. 
• Argument A is Real; optional argument KIND is Integer 

ANINT(A[,KIND]) 
• Real elemental function 
• Returns the nearest whole number to A.  For example, ANINT(3.7) is 4.0, and AINT(-3.7) is 
-4.0. 
• Argument A is Real; optional argument KIND is Integer

FLOOR(A,KIND) 
•  Integer elemental function 
•  Returns the largest integer  ≤  A.  For example,  FLOOR(3.7) is 3, and FLOOR(-3.7) is -4. 
•  Argument A is Real of any kind; optional argument KIND is Integer 
•  Argument KIND is only available in Fortran 95 

INT(A[,KIND]) 
• Integer elemental function 
• This function truncates A and converts it into an integer.  If A is complex, only the real 
part is converted.  If A is integer, this function changes the kind only. 
• A is numeric; optional argument KIND is Integer. 

NINT(A[,KIND]) 
• Integer elemental function
• Returns the nearest integer to the real value A. 
• A is Real 

what is int() ? similar intrinsic functions? how to choose?





Array dimension:  
default : dimension array([1:]n)
but also using other dimensions e.g.:       dimension array(-n:m)

Important to check dimensions of the array when compiling or 
during execution !
If not done, it is difficult to interpret error messages (typically:  
“segmentation fault”),   or even possible to obtain unpredictable results!

Default in g95 and gfortran:
boundaries not checked; use compiler option:

gfortran -fbounds-check myprogram.f90

Print: 

man gfortran
and scroll the pages to see the possible options of compilation



Structure of a main program with one function
program name_program   	

 	

 (see: expdev.f90 or boxmuller.f90)
  implicit none  (*)
 <declaration of variables>
 <executable statements>

contains
	

 subroutine ...  (or function)
   	

 ...
	

 end subroutine

end program

(*) General suggestion for variable declaration:
Use “implicit none” + explicit declaration of variables

See also the use of module in Lect. II and III.


