
EXPANDED DESCRIPTION OF FORTRAN 90 / 95 INTRINSIC PROCEDURES

This document contains an expanded description of the intrinsic
procedures built into the Fortran 90 and Fortran 95 languages, and
provides some suggestions for their proper use. It is  1997 by
Stephen J. Chapman, and is intended as a supplement to Appendix B
of Introduction to Fortran 90/95. This document may be freely used
in conjunction with that text.

All of the intrinsic procedures that are present in Fortran 90 are also present in Fortran
95, although some have additional arguments. Those procedures which are only in Fortran 95
and those procedures which have additional arguments in Fortran 95 are highlighted in the
tables and discussions below.

The majority of Fortran intrinsic procedures are functions, although there are a few
intrinsic subroutines.

B.1. Classes of Intrinsic Procedures

Fortran 90 / 95 intrinsic procedures can be broken down into three classes: elemental,
inquiry, or transformational. An elemental function1 is one that is specified for scalar
arguments, but which may also be applied to array arguments. If the argument of an elemental
function is a scalar, then the result of the function will be a scalar. If the argument of the
function is an array, then the result of the function will be an array of the same shape as the
input argument. If there is more than one input argument, all of the arguments must have the
same shape. If an elemental function is applied to an array, the result will be the same as if the
function were applied to each element of the array on an element-by-element basis.

An inquiry function or inquiry subroutine is a procedure whose value depends on
the properties of an object being investigated. For example, the function PRESENT(A) is an
inquiry function that returns a true value if the optional argument A is present in a procedure
call. Other inquiry functions can return properties of the system used to represent real
numbers and integers on a particular processor.

A transformational function is a function that has one or more array-valued
arguments or an array-valued result. Unlike elemental functions which operate on an element-
by-element basis, transformational functions operate on arrays as a whole. The output of a
transformational function will often not have the same shape as the input arguments. For
example, the function DOT_PRODUCT has two vector input arguments of the same size, and
produces a scalar output.

B.2. Alphabetical List of Intrinsic Procedures

Table B-1 contains an alphabetical listing of the intrinsic procedures included in
Fortran 90 and Fortran 95. The table is organized into 5 columns. The first column of the

1 One intrinsic subroutine is also elemental.

Fortran 90/95 Intrinsic Procedure Descriptions, a supplement to
Introduction to Fortran 90/95, by Stephen J. Chapman

2

table contains the generic name of each procedure, and its calling sequence. The calling
sequence is represented by the keywords associated with each argument. Mandatory
arguments are shown in roman type, and optional arguments are shown in italics. The use of
keywords is optional, but they must be supplied for optional arguments if earlier optional
arguments in the calling sequence are missing, or if the arguments are specified in a non-
default order (see Section 8.3). For example, the function SIN has one argument, and the
keyword of the argument is X. This function can be invoked either with or without the
keyword, so the following two statements are equivalent.

result = sin(X=3.141593)
result = sin(3.141593)

Another example is the function MAXVAL. This function has one required argument and two
optional arguments:

MAVXAL (ARRAY, DIM, MASK)

If all three calling values are specified in that order, then they may be simply included in the
argument list without the keywords. However, if the MASK is to be specified without DIM, then
keywords must be used.

value = MAVXAL (array, MASK=mask)

The types of the most common argument keywords are as shown below (any kind of the
specified type may be used):

A Any
BACK Logical
DIM Integer
I Integer
KIND Integer
MASK Logical
STRING Character
X, Y Numeric (Integer, real, or complex)
Z Complex

For the types of other keywords, refer to the detailed procedure descriptions below.
The second column contains the specific name of an intrinsic function, which is the

name by which the function must be called if it is to appear in an INTRINSIC statement and be
passed to another procedure as an actual argument. If this column is blank, then the
procedure does not have a specific name, and so may not be used as a calling argument. The
types of arguments used with the specific functions are:

c, c1, c2, ... Default Complex
d, d1, d2, ... Double Precision Real
i, i1, i2, ... Default Integer

Fortran 90/95 Intrinsic Procedure Descriptions, a supplement to
Introduction to Fortran 90/95, by Stephen J. Chapman

3

r, r1, r2, ... Default Real
l, l1, l2, ... Logical
str1, str2, ... Character

The third column contains the type of the value returned by the procedure if it is a
function. Obviously, intrinsic subroutines do not have a type associated with them. The
fourth column is a reference to the section of this document in which the procedure is
described, and the fifth column is for notes which are found at the end of the Table.

Those procedures which are only present in Fortran 95 are shown with a shaded
background.

Table B-1: Specific and Generic Names for All Fortran 90/95 Intrinsic Procedures
Generic name, keyword(s),

 and calling sequence
Specific name Function type Sec-

tion
Notes

ABS(A) Argument type B.3
ABS(r) Default real
CABS(c) Default real 2
DABS(d) Double Prec.
IABS(i) Default integer

ACHAR(I) Character(1) B.7
ACOS(X) Argument type B.3

ACOS(r) Default Real
DACOS(d) Double Prec.

ADJUSTL(STRING) Character B.7
ADJUSTR(STRING) Character B.7
AIMAG(Z) AIMAG(c) Real B.3
AINT(A, KIND) Argument type B.3

AINT(r) Default Real
DINT(d) Double Prec.

ALL(MASK, DIM) Logical B.8
ALLOCATED(ARRAY) Logical B.9
ANINT(A, KIND) Argument type B.3

ANINT(r) Real
DNINT(d) Double Prec.

ANY(MASK, DIM) Logical B.8
ASIN(X) ASIN(r) Argument type

ASIN(r) Real
DASIN(d) Double Prec.

ASSOCIATED(POINTER,TARGET) Logical B.9
ATAN(X) Argument type B.3

ATAN(r) Real
DATAN(d) Double Prec.

ATAN2(Y,X) Argument type B.3
ATAN2(r2,r1) Real
DATAN2(d2,d1) Double Prec.

BIT_SIZE(I) Integer B.4
BTEST(I,POS) Logical B.6
CEILING(A,KIND) Integer B.3 4
CHAR(I, KIND) Character(1) B.7

Fortran 90/95 Intrinsic Procedure Descriptions, a supplement to
Introduction to Fortran 90/95, by Stephen J. Chapman

4

CMPLX(X, Y, KIND) Complex B.3
CONGJ(X) CONJG(c) Complex B.3
COS(X) Argument type B.3

CCOS(c) Complex
COS(r) Real
DCOS(d) Double Prec.

COSH(X) Argument type B.3
COSH(r) Real
DCOSH(d) Double Prec.

COUNT(MASK, DIM) Integer B.8
CPU_TIME(TIME) Subroutine B.5 5
CSHIFT(ARRAY, SHIFT, DIM) Array type B.8
DATE_AND_TIME(DATE, TIME, ZONE,
VALUES)

Subroutine B.5

DBLE(A) Double Prec. B.3
DIGITS(X) Integer B.4
DIM(X,Y) Argument type B.3

DDIM(d1,d2) Double Prec.
DIM(r1,r2) Real
IDIM(i1,i2) Integer

DOT_PRODUCT(VECTOR_A, VECTOR_B) Argument type B.3
DPROD(X,Y) DPROD(x1,x2) Double Prec. B.3
EOSHIFT(ARRAY, SHIFT, BOUNDARY,
DIM)

Array type B.8

EPSILON(X) Real B.4
EXP(X) Argument type B.3

CEXP(c) Complex
DEXP(d) Double Prec.
EXP(r) Real

EXPONENT(X) Integer B.4
FLOOR(A,KIND) Integer B.3 4
FRACTION(X) Real B.4
HUGE(X) Argument type B.4
IACHAR(C) Integer B.7
IAND(I,J) Integer B.6
IBCLR(I,POS) Argument type B.6
IBITSI,POS,LEN) Argument type B.6
IBSET(I,POS) Argument type B.6
ICHAR(C) Integer B.7
IEOR(I,J) Argument type B.6
INDEX(STRING, SUBSTRING, BACK) INDEX(str1,str2) Integer B.7
INT(A, KIND) Integer B.3

IDINT(i) Integer 1
IFIX(r) Integer 1

IOR(I,J) Argument type B.6
ISHFT(I,SHIFT) Argument type B.6
ISHFTC(I,SHIFT,SIZE) Argument type B.6
KIND(X) Integer B.4
LBOUND(ARRAY, DIM) Integer B.8

Fortran 90/95 Intrinsic Procedure Descriptions, a supplement to
Introduction to Fortran 90/95, by Stephen J. Chapman

5

LEN(STRING) LEN(str) Integer B.7
LEN_TRIM(STRING) Integer B.7
LGE(STRING_A, STRING_B) Logical B.7
LGT(STRING_A, STRING_B) Logical B.7
LLE(STRING_A, STRING_B) Logical B.7
LLT(STRING_A, STRING_B) Logical B.7
LOG(X) Argument type B.3

ALOG(r) Real
CLOG(c) Complex
DLOG(d) Double Prec.

LOG10(X) Argument type B.3
ALOG10(r) Real
DLOG10(d) Double Prec.

