Generating 2D random unit steps

Comment on the algorithm n. 5 (p. 39 of the slides)

Indicating with x and y the individual displacements,
$p(x)=\frac{1}{2 \sqrt{2}}$ for $|x|<\sqrt{2}$ and 0 otherwise; the same for $p(y)$;
the average step size is:

$$
\sqrt{\left\langle x^{2}+y^{2}\right\rangle}=\int_{-\sqrt{2}}^{\sqrt{2}} \int_{-\sqrt{2}}^{\sqrt{2}}\left(x^{2}+y^{2}\right) p(x) p(y) d x d y=\ldots=\frac{2}{\sqrt{3}}
$$

Therefore, with x and y generated in this way, the behaviour of the simulated $\left\langle\Delta R_{N}^{2}\right\rangle$ should be $\frac{4}{3} N\left(\right.$ since $\left.\left\langle\Delta R_{N}^{2}\right\rangle=N \ell^{2}\right)$.

In which extension you should generate x and y in order to have on average a unitary step size?