LOGICAL(L, KIND) Logical B.3
MATMUL(MATRIX_A, MATRIX_B) Argument type B.3
MAX(A1,A2,A3, ...) Argument type B.3

AMAX0(i1,i2, ...) Real 1
AMAX1(r1,r2, ...) Real 1
DMAX1(d1,d2,...) Double Prec. 1
MAX0(i1,i2,...) Integer 1
MAX1(r1,r2,...) Integer 1

MAXEXPONENT(X) Integer B.4
MAXLOC(ARRAY, DIM, MASK) Integer B.8 6
MAXVAL(ARRAY, DIM, MASK) Argument type B.8
MERGE(TSOURCE,FSOURCE,MASK) Argument type B.8
MIN(A1,A2,A3, ...) Argument type B.3

AMIN0(i1,i2, ...) Real 1
AMIN1(r1,r2, ...) Real 1
DMIN1(d1,d2,...) Double Prec. 1
MIN0(i1,i2,...) Integer 1
MIN1(r1,r2,...) Integer 1

MINEXPONENT(X) Integer B.4
MINLOC(ARRAY, DIM, MASK) Integer B.8 6
MINVAL(ARRAY, DIM, MASK) Argument type B.8
MOD(A,P) Argument type B.3

AMOD(r1,r2) Real
MOD(i,j) Integer
DMOD(d1,d2) Double Prec.

MODULO(A,P) Argument type B.3
MVBITS(FROM, FROMPOS, LEN, TO,
TOPOS)

Subroutine B.6

NEAREST(X,S) Real B.3
NINT(A, KIND) Integer B.3

IDNINT(i) Integer
NINT(x) Integer

NOT(I) Argument type B.6
NULL(MOLD) Pointer B.8 5
PACK(ARRAY, MASK, VECTOR) Argument type B.8
PRECISION(X) Integer B.4
PRESENT(A) Logical B.9

Fortran 90/95 Intrinsic Procedure Descriptions, a supplement to
Introduction to Fortran 90/95, by Stephen J. Chapman

6

PRODUCT(ARRAY, DIM, MASK) Argument type B.8
RADIX(X) Integer B.4
RANDOM_NUMBER(HARVEST) Subroutine B.3
RANDOM_SEED(SIZE, PUT, GET) Subroutine B.3
RANGE(X) Integer B.4
REAL(A, KIND) Real B.3

FLOAT(i) Real 1
SNGL(d) Real 1

REPEAT(STRING, NCOPIES) Character B.7
RESHAPE(SOURCE,SHAPE,PAD,
ORDER)

Argument type B.8

RRSPACING(X) Argument type B.4
SCALE(X, I) Argument type B.4
SCAN(STRING, SET, BACK) Integer B.7
SELECTED_INT_KIND(R) Integer B.4
SELECTED_REAL_KIND(P,R) Integer B.4 3
SET_EXPONENT(X, I) Argument type B.4
SHAPE(SOURCE) Integer B.8
SIGN(A,B) Argument type B.3

DSIGN(d1,d2) Double Prec.
ISIGN(i1,i2) Integer
SIGN(r1,r2) Real

SIN(X) Argument type B.3
CSIN(c) Complex
DSIN(d) Double Prec.
SIN(r) Real

SINH(X) Argument type B.3
DSINH(d) Double Prec.
SINH(r) Real

SIZE(ARRAY, DIM) Integer B.8
SPACING(X) Argument type B.4
SPREAD(SOURCE, DIM, NCOPIES) Argument type B.8
SQRT(X) Argument type B.3

CSQRT(c) Complex
DSQRT(d) Double Prec.
SQRT(r) Real

SUM(ARRAY, DIM, MASK) Argument type B.8
SYSTEM_CLOCK(COUNT, COUNT_RATE,
COUNT_MAX)

Subroutine B.5

TAN(X) Argument type B.3
DTAN(d) Double Prec.
TAN(r) Real

TANH(X) Argument type B.3
DTANH(d) Double Prec.
TANH(r) Real

TINY(X) Real B.4
TRANSFER(SOURCE, MOLD, SIZE) Argument type B.8
TRANSPOSE(MATRIX) Argument type B.8
TRIM(STRING) Character B.7
UBOUND(ARRAY, DIM) B.8

Fortran 90/95 Intrinsic Procedure Descriptions, a supplement to
Introduction to Fortran 90/95, by Stephen J. Chapman

7

UNPACK(VECTOR, MASK, FIELD) Argument type B.8
VERIFY(STRING, SET, BACK) Integer B.7
1. These intrinsic functions cannot be passed to procedures as calling arguments.
2. The result of function CABS is real with the same kind as the input complex argument.
3. At least one of P and R must be specified in any given call.
4. Argument KIND is only available in Fortran 95 for this function.
5. These procedures are only available in Fortran 95.
6. The argument DIM is only available in the Fortran 95 version of functions MAXLOC and MINLOC.

These intrinsic procedures are divided into broad categories based on their functions.
Refer to Table B-1 to determine which of the following sections will contain a description of
any particular function of interest.

The following information applies to all of the intrinsic procedure descriptions:
1. All arguments of all intrinsic functions have INTENT(IN). In other words, all of

the functions are pure. The intent of subroutine arguments are specified in the
description of each subroutine.

2. Optional arguments are shown in italics in all calling sequences.
3. When a function has an optional KIND dummy argument, then the function result

will be of the kind specified in that argument. If the KIND argument is missing,
then the result will be of the default kind. If the KIND argument is specified, it
must correspond to a legal kind on the specified processor, or the function will
abort. The KIND argument is always an integer.

4. When a procedure is said to have two arguments of the same type, it is
understood that they must also be of the same kind. If this is not true for a
particular procedure, the fact will be explicitly mentioned in the procedure
description.

5. The lengths of arrays and character strings will be shown by an appended number
in parentheses. For example, the expression

Integer(m)
implies that a particular argument is an integer array containing m values.

B.3. Mathematical and Type Conversion Intrinsic Procedures

ABS(A)
• Elemental function of the same type and kind as A
• Returns the absolute value of A, |A|.

• If A is complex, the function returns real imag2 2+ .

ACOS(X)
• Elemental function of the same type and kind as X
• Returns the inverse cosine of X
• Argument is Real of any kind, with |X| ≤ 1.0, and 0 ≤ ACOS(X) ≤ π.

Fortran 90/95 Intrinsic Procedure Descriptions, a supplement to
Introduction to Fortran 90/95, by Stephen J. Chapman

8

AIMAG(Z)
• Real elemental function of the same kind as Z
• Returns the imaginary part of complex argument Z

AINT(A,KIND)
• Real elemental function
• Returns A truncated to a whole number. AINT(A) is the largest integer which is

smaller than |A|, with the sign of A. For example, AINT(3.7) is 3.0, and
AINT(-3.7) is -3.0.

• Argument A is Real; optional argument KIND is Integer

ANINT(A,KIND)
• Real elemental function
• Returns the nearest whole number to A. For example, ANINT(3.7) is 4.0, and

AINT(-3.7) is -4.0.
• Argument A is Real; optional argument KIND is Integer

ASIN(X)
• Elemental function of the same type and kind as X
• Returns the inverse sine of X
• Argument is Real of any kind, with |X| ≤ 1.0, and -π/2 ≤ ASIN(X) ≤ π/2.

ATAN(X)
• Elemental function of the same type and kind as X
• Returns the inverse tangent of X
• Argument is Real of any kind, with -π/2 ≤ ATAN(X) ≤ π/2.

ATAN2(Y,X)
• Elemental function of the same type and kind as X
• Returns the inverse tangent of Y/X in the range -π < ATAN2(Y,X) ≤ π.
• X,Y are Real of any kind, and must be of same kind
• Both X and Y cannot be simultaneously 0.

CEILING(A,KIND)
• Integer elemental function
• Returns the smallest integer ≥ A. For example, CEILING(3.7) is 4, and

CEILING(-3.7) is -3.
• Argument A is Real of any kind; optional argument KIND is Integer
• Argument KIND is only available in Fortran 95

CMPLX(X,Y,KIND)
• Complex elemental function
• Returns a complex value as follows:

1. If X is complex, then Y must not exist, and the value of X is returned.
2. If X is not complex, and Y doesn’t exist, then the returned value is (X,0).

Fortran 90/95 Intrinsic Procedure Descriptions, a supplement to
Introduction to Fortran 90/95, by Stephen J. Chapman

9

3. If X is not complex and Y exists, then the returned value is (X,Y).
• X is Complex, Real, or Integer, Y is Real or Integer, and KIND is an Integer

CONJG(Z)
• Complex elemental function of the same kind as Z
• Returns the complex conjugate of Z
• Z is Complex

COS(X)
• Elemental function of the same type and kind as X
• Returns the cosine of X
• X is Real or Complex

COSH(X)
• Elemental function of the same type and kind as X
• Returns the hyperbolic cosine of X
• X is Real

DIM(X,Y)
• Elemental function of the same type and kind as X
• Returns X-Y if > 0; otherwise returns 0.
• X and Y are Integer or Real; both must be of the same type and kind

DBLE(A)
• Double precision real elemental function
• Converts value of A to double precision real
• A is numeric. If A is complex, then only the real part of A is converted.

DOT_PRODUCT(VECTOR_A,VECTOR_B)
• Transformational function of the same type as VECTOR_A
• Returns the dot product of numeric or logical vectors.
• Arguments are Numeric or Logical vectors. Both vectors must be of the same

type, kind, and length.

DPROD(X,Y)
• Double precision real elemental function
• Returns the double precision product of X and Y
• Arguments X and Y are default real

EXP(X)
• Elemental function of the same type and kind as X
• Returns ex

• X is Real or Complex

Fortran 90/95 Intrinsic Procedure Descriptions, a supplement to
Introduction to Fortran 90/95, by Stephen J. Chapman

10

FLOOR(A,KIND)
• Integer elemental function
• Returns the largest integer ≤ A. For example, FLOOR(3.7) is 3, and

FLOOR(-3.7) is -4.
• Argument A is Real of any kind; optional argument KIND is Integer
• Argument KIND is only available in Fortran 95

INT(A,KIND)
• Integer elemental function
• This function truncates A and converts it into an integer. If A is complex, only the

real part is converted. If A is integer, this function changes the kind only.
• A is numeric; optional argument KIND is Integer.

LOG(X)
• Elemental function of the same type and kind as X
• Returns log ()e x
• X is Real or Complex. If Real, X > 0. If Complex, X ≠ 0.

LOG10(X)
• Elemental function of the same type and kind as X
• Returns log ()10 x
• X is Real and positive.

LOGICAL(L,KIND)
• Logical elemental function
• Converts the logical value L to the specified kind.
• L is Logical, and KIND is integer.

MATMUL(MATRIX_A,MATRIX_B)
• Transformational function of the same type and kind as MATRIX_A
• Returns the matrix product of numeric or logical matrices. The resulting matrix

will have the same number of rows as MATRIX_A and the same number of
columns as MATRIX_B.

• Arguments are Numeric or Logical matrices. Both matrices must be of the same
type and kind, and of compatible sizes. The following constraints apply:
1. In general, both matrices are of rank 2.
2. MATRIX_A may be rank-1. If so, MATRIX_B must be rank-2 with only one

column.
3. In all cases, the number of columns in MATRIX_A must be the same as the

number of rows in MATRIX_B.

MAX(A1,A2,A3,...)
• Elemental function of same kind as its arguments
• Returns the maximum value of A1, A2, etc.

Fortran 90/95 Intrinsic Procedure Descriptions, a supplement to
Introduction to Fortran 90/95, by Stephen J. Chapman

11

• Arguments may be Real or Integer; all must be of the same type

MIN(A1,A2,A3,...)
• Elemental function of same kind as its arguments
• Returns the minimum value of A1, A2, etc.
• Arguments may be Real or Integer; all must be of the same type

MOD(A1,P)
• Elemental function of same kind as its arguments
• Returns the value MOD(A,P) = A - P*INT(A/P) if P ≠ 0. Results are processor

dependent if P = 0.
• Arguments may be Real or Integer; they must be of the same type
• Examples:

Function Result
MOD(5,3) 2
MOD(-5,3) -2
MOD(5,-3) 2
MOD(-5,-3) -2

MODULO(A1,P)
• Elemental function of same kind as its arguments
• Returns the modulo of A with respect to P if P ≠ 0. Results are processor

dependent if P = 0.
• Arguments may be Real or Integer; they must be of the same type
• If P > 0, then the function determines the positive difference between A and then

next lowest multiple of P. If P < 0, then the function determines the negative
difference between A and then next highest multiple of P.

• Results agree with the MOD function for two positive or two negative arguments;
results disagree for arguments of mixed signs.

• Examples:
Function Result Explanation

MODULO(5,3) 2 5 is 2 up from 3
MODULO(-5,3) 1 -5 is 1 up from -6
MODULO(5,-3) -1 5 is 1 down from 6
MODULO(-5,-3) -2 -5 is 2 down from -3

NEAREST(X,S)
• Real elemental function
• Returns the nearest machine-representable number different from X in the

direction of S. The returned value will be of the same kind as X.
• X and S are Real, and S ≠ 0

NINT(A,KIND)
• Integer elemental function

Fortran 90/95 Intrinsic Procedure Descriptions, a supplement to
Introduction to Fortran 90/95, by Stephen J. Chapman

12

• Returns the nearest integer to the real value A.
• A is Real

RANDOM_NUMBER(HARVEST)
• Intrinsic subroutine
• Returns pseudo-random number(s) from a uniform distribution in the range 0 ≤

HARVEST < 1. HARVEST may be either a scalar or an array. If it is an array, then a
separate random number will be returned in each element of the array.

• Arguments:
Keyword Type Intent Description
HARVEST Real OUT Holds random numbers.

May be scalar or array.

RANDOM_SEED(SIZE,PUT,GET)
• Intrinsic subroutine
• Performs three functions: (1) restarts the pseudo-random number generator used

by subroutine RANDOM_NUMBER, (2) gets information about the generator, and (3)
puts a new seed into the generator.

• Arguments:
Keyword Type Intent Description
SIZE Integer OUT Number of integers used to

hold the seed (n)
PUT Integer(m) IN Set the seed to the value in

PUT. Note that m ≥ n.
GET Integer(m) OUT Get the current value of the

seed. Note that m ≥ n.
• SIZE is an Integer, and PUT and GET are Integer arrays. All arguments are

optional, and at most one can be specified in any given call.
• Functions:

1. If no argument is specified, the call to RANDOM_SEED restarts the pseudo-
random number generator.

2. If SIZE is specified, then the subroutine returns the number of integers used
by the generator to hold the seed.

3. If GET is specified, then the current random generator seed is returned to the
user. The integer array associated with keyword GET must be at least as
long as SIZE.

4. If PUT is specified, then the value in the integer array associated with
keyword PUT is set into the generator as a new seed. The integer array
associated with keyword PUT must be at least as long as SIZE.

REAL(A,KIND)
• Real elemental function
• This function converts A into a real value. If A is complex, it converts the real

part of A only. If A is real, this function changes the kind only.
• A is numeric; KIND is Integer.

Fortran 90/95 Intrinsic Procedure Descriptions, a supplement to
Introduction to Fortran 90/95, by Stephen J. Chapman

13

SIGN(A,B)
• Elemental function of same kind as its arguments
• Returns the value of A with the sign of B.
• Arguments may be Real or Integer; they must be of the same type

SIN(X)
• Elemental function of the same type and kind as X
• Returns the sine of X
• X is Real or Complex

SINH(X)
• Elemental function of the same type and kind as X
• Returns the hyperbolic sine of X
• X is Real

SQRT(X)
• Elemental function of the same type and kind as X
• Returns the square root of X
• X is Real or Complex
• If X is real, X must be ≥ 0. If X is complex, then the real part of X must be ≥ 0. If

X is purely imaginary, then the imaginary part of X must be ≥ 0.

TAN(X)
• Elemental function of the same type and kind as X
• Returns the tangent of X
• X is Real

TANH(X)
• Elemental function of the same type and kind as X
• Returns the hyperbolic tangent of X
• X is Real

B.4. Kind and Numeric Processor Intrinsic Functions

Many of the functions in this section are based on the Fortran models for Integer and
Real data. These models must be understood in order to make sense of the values returned by
the functions.

Fortran uses numeric models to insulate a programmer from the physical details of
how bits are laid out in a particular computer. For example, some computers use two’s
complement representations for numbers while other computers use sign-magnitude
representations for numbers. Approximately the same range of numbers can be represented in
either case, but the bit patterns are different. The numeric models tell the programmer what
range and precision can be represented by a given type and kind of numbers without requiring
a knowledge of the physical bit layout on a particular machine.

Fortran 90/95 Intrinsic Procedure Descriptions, a supplement to
Introduction to Fortran 90/95, by Stephen J. Chapman

14

The Fortran model for an integer i is

i s w rk
k

k

q

= × ×
=

−

∑
0

1

 (B-1)

where r is an integer exceeding one, q is a positive integer, each w k is a nonnegative integer
less than r, and s is +1 or -1. The values of r and q determine the set of model integers for a
processor. They are chosen to make the model fit as well as possible to the machine on which
the program is executed. Note that this model is independent of the actual bit pattern used to
store integers on a particular processor.

The value r in this model is the radix or base of the numbering system used to
represent integers on a particular computer. Essentially all modern computers use a base 2
numbering system, so r is 2. If r is 2, then the value q is one less than the number of bits used
to represent an integer (one bit is used for the sign of the number). For a typical 32-bit integer
on a base 2 computer, the model of an integer becomes

i w k
k

k

= ± ×
=
∑ 2

0

30

 (B-2)

where each w k is either 0 or 1.
The Fortran model for a real number x is

x s b f be
k

k

k

p= × × ×





−

=
∑

0

1

 or
 (B-3)

where b and p are integers exceeding one, each fk is a non-negative integer less than b (and
f1 must not be zero), s is +1 or -1, and e is an integer that lies between some integer

maximum emax and some integer minimum emin . The values of b, p, emin , and emax determine
the set of model floating point numbers. They are chosen to make the model fit as well as
possible to the machine on which the program is executed. This model is independent of the
actual bit pattern used to store floating point numbers on a particular processor.

The value b in this model is the radix or base of the numbering system used to
represent real numbers on a particular computer. Essentially all modern computers use a base
2 numbering system, so b is 2, and each fk must be either 0 or 1 (f1 must be 1).

The bits that make up a real or floating-point number are divided into two separate
fields, one for the mantissa (the fractional part of the number) and one for the exponent. For a
base 2 system, p is the number of bits in the mantissa, and the value of e is stored in a field
that is one less than the number of bits in the exponent2. Since the IEEE single precision
standard devotes 24 bits to the mantissa and 8 bits to the exponent, p is 24, emax = 27 = 127,
and emin = -126. For a typical 32-bit single precision real number on a base 2 computer, the
model of the number becomes

x fe
k

k

k

= ± × + ×










−

=
∑

0

2
1
2

2
2

24
 or

, -126 ≤ e ≤ 127 (B-4)

2 It is one less than the number of bits in the exponent because one bit is reserved for the sign of the exponent.

Fortran 90/95 Intrinsic Procedure Descriptions, a supplement to
Introduction to Fortran 90/95, by Stephen J. Chapman

15

The inquiry functions DIGITS, EPSILON, HUGE, MAXEXPONENT, MINEXPONENT,
PRECISION, RANGE, RADIX, and TINY all return values related to the model parameters for the
type and kind associated with the calling arguments. Of these functions, only PRECISION and
RANGE matter to most programmers.

BIT_SIZE(I)
• Integer inquiry function
• Returns the number of bits in integer I.
• I must be Integer.

DIGITS(X)
• Integer inquiry function
• Returns the number of significant digits in X. (This function returns q from the

integer model in Equation B-1, or p from the real model in Equation B-3).
• X must be Integer or Real.
• Caution: This function returns the number of significant digits in the base of the

numbering system used on the computer. For most modern computers, this is
base 2, so this function returns the number of significant bits. If you want the
number of significant decimal digits, use PRECISION(X) instead.

EPSILON(X)
• Integer inquiry function of the same type as X.
• Returns a positive number that is almost negligible compared to 1.0 of the same

type and kind as X. (The returned value is b p1− , where b and p are defined in
Equation B-3.)

• X must be Real.
• Essentially, EPSILON(X) is the number which, when added to 1.0, produces the

next number representable by the given KIND of real number on a particular
processor.

EXPONENT(X)
• Integer inquiry function of the same type as X.
 Returns the exponent of X in the base of the computer numbering system. (This

is e from the real number model as defined in Equation B-3.)
• X must be Real.

FRACTION(X)
• Real elemental function of same kind as X.
• Returns the mantissa or the fractional part of the model representation of X.

(This function returns the summation term from Equation B-3.)
• X must be Real.

HUGE(X)
• Integer inquiry function of the same type as X.
• Returns the largest number of the same type and kind as X

Fortran 90/95 Intrinsic Procedure Descriptions, a supplement to
Introduction to Fortran 90/95, by Stephen J. Chapman

16

• X must be Integer or Real.

KIND(X)
• Integer inquiry function.
• Returns the kind value of X
• X may be any intrinsic type.

MAXEXPONENT(X)
• Integer inquiry function.
• Returns the maximum exponent of the same type and kind as X. (The returned

value is emax from the model in Equation B-3.)
• X must be Real.
• Caution: This function returns the maximum exponent in the base of the

numbering system used on the computer. For most modern computers, this is
base 2, so this function returns the maximum exponent as a base 2 number. If
you want the maximum exponent as a decimal value, use RANGE(X) instead.

MINEXPONENT(X)
• Integer inquiry function.
• Returns the minimum exponent of the same type and kind as X. (The returned

value is emin from the model in Equation B-3.)
• X must be Real.

PRECISION(X)
• Integer inquiry function.
• Returns the number of significant decimal digits in values of the same type and

kind as X.
• X must be Real or Complex.

RADIX(X)
• Integer inquiry function.
• Returns the base of the mathematical model for the type and kind of X. Since

most modern computers work on a base 2 system, this number will almost always
be 2. (This is r in Equation B-1, or b Equation B-3.)

• X must be Integer or Real.

RANGE(X)
• Integer inquiry function.
• Returns the decimal exponent range for values of the same type and kind as X.
• X must be Integer, Real, or Complex.

RRSPACING(X)
• Elemental function of the same type and kind as X.
• Returns the reciprocal of the relative spacing of the numbers near X. (The result

has the value x b be p× ×− , where b, e, and p are defined as in Equation B-3.)

Fortran 90/95 Intrinsic Procedure Descriptions, a supplement to
Introduction to Fortran 90/95, by Stephen J. Chapman

17

• X must be Real.

SCALE(X,I)
• Elemental function of the same type and kind as X.
• Returns the value x b× I , where b is the base of the model used to represent X.

The base b can be found with the RADIX(X) function; it is almost always 2.
• X must be Real, and I must be Integer.

SELECTED_INT_KIND(R)
• Integer transformational function.
• Returns the kind number for the smallest integer kind which can represent all

integers n whose values satisfy the condition ABS(n) < 10**R. If more than one
kind satisfies this constraint, then the kind returned will be the one with the
smallest decimal range. If no kind satisfies the requirement, the value -1 is
returned.

• R must be Integer.

SELECTED_REAL_KIND(P,R)
• Integer transformational function.
• Returns the kind number for the smallest real kind which has a decimal precision

of at least P digits and an exponent range of at least R powers of 10. If more than
one kind satisfies this constraint, then the kind returned will be the one with the
smallest decimal precision.

• If no real kind satisfies the requirement, a -1 is returned if the requested precision
was not available, a -2 is returned if the requested range was not available, and a
-3 is returned if neither was available.

• P and R must be Integers.

SET_EXPONENT(X,I)
• Elemental function of the same type as X.
• Returns the number whose fractional part is the fractional part of the number X,

and whose exponent part is I. If X = 0, then the result is 0.
• X is Real, and I is Integer.

SPACING(X)
• Elemental function of the same type and kind as X.
• Returns the absolute spacing of the numbers near X in the model used to

represent real numbers. If the absolute spacing is out of range, then this function
returns the same value as TINY(X). (This function returns the value be p− , where
b, e, and p are as defined in Equation B-3, as long as that value is in range.)

• X must be Real.
• The result of this function is useful for establishing convergence criteria in a

processor-independent manner. For example, we might conclude that a root-
solving algorithm has converged when the answer gets within 10 times the
minimum representable spacing.

Fortran 90/95 Intrinsic Procedure Descriptions, a supplement to
Introduction to Fortran 90/95, by Stephen J. Chapman

18

TINY(X)
• Elemental function of the same type and kind as X.
• Returns the smallest positive number of the same type and kind as X. (The

returned value is bemin − 1 , where b and emin are as defined in Equation B-3.)
• X must be Real.

B.5. Date and Time Intrinsic Subroutines

CPU_TIME(TIME)
• Intrinsic subroutine
• Returns processor time expended on current program in seconds.
• Arguments:

Keyword Type Intent Description
TIME Real OUT Processor time.

• The purpose of this subroutine is to time sections of code by comparing the
processor time before and after the code is executed.

• The definition of the time returned by this subroutine is processor dependent. On
most processors, it is the CPU time spent executing the current program.

• On computers with multiple CPUs, TIME may be implemented as an array
containing the times associated with each processor.

• Fortran 95 only.

DATE_AND_TIME(DATE,TIME,ZONE,VALUE)
• Intrinsic subroutine
• Returns date and time.
• All arguments are optional, but at least one must be included:

Keyword Type Intent Description
DATE Character(8) OUT Returns a string in the form

CCYYMMDD, where CC is
century, YY is year, MM is
month, and DD is day.

TIME Character(10) OUT Returns a string in the form
HHMMSS.SSS, where HH is
hour, MM is minute, SS is
second, and SSS is millisecond.

ZONE Character(5) OUT Returns a string in the form
±HHMM, where HHMM is the
time difference between local
time and Coordinated Universal
Time (UCT, or GMT).

VALUES Integer(8) OUT See table below for values.
• If a value is not available for DATE, TIME, or ZONE, then the string blanked.
• The information returned in array VALUES is:

Fortran 90/95 Intrinsic Procedure Descriptions, a supplement to
Introduction to Fortran 90/95, by Stephen J. Chapman

19

VALUES(1) Century and year (for example, 1996)
VALUES(2) Month (1-12)
VALUES(3) Day (1-31)
VALUES(4) Time zone difference from UTC in minutes.
VALUES(5) Hour (0-23)
VALUES(6) Minutes (0-59)
VALUES(7) Seconds (0-60)
VALUES(8) Milliseconds (0-999)

• If no information is available for one of the elements of array VALUES, that
element is set to the most negative representable integer (-HUGE(0)).

• Note that the seconds field ranges from 0 to 60. The extra second is included to
allow for leap-seconds.

SYSTEM_CLOCK(COUNT,COUNT_RATE,COUNT_MAX)
• Intrinsic subroutine.
• Returns raw counts from the processor’s real-time clock. The value in COUNT is

increased by one for each clock count until COUNT_MAX is reached. When
COUNT_MAX is reached, the value in COUNT is reset to 0 on the next clock count.
Variable COUNT_RATE specifies the number of real-time clock counts per second,
so it tells how to interpret the count information.

• Arguments:
Keyword Type Intent Description
COUNT Integer OUT Number of counts of the

system clock. The starting
count is arbitrary.

COUNT_RATE Integer OUT Number of clock counts per
second.

COUNT_MAX Integer OUT The maximum value for
COUNT.

• If there is no clock, COUNT and COUNT_RATE are set to -HUGE(0) and COUNT_MAX
is set to 0.

B.6. Bit Intrinsic Procedures

The layout of bits within an integer varies from processor to processor. For example,
some processors place the most significant bit of a value at the bottom of the memory
representing that value, while other processors place the least significant bit of a value at the
top of the memory representing that value. To insulate programmers from these machine
dependencies, Fortran defines a bit to be a binary digit w located at position k of a non-
negative integer based on a model non-negative integer defined by

j w k
k

k

z

= ×
=

−

∑ 2
0

1

 (B-5)

where w k can be either 0 or 1. Thus bit 0 is the coefficient of 20 , bit 1 is the coefficient of

21 , etc. In this model, z is the number of bits in the integer, and the bits are numbered 0, 1, ...,

Fortran 90/95 Intrinsic Procedure Descriptions, a supplement to
Introduction to Fortran 90/95, by Stephen J. Chapman

20

z-1, regardless of the physical layout of the integer. The least significant bit is considered to
be at the right of the model and the most significant bit is considered to be at the left of the
model, regardless of the actual physical implementation. Thus, shifting a bit left increases its
value, and shifting a bit right decreases its value.

Fortran 90/95 includes 10 elemental functions and 1 elemental subroutine that
manipulate bits according to this model. Logical operations on bits are performed by the
elemental functions IOR, IAND, NOT, and IEOR. Shift operations are performed by the
elemental functions ISHFT and ISHFTC. Bit sub-fields may be referenced by the elemental
function IBITS and the elemental subroutine MVBITS. Finally, single-bit processing is
performed by the elemental functions BTEST, IBSET, and IBCLR.

BTEST(I,POS)
• Logical elemental function
• Returns true if bit POS of I is 1, and false otherwise.
• I and POS must be Integers, with 0 ≤ POS < BIT_SIZE(I)

IAND(I,J)
• Elemental function of the same type and kind as I
• Returns the bit by bit logical AND of I and J.
• I and J must be Integers of the same kind

IBCLR(I,POS)
• Elemental function of the same type and kind as I
• Returns I with bit POS set to 0.
• I and POS must be Integers, with 0 ≤ POS < BIT_SIZE(I)

IBITS(I,POS,LEN)
• Elemental function of the same type and kind as I
• Returns a right-adjusted sequence of bits extracted from I of length LEN starting

at bit POS. All other bits are zero.
• I , POS, and LEN must be Integers, with POS + LEN < BIT_SIZE(I)

IBSET(I,POS)
• Elemental function of the same type and kind as I
• Returns I with bit POS set to 1.
• I and POS must be Integers, with 0 ≤ POS < BIT_SIZE(I)

IEOR(I,J)
• Elemental function of the same type and kind as I
• Returns the bit by bit exclusive OR of I and J.
• I and J must be Integers of the same kind

IOR(I,J)
• Elemental function of the same type and kind as I
• Returns the bit by bit inclusive OR of I and J.

Fortran 90/95 Intrinsic Procedure Descriptions, a supplement to
Introduction to Fortran 90/95, by Stephen J. Chapman

21

• I and J must be Integers of the same kind

ISHFT(I,SHIFT)
• Elemental function of the same type and kind as I
• Returns I logically shifted to the left (if SHIFT is positive) or right (if SHIFT is

negative). The empty bits are filled with zeros.
• I must be an Integer
• SHIFT must be an Integer, with ABS(SHIFT) <= BIT_SIZE(I)
• A shift to the left implies moving the bit in position i to position i+1, and a shift

to the right implies moving the bit in position i to position i-1.

ISHFTC(I,SHIFT,SIZE)
• Elemental function of the same type and kind as I
• Returns the value obtained by shifting the SIZE rightmost bits of I circularly by

SHIFT bits. If SHIFT is positive, the bits are shifted left, and if SHIFT is negative,
the bits are shifted right. If the optional argument SIZE is missing, all
BIT_SIZE(I) bits of I are shifted.

• I must be an Integer
• SHIFT must be an Integer, with ABS(SHIFT) <= SIZE
• SIZE must be a positive integer, with 0 < SIZE <= BIT_SIZE(I)

MVBITS(FROM,FROMPOS,LEN,TO,TOPOS)
• Elemental subroutine
• Copies a sequence of bits from integer FROM to integer TO. The subroutine

copies a sequence of LEN bits starting at FROMPOS in integer FROM, and stores
them starting at TOPOS in integer TO. All other bits in integer TO are undisturbed.

• Note that FROM and TO can be the same integer.
• Arguments:

Keyword Type Intent Description
FROM Integer IN The object from which the bits

are to be moved.
FROMPOS Integer IN Starting bit to move; must be ≥ 0
LEN Integer IN Number of bits to move;

FROMPOS+LEN must be ≤
BIT_SIZE(FROM)

TO Integer, same
kind as FROM

INOUT Destination object.

TOPOS Integer IN Starting bit in destination;
0 ≤ TOPOS+LEN ≤ BIT_SIZE(TO)

NOT(I)
• Elemental function of the same type and kind as I
• Returns the logical complement of the bits in I.
• I must be Integer

Fortran 90/95 Intrinsic Procedure Descriptions, a supplement to
Introduction to Fortran 90/95, by Stephen J. Chapman

22

B.7. Character Intrinsic Functions

These functions produce, manipulate, or provide information about character strings.

ACHAR(I)
• Character(1) elemental function
• Returns the character in position I of the ASCII collating sequence.
• If 0 ≤ I ≤ 127, the result is the character in position I of the ASCII collating

sequence. If I ≥ 128, the results are processor-dependent.
• I must be Integer
• IACHAR is the inverse function of ACHAR

ADJUSTL(STRING)
• Character elemental function
• Returns a character value of the same length as STRING, with the non-blank

contents left justified. That is, the leading blanks of STRING are removed and the
same number of trailing blanks are added at the end.

• STRING must be Character

ADJUSTR(STRING)
• Character elemental function
• Returns a character value of the same length as STRING, with the non-blank

contents right justified. That is, the trailing blanks of STRING are removed and
the same number of leading blanks are added at the beginning.

• STRING must be Character

CHAR(I,KIND)
• Character(1) elemental function
• Returns the character in position I of the processor collating sequence associated

with the specified kind.
• I must be an Integer in the range 0 ≤ I ≤ n-1, where n is the number of

characters in the processor-dependent collating sequence.
• KIND must be an Integer whose value is a legal kind of character for the particular

computer; if it is absent, the default kind of character is assumed.
• ICHAR is the inverse function of CHAR

IACHAR(C)
• Integer elemental function
• Returns the position of a character in the ASCII collating sequence. A

processor-dependent value is returned if C is not in the collating sequence.
• C must be Character(1)
• ACHAR is the inverse function of IACHAR

ICHAR(C)
• Integer elemental function

Fortran 90/95 Intrinsic Procedure Descriptions, a supplement to
Introduction to Fortran 90/95, by Stephen J. Chapman

23

• Returns the position of a character in the processor collating sequence associated
with the kind of the character.

• C must be Character(1)
• The result is in the range 0 ≤ ICHAR(C) ≤ n-1, where n is the number of

characters in the processor-dependent collating sequence.
• CHAR is the inverse function of ICHAR

INDEX(STRING,SUBSTRING,BACK)
• Integer elemental function
• Returns the starting position of a substring within a string.
• STRING and SUBSTRING must be Character values of the same kind, and BACK

must be Logical.
• If the substring is longer than the string, the result is 0. If the length of the

substring is 0, then the result is 1. Otherwise, if BACK is missing or false, the
function returns the starting position of the first occurrence of the substring
within the string, searching from left to right through the string. If BACK is true,
the function returns the starting position of the last occurrence of the substring
within the string.

LEN(STRING)
• Integer inquiry function
• Returns the length of STRING in characters.
• STRING must be Character

LEN_TRIM(STRING)
• Integer inquiry function
• Returns the length of STRING in characters, less any trailing blanks. If STRING is

completely blank, then the result is 0.
• STRING must be Character

LGE(STRING_A,STRING_B)
• Logical elemental function
• Returns true if STRING_A ≥ STRING_B in the ASCII collating sequence.
• STRING_A and STRING_B must be of type default Character
• The comparison process is similar to that used by the >= relational operator,

except that the comparison always uses the ASCII collating sequence.

LGT(STRING_A,STRING_B)
• Logical elemental function
• Returns true if STRING_A > STRING_B in the ASCII collating sequence.
• STRING_A and STRING_B must be of type default Character
• The comparison process is similar to that used by the > relational operator,

except that the comparison always uses the ASCII collating sequence.

Fortran 90/95 Intrinsic Procedure Descriptions, a supplement to
Introduction to Fortran 90/95, by Stephen J. Chapman

24

LLE(STRING_A,STRING_B)
• Logical elemental function
• Returns true if STRING_A ≤ STRING_B in the ASCII collating sequence.
• STRING_A and STRING_B must be of type default Character
• The comparison process is similar to that used by the <= relational operator,

except that the comparison always uses the ASCII collating sequence.

LLT(STRING_A,STRING_B)
• Logical elemental function
• Returns true if STRING_A < STRING_B in the ASCII collating sequence.
• STRING_A and STRING_B must be of type default Character
• The comparison process is similar to that used by the < relational operator,

except that the comparison always uses the ASCII collating sequence.

REPEAT(STRING,NCOPIES)
• Character transformational function.
• Returns a character string formed by concatenating NCOPIES copies of STRING

one after another. If STRING is zero length or if NCOPIES is 0, the function
returns a zero length string.

• STRING must be of type Character; NCOPIES must be a non-negative Integer.

SCAN(STRING,SET,BACK)
• Integer elemental function.
• Scans STRING for the first occurrence of any one of the characters in SET, and

returns the position of that occurrence. If no character of STRING is in set, or if
either STRING or SET is zero length, the function returns a zero.

• STRING and SET must be of type Character and the same kind, and BACK must be
of type Logical.

• If BACK is missing or false, the function returns the position of the first
occurrence (searching left to right) of any of the characters contained in SET. If
BACK is true, the function returns the position of the last occurrence (searching
right to left) of any of the characters contained in SET.

TRIM(STRING)
• Character transformational function.
• Returns STRING with trailing blanks removed. If STRING is completely blank,

then a zero length string is returned.
• STRING must be of type Character.

VERIFY(STRING,SET,BACK)
• Integer elemental function.
• Scans STRING for the first occurrence of any one of the characters not in SET, and

returns the position of that occurrence. If all characters of STRING are in SET, or
if either STRING or SET is zero length, the function returns a zero.

Fortran 90/95 Intrinsic Procedure Descriptions, a supplement to
Introduction to Fortran 90/95, by Stephen J. Chapman

25

• STRING and SET must be of type Character and the same kind, and BACK must be
of type Logical.

• If BACK is missing or false, the function returns the position of the first
occurrence (searching left to right) of any of the characters not contained in SET.
If BACK is true, the function returns the position of the last occurrence (searching
right to left) of any of the characters not in SET.

B.8. Array and Pointer Intrinsic Functions

This section describes the 24 standard array and pointer intrinsic functions. Because
certain arguments appear in many of these functions, they will be described in detail before we
examine the functions themselves.

1. The rank of an array is defined as the number of dimensions in the array. It is
abbreviated as r throughout this section.

2. A scalar is defined to be an array of rank 0.
3. The optional argument MASK is used by some functions to select the elements of

another argument to operate on. When present, MASK must be a logical array of
the same size and shape as the target array; if an element of MASK is true, then the
corresponding element of the target array will be operated on.

4. The optional argument DIM is used by some functions to determine the dimension
of an array along which to operate. When supplied, DIM must be a number in the
range 1 ≤ DIM ≤ r.

5. In the functions ALL, ANY, LBOUND, MAXVAL, MINVAL, PRODUCT, SUM, and UBOUND,
the optional argument DIM affects the type of argument returned by the function.
If the argument is absent, then the function returns a scalar result. If the
argument is present, then the function returns a vector result. Because the
presence or absence of DIM affects the type of value returned by the function, the
compiler must be able to determine whether or not the argument is present when
the program is compiled. Therefore, the actual argument corresponding to DIM
must not be a optional dummy argument in the calling program unit. If it were,
the compiler would be unable to determine whether or not DIM is present at
compilation time. This restriction does not apply to functions CSHIFT, EOSHIFT,
SIZE, and SPREAD, since the argument DIM does not affect the type of value
returned from these functions.

To illustrate the use of MASK and DIM, let’s apply the function MAXVAL to a 2 × 3 real
array array1 (r = 2) and two masking arrays mask1 and mask2 defined as follows:

array1 =






1 2 3
4 5 6
. . .
. . .

mask1 =






.TRUE. .TRUE. .TRUE.

.TRUE. .TRUE. .TRUE.

Fortran 90/95 Intrinsic Procedure Descriptions, a supplement to
Introduction to Fortran 90/95, by Stephen J. Chapman

26

mask2 =






.TRUE. .TRUE. .FALSE.

.TRUE. .TRUE. .FALSE.

The function MAXVAL returns the maximum value(s) along the dimension DIM of an
array corresponding to the true elements of MASK. It has the calling sequence

result = MAXVAL(ARRAY,DIM,MASK)

If DIM is not present, the function returns a scalar equal to the largest value in the array for
which MASK is true. Therefore, the function

result = MAXVAL(array1,MASK=mask1)

will produce a value of 6, while the function

result = MAXVAL(array1,MASK=mask2)

will produce a value of 5. If DIM is present, then the function will return an array of rank r-1
containing the maximum values along dimension DIM for which MASK is true. That is, the
function will hold the subscript in the specified dimension constant while searching along all
other dimensions to find the masked maximum value in that sub-array, and then repeat the
process for every other possible value of the specified dimension. Since there are three
elements in each row of the array, the function

result = MAXVAL(array1,DIM=1,MASK=mask1)

will search along the columns of the array at each row position, and will produce the vector
[4. 5. 6.], where 4. was the maximum value in column 1, 5. was the maximum value in
column 2, and 6. was the maximum value in column 3. Similarly, there are two elements in
each column of the array, so the function

result = MAXVAL(array1,DIM=2,MASK=mask1)

will search along the rows of the array at each column position, and will produce the vector
[3. 6.], where 3. was the maximum value in row 1, and 6. was the maximum value in row 2.

ALL(MASK,DIM)
• Logical transformational function
• Returns true if all MASK values are true along dimension DIM, or if MASK has zero

size. Otherwise, it returns false.
• MASK is a Logical array.
 DIM is an integer in the range 1 ≤ DIM ≤ r. The corresponding actual argument

must not be an optional argument in the calling procedure.
• The result is a scalar if DIM is absent. It is an array of rank r-1 and shape

(d(1),d(2),…,d(DIM-1),d(DIM+1),…,d(r)) where the shape of MASK is
(d(1),d(2),…,d(r)). In other words, the shape of the returned vector is the
same as the shape of the original mask with dimension DIM deleted.

Fortran 90/95 Intrinsic Procedure Descriptions, a supplement to
Introduction to Fortran 90/95, by Stephen J. Chapman

27

ANY(MASK,DIM)
• Logical transformational function
• Returns true if any MASK value is true along dimension DIM. Otherwise, it returns

false. If MASK has zero size, it returns false.
• MASK is a Logical array.
 DIM is an integer in the range 1 ≤ DIM ≤ r. The corresponding actual argument

must not be an optional argument in the calling procedure.
• The result is a scalar if DIM is absent. It is an array of rank r-1 and shape

(d(1),d(2),…,d(DIM-1),d(DIM+1),…,d(r)) where the shape of MASK is
(d(1),d(2),…,d(r)). In other words, the shape of the returned vector is the
same as the shape of the original mask with dimension DIM deleted.

COUNT(MASK,DIM)
• Logical transformational function
• Returns the number of true elements of MASK along dimension DIM, and returns 0

if MASK has zero size.
• MASK is a Logical array.
 DIM is an integer in the range 1 ≤ DIM ≤ r. The corresponding actual argument

must not be an optional argument in the calling procedure.
• The result is a scalar if DIM is absent. It is an array of rank r-1 and shape

(d(1),d(2),…,d(DIM-1),d(DIM+1),…,d(r)) where the shape of MASK is
(d(1),d(2),…,d(r)). In other words, the shape of the returned vector is the
same as the shape of the original mask with dimension DIM deleted.

CSHIFT(ARRAY,SHIFT,DIM)
• Transformational function of the same type as ARRAY.
• Performs a circular shift on an array expression of rank-1, or performs circular

shifts on all the complete rank-1 sections along a given dimension of an array
expression of rank-2 or greater. Elements shifted out at one end of a section are
shifted in at the other end. Different sections may be shifted by different amounts
and in different directions.

• ARRAY may be an array of any type and rank, but not a scalar.
 SHIFT is a scalar if ARRAY is rank 1. Otherwise, it is an array of rank r-1 and of

shape (d(1),d(2),…,d(DIM-1),d(DIM+1),…,d(r)) where the shape of ARRAY
is (d(1),d(2),…,d(r)).

 DIM is an optional integer in the range 1 ≤ DIM ≤ r. If DIM is missing, the function
behaves as though DIM were present and equal to 1.

EOSHIFT(ARRAY,SHIFT,DIM)
• Transformational function of the same type as ARRAY.
• Performs an end-off shift on an array expression of rank-1, or performs end-off

shifts on all the complete rank-one sections along a given dimension of an array
expression of rank-2 or greater. Elements are shifted off at one end of a section
and copies of a boundary value are shifted in at the other end. Different sections

Fortran 90/95 Intrinsic Procedure Descriptions, a supplement to
Introduction to Fortran 90/95, by Stephen J. Chapman

28

may have different boundary values and may be shifted by different amounts and
in different directions.

• ARRAY may be an array of any type and rank, but not a scalar.
 SHIFT is a scalar if ARRAY is rank 1. Otherwise, it is an array of rank r-1 and of

shape (d(1),d(2),…,d(DIM-1),d(DIM+1),…,d(r)) where the shape of ARRAY
is (d(1),d(2),…,d(r)).

 DIM is an optional integer in the range 1 ≤ DIM ≤ r. If DIM is missing, the function
behaves as though DIM were present and equal to 1.

LBOUND(ARRAY,DIM)
• Integer inquiry function.
• Returns all of the lower bounds or a specified lower bound of ARRAY.
• ARRAY is an array of any type. It must not be an unassociated pointer or an

unallocated allocatable array.
 DIM is an integer in the range 1 ≤ DIM ≤ r. The corresponding actual argument

must not be an optional argument in the calling procedure.
• If DIM is present, the result is a scalar. If the actual argument corresponding to

ARRAY is an array section or an array expression, or if dimension DIM has zero
size, then the function will return 1. Otherwise, it will return the lower bound of
that dimension of ARRAY. If DIM is not present, then the function will return an
array whose ith element is LBOUND(ARRAY,i) for i=1,2,… ,r.

MAXLOC(ARRAY,DIM,MASK)
• Integer transformational function, returning a rank-1 array of size r.
• Returns the location of the maximum value of the elements in ARRAY along

dimension DIM (if present) corresponding to the true elements of MASK (if
present). If more than one element has the same maximum value, the location of
the first one found is returned.

• ARRAY is an array of type Integer or Real.
 DIM is an integer in the range 1 ≤ DIM ≤ r. The corresponding actual argument

must not be an optional argument in the calling procedure.
 MASK is a logical scalar or a logical array conformable with ARRAY.
• If DIM is not present and MASK is not present, the result is a rank-1 array

containing the subscripts of the first element found in ARRAY having the maximum
value. If DIM is not present and MASK is present, the search is restricted to those
elements for which MASK is true. If DIM is present, the result is an array of rank r-
1 and of shape (d(1),d(2),…,d(DIM-1), d(DIM+1),…,d(r)) where the shape
of ARRAY is (d(1),d(2),…,d(r)). This array contains the subscripts of the
largest values found along dimension DIM.

• The optional argument DIM is only present in Fortran 95.
• For example, if

 ARRAY =
−





1 3 9
2 2 6

 and MASK
TRUE FALSE FALSE
TRUE TRUE FALSE

= 





Fortran 90/95 Intrinsic Procedure Descriptions, a supplement to
Introduction to Fortran 90/95, by Stephen J. Chapman

29

 then the result of the function MAXLOC(ARRAY) is (/2,3/). The result of
MAXLOC(ARRAY,MASK) is (/2,1/). The result of MAXLOC(ARRAY,DIM=1) is
(/2,1,2/), and the result of MAXLOC(ARRAY,DIM=2) is (/2,3/).

MAXVAL(ARRAY,DIM,MASK)
• Transformational function of the same type as ARRAY.
• Returns the maximum value of the elements in ARRAY along dimension DIM (if

present) corresponding to the true elements of MASK (if present). If ARRAY has
zero size, or if all the elements of MASK are false, then the result is the largest
possible negative number of the same type and kind as ARRAY.

• ARRAY is an array of type Integer or Real.
 DIM is an integer in the range 1 ≤ DIM ≤ r. The corresponding actual argument

must not be an optional argument in the calling procedure.
 MASK is a logical scalar or a logical array conformable with ARRAY.
• If DIM is not present, the result is a scalar containing the maximum value found in

the elements of ARRAY corresponding to true elements of MASK. If MASK is absent,
the search is over all of the elements in ARRAY. If DIM is present, the result is an
array of rank r-1 and of shape (d(1),d(2),…,d(DIM-1), d(DIM+1),…,d(r))
where the shape of ARRAY is (d(1),d(2),…,d(r)).

• For example, if

 ARRAY =
−





1 3 9
2 2 6

 and MASK
TRUE FALSE FALSE
TRUE TRUE FALSE

= 





 then the result of the function MAXVAL(ARRAY) is 6. The result of
MAXVAL(ARRAY,MASK) is 2. The result of MAXVAL(ARRAY,DIM=1) is (/2,3,6/),
and the result of MAXLOC(ARRAY,DIM=2) is (/3,6/).

MERGE(TSOURCE,FSOURCE,MASK)
• Elemental function of the same type as TSOURCE.
• Selects one of two alternative values according to MASK. If a given element of

MASK is true, then the corresponding element of the result comes from array
TSOURCE. If a given element of MASK is false, then the corresponding element of
the result comes from array FSOURCE. MASK may also be a scalar, in which case
either all of TSOURCE or all of FSOURCE is selected.

• TSOURCE is any type of array; FSOURCE is the same type and kind as TSOURCE.
 MASK is a logical scalar, or a logical array conformable with TSOURCE.

MINLOC(ARRAY,DIM,MASK)
• Integer transformational function, returning a rank-1 array of size r.
• Returns the location of the minimum value of the elements in ARRAY along

dimension DIM (if present) corresponding to the true elements of MASK (if
present). If more than one element has the same minimum value, the location of
the first one found is returned.

• ARRAY is an array of type Integer or Real.

Fortran 90/95 Intrinsic Procedure Descriptions, a supplement to
Introduction to Fortran 90/95, by Stephen J. Chapman

30

 DIM is an integer in the range 1 ≤ DIM ≤ r. The corresponding actual argument
must not be an optional argument in the calling procedure.

 MASK is a logical scalar, or a logical array conformable with ARRAY.
• If DIM is not present and MASK is not present, the result is a rank-1 array

containing the subscripts of the first element found in ARRAY having the minimum
value. If DIM is not present and MASK is present, the search is restricted to those
elements for which MASK is true. If DIM is present, the result is an array of rank r-
1 and of shape (d(1),d(2),…,d(DIM-1), d(DIM+1),…,d(r)) where the shape
of ARRAY is (d(1),d(2),…,d(r)). This array contains the subscripts of the
smallest values found along dimension DIM.

• The optional argument DIM is only present in Fortran 95.
• For example, if

 ARRAY =
−





1 3 9
2 2 6

 and MASK
TRUE FALSE FALSE
TRUE TRUE FALSE

= 





 then the result of the function MINLOC(ARRAY) is (/1,3/). The result of
MINLOC(ARRAY,MASK) is (/1,1/). The result of MINLOC(ARRAY,DIM=1) is
(/1,2,1/), and the result of MINLOC(ARRAY,DIM=2) is (/3,1/).

MINVAL(ARRAY,DIM,MASK)
• Transformational function of the same type as ARRAY.
• Returns the minimum value of the elements in ARRAY along dimension DIM (if

present) corresponding to the true elements of MASK (if present). If ARRAY has
zero size, or if all the elements of MASK are false, then the result is the largest
possible positive number of the same type and kind as ARRAY.

• ARRAY is an array of type Integer or Real.
 DIM is an integer in the range 1 ≤ DIM ≤ r. The corresponding actual argument

must not be an optional argument in the calling procedure.
 MASK is a logical scalar, or a logical array conformable with ARRAY.
• If DIM is not present, the result is a scalar containing the minimum value found in

the elements of ARRAY corresponding to true elements of MASK. If MASK is absent,
the search is over all of the elements in ARRAY. If DIM is present, the result is an
array of rank r-1 and of shape (d(1),d(2),…,d(DIM-1), d(DIM+1),…,d(r))
where the shape of ARRAY is (d(1),d(2),…,d(r)).

• For example, if

 ARRAY =
−





1 3 9
2 2 6

 and MASK
TRUE FALSE FALSE
TRUE TRUE FALSE

= 





 then the result of the function MINVAL(ARRAY) is -9. The result of
MINVAL(ARRAY,MASK) is 1. The result of MINVAL(ARRAY,DIM=1) is
(/1,2,-9/), and the result of MINLOC(ARRAY,DIM=2) is (/-9,2/).

Fortran 90/95 Intrinsic Procedure Descriptions, a supplement to
Introduction to Fortran 90/95, by Stephen J. Chapman

31

NULL(MOLD)
• Transformational function.
• Returns a disassociated pointer of the same type as MOLD, if present. If MOLD is

not present, the pointer type is determined by context. (For example, if NULL()
is being used to initialize an Integer pointer, the returned value will be a
disassociated Integer pointer.)

• MOLD is a pointer of any type. Its pointer association status may be undefined,
disassociated, or associated.

• This function is useful for initializing the status of a pointer at the time it is
declared. It is only available in Fortran 95.

PACK(ARRAY,MASK,VECTOR)
• Transformational function of the same type as ARRAY.
• Packs an array into an array of rank-1 under the control of a mask.
• ARRAY is an array of any type.
 MASK is a logical scalar, or a logical array conformable with ARRAY.
 VECTOR is a rank-1 array of the same type as ARRAY. It must have at least as

many elements as there are true values in the mask. If MASK is a true scalar with
the value true, then it must have at least as many elements as there are in ARRAY.

• This function packs the elements of ARRAY into an array of rank-1 under the
control of MASK. An element of ARRAY will be packed into the output vector if
the corresponding element of MASK is true. If MASK is a true scalar value, then the
entire input array will be packed into the output array. The packing is done in
column order.

• If argument VECTOR is present, then the length of the function output will be the
length of VECTOR. This length must be greater than or equal to the number of
elements to be packed.

• For example, if

 ARRAY =
−
−







1 3
4 2

 and MASK
False True
True True

= 





 then the result of the function PACK(ARRAY,MASK) will be [4 -3 -2].

PRODUCT(ARRAY,DIM,MASK)
• Transformational function of the same type as ARRAY.
• Returns the product of the elements in ARRAY along dimension DIM (if present)

corresponding to the true elements of MASK (if present). If ARRAY has zero size,
or if all the elements of MASK are false, then the result has the value one.

• ARRAY is an array of type Integer, Real, or Complex.
 DIM is an integer in the range 1 ≤ DIM ≤ r. The corresponding actual argument

must not be an optional argument in the calling procedure.
 MASK is a logical scalar or a logical array conformable with ARRAY.
• If DIM is not present or if ARRAY has rank-1, the result is a scalar containing the

product of all the elements of ARRAY corresponding to true elements of MASK. If

Fortran 90/95 Intrinsic Procedure Descriptions, a supplement to
Introduction to Fortran 90/95, by Stephen J. Chapman

32

MASK is also absent, the result is the product of all of the elements in ARRAY. If
DIM is present, the result is an array of rank r-1 and of shape
(d(1),d(2),…,d(DIM-1),d(DIM+1),…,d(r)) where the shape of ARRAY is
(d(1),d(2),…,d(r)).

RESHAPE(SOURCE,SHAPE,PAD,ORDER)
• Transformational function of the same type as SOURCE.
• Constructs an array of a specified shape from the elements of another array.
• SOURCE is an array of any type.
 SHAPE is a one to seven element Integer array containing the desired extent of

each dimension of the output array.
 PAD is a rank-1 array of the same type as SOURCE. It contains elements to be used

as a pad on the end if the output array if there are not enough elements in
SOURCE.

 ORDER is an Integer array of the same shape as SHAPE. It specifies the order in
which dimensions are to be filled with elements from SOURCE.

• The result of this function is an array of shape SHAPE constructed from the
elements of SOURCE. If SOURCE does not contain enough elements, the elements
of PAD are used repeatedly to fill out the remainder of the output array. ORDER
specifies the order in which the dimensions of the output array will be filled; by
default they fill in the order (1, 2, ..., n) where n is the size of SHAPE.

• For example, if []SOURCE = 1 2 3 4 5 6 , []SHAPE = 2 5 , and

[]PAD = 0 0 , then

 RESHAPE(SOURCE,SHAPE,PAD)= 





1 3 5 0 0
2 4 6 0 0

 and

 RESHAPE(SOURCE,SHAPE,PAD,(/2,1/))= 





1 2 3 4 5
6 0 0 0 0

SHAPE(SOURCE)
• Integer inquiry function.
• Returns the shape of SOURCE as a rank-1 array whose size is r and whose

elements are the extents of the corresponding dimensions of SOURCE. If SOURCE
is a scalar, a rank-1 array of size zero is returned.

• SOURCE is an array or scalar of any type. It must not be an unassociated pointer
or an unallocated allocatable array.

SIZE(ARRAY,DIM)
• Integer inquiry function.
• Returns either the extent of ARRAY along a particular dimension if DIM is present;

otherwise, it returns the total number of elements in the array.
• ARRAY is an array of any type. It must not be an unassociated pointer or an

unallocated allocatable array.

Fortran 90/95 Intrinsic Procedure Descriptions, a supplement to
Introduction to Fortran 90/95, by Stephen J. Chapman

33

 DIM is an integer in the range 1 ≤ DIM ≤ r. If ARRAY is an assumed size array, DIM
must be present, and must have a value less than r.

SPREAD(SOURCE,DIM,NCOPIES)
• Transformational function of the same type as SOURCE.
• Constructs an array of rank r+1 by copying SOURCE along a specified dimension

(as in forming a book from copies of a single page).
• SOURCE is an array or scalar of any type. The rank of SOURCE must be less than 7.
 DIM is an Integer specifying the dimension over which to copy SOURCE. It must

satisfy the condition 1 ≤ DIM ≤ r+1.
 NCOPIES is the number of copies of SOURCE to make along dimension DIM. If

NCOPIES is less than or equal to zero, a zero-sized array is produced.
• If SOURCE is a scalar, each element in the result has a value equal to SOURCE. If

source is an array, the element in the result with subscripts (s1, s2,...,sn+1) has the
value SOURCE(s1, s2,...,sDIM-1, sDIM+1,...,sn+1).

• For example, if []SOURCE 1 3 5= , then the result of function

SPREAD(SOURCE,DIM=1,NCOPIES=3) is the array
1 3 5
1 3 5
1 3 5

















.

SUM(ARRAY,DIM,MASK)
• Transformational function of the same type as ARRAY.
• Returns the sum of the elements in ARRAY along dimension DIM (if present)

corresponding to the true elements of MASK (if present). If ARRAY has zero size,
or if all the elements of MASK are false, then the result has the value zero.

• ARRAY is an array of type Integer, Real, or Complex.
 DIM is an integer in the range 1 ≤ DIM ≤ r. The corresponding actual argument

must not be an optional argument in the calling procedure.
 MASK is a logical scalar or a logical array conformable with ARRAY.
• If DIM is not present or if ARRAY has rank-1, the result is a scalar containing the

sum of all the elements of ARRAY corresponding to true elements of MASK. If
MASK is also absent, the result is the sum of all of the elements in ARRAY. If DIM is
present, the result is an array of rank r-1 and of shape
(d(1),d(2),…,d(DIM-1),d(DIM+1),…,d(r)) where the shape of ARRAY is
(d(1),d(2),…,d(r)).

TRANSFER(SOURCE,MOLD,SIZE)
• Transformational function of the same type as MOLD.
• Returns either a scalar or a rank-one array with a physical representation identical

to that of SOURCE, but interpreted with the type and kind of MOLD. Effectively,
this function takes the bit patterns in SOURCE and interprets them as though they
were of the type and kind of MOLD.

• SOURCE is an array or scalar of any type.

Fortran 90/95 Intrinsic Procedure Descriptions, a supplement to
Introduction to Fortran 90/95, by Stephen J. Chapman

34

 MOLD is an array or scalar of any type.
 SIZE is an scalar integer value. The corresponding actual argument must not be

an optional argument in the calling procedure.
• If MOLD is a scalar and SIZE is absent, the result is a scalar. If MOLD is an array

and SIZE is absent, the result has the smallest possible size which makes use of all
of the bits in SOURCE. If SIZE is present, the result is a rank-1 array of length
SIZE. If the number of bits in the result and in SOURCE are not the same, then bits
will be truncated or extra bits will be added in an undefined, processor-dependent
manner.

• Example 1: TRANSFER(4.0,0) has the integer value 1082130432 on a PC using
IEEE Standard floating point numbers, because the bit representations of a
floating point 4.0 and an integer 1082130432 are identical. The transfer function
has caused the bit associated with the floating point 4.0 to be reinterpreted as an
integer.

• Example 2: In the function TRANSFER((/1.1,2.2,3.3/),(/(0.,0.)/)), the
SOURCE is three real values long. The MOLD is a rank-1 array containing a
complex number, which is two real values long. Therefore, the output will be a
Complex rank-1 array. In order to use all of the bits in SOURCE, the result of the
function is a Complex rank-1 array with two elements. The first element in the
output array is (1.1,2.2), and the second element has a real part of 3.3 together
with an unknown imaginary part.

• Example 3: In the function TRANSFER((/1.1,2.2,3.3/),(/(0.,0.)/),1), the
SOURCE is three real values long. The MOLD is a rank-1 array containing a
complex number, which is two real values long. Therefore, the output will be a
Complex rank-1 array. Since the SIZE is specified to be 1, only one complex
value is produced. The result of the function is a Complex rank-1 array with one
element: (1.1,2.2).

TRANSPOSE(MATRIX)
• Transformational function of the same type as MATRIX.
• Transposes a matrix of rank-2. Element (i,j) of the output has the value of

MATRIX(j,i).
• MATRIX is a rank-2 matrix of any type.

UBOUND(ARRAY,DIM)
• Integer inquiry function.
• Returns all of the upper bounds or a specified upper bound of ARRAY.
• ARRAY is an array of any type. It must not be an unassociated pointer or an

unallocated allocatable array.
 DIM is an integer in the range 1 ≤ DIM ≤ r. The corresponding actual argument

must not be an optional argument in the calling procedure.
• If DIM is present, the result is a scalar. If the actual argument corresponding to

ARRAY is an array section or an array expression, or if dimension DIM has zero
size, then the function will return 1. Otherwise, it will return the upper bound of

Fortran 90/95 Intrinsic Procedure Descriptions, a supplement to
Introduction to Fortran 90/95, by Stephen J. Chapman

35

that dimension of ARRAY. If DIM is not present, then the function will return an
array whose ith element is UBOUND(ARRAY,i) for i=1,2,… ,r.

UPACK(VECTOR,MASK,FIELD)
• Transformational function of the same type as VECTOR.
• Unpacks a rank-one array into an array under the control of a mask. The result is

an array of the same type and type parameters as VECTOR and the same shape as
MASK.

• VECTOR is a rank-one array of any type. It must be at least as large as the number
of true elements in MASK.

 MASK is a logical array.
 FIELD is of the same type as VECTOR and comformable with MASK.
• This function produces an array with the shape of MASK. The first element of the

VECTOR is placed in the location corresponding to the first true value in MASK, the
second element of VECTOR is placed in the location corresponding to the second
true value in MASK, etc. If a location in MASK is false, then the corresponding
element from FIELD is placed in the output array. If FIELD is a scalar, the same
value is placed in the output array for all false locations.

• This function is the inverse of the PACK function.

• For example, suppose that []V= 1 2 3 , M
TRUE FALSE FALSE
FALSE FALSE FALSE
TRUE FALSE TRUE

=
















, and

F=
















0 0 0
1 1 1
0 0 0

. Then the function UNPACK(V,MASK=M,FIELD=0) would have the

value
1 0 0
0 0 0
2 0 3

















, and the function UNPACK(V,MASK=M,FIELD=F) would have

the value
1 0 0
1 1 1
2 0 3

















.

B.9. Miscellaneous Inquiry Functions

ALLOCATED(ARRAY)
• Logical inquiry function.
• Returns true if ARRAY is currently allocated, and false if ARRAY is not currently

allocated. The result is undefined if the allocation status of ARRAY is undefined.
• ARRAY is any type of allocatable array.

Fortran 90/95 Intrinsic Procedure Descriptions, a supplement to
Introduction to Fortran 90/95, by Stephen J. Chapman

36

ASSOCIATED(POINTER,TARGET)
• Logical inquiry function.
• There are three possible cases for this function:
 1. If TARGET is not present, this function returns true if POINTER is associated,

and false otherwise.
 2. If TARGET is present and is a target, the result is true if TARGET does not have

size zero and POINTER is currently associated with TARGET. Otherwise, the result
is false.

 3. If TARGET is present and is a pointer, the result is true if both POINTER and
TARGET are currently associated with the same nonzero-sized target. Otherwise,
the result is false.

• POINTER is any type of pointer whose pointer association status is not undefined.
 TARGET is any type of pointer or target. If it is a pointer, its pointer association

status must not be undefined.

PRESENT(A)
• Logical inquiry function.
• Returns true if optional argument A is present, and false otherwise.
• A is any optional argument.

