IL MODELLO ATTUARIALE PER LA DESCRIZIONE DELLA SOPRAVVIVENZA

Si tratta di un modello di tipo continuo generalmente di tipo non parametrico, ovvero con funzione di sopravvivenza descritta mediante una tavola di sopravvivenza o tavola di mortalità.

Sia

 T_0 n.a. non negativo che esprime la durata aleatoria di vita dalla nascita

Si definiscono

Funzione di sopravvivenza

$$S(t) = P(T_0 > t), \qquad t \ge 0$$

Funzione di ripartizione

$$F_0(t) = P(T_0 \le t), \quad t \ge 0$$

Nel caso di distribuzione dotata di funzione di densità $f_0(t)$ continua si ha:

$$F_0(t) = \int_0^t f_0(u) du \qquad t \ge 0$$

inoltre

$$f_0(t) = \frac{d}{dt} F_0(t) = -\frac{d}{dt} S(t)$$

Si definisce intensità istantanea di mortalità o forza di mortalità

$$\mu(t) = \lim_{\Delta t \to 0} \frac{P(T_0 \le t + \Delta t | T_0 > t)}{\Delta t}$$

Si ha

$$\mu(t) = \frac{f_0(t)}{S(t)}$$
 da cui $f_0(t) = S(t)\mu(t)$

Osservazione: a meno di infinitesimi di ordine superiore al primo si ha

$$P(T_0 \le t + \Delta t | T_0 > t) \cong \frac{f_0(t)}{S(t)} \Delta t = \mu(t) \Delta t$$

Si ha inoltre

$$\mu(t) = \frac{f_0(t)}{S(t)} = -\frac{d}{dt}\ln(S(t))$$

da cui si ottiene

$$S(t) = \exp\left(-\int_{0}^{t} \mu(u)du\right)$$

è allora equivalente assegnare il modello di sopravvivenza attraverso la funzione di sopravvivenza oppure l'intensità istantanea di mortalità

Si definisce vita media alla nascita

$$\overline{e}_0 = E(T_0) = \int_0^{+\infty} t \ dF_0(t)$$

Si ha

$$\overline{e}_0 = E(T_0) = \int_0^{+\infty} t \, dF_0(t) = \int_0^{+\infty} 1 - F_0(t) \, dt = \int_0^{+\infty} S(t) \, dt$$

Sia

 T_x n.a. non negativo che esprime la durata aleatoria di vita per un individuo di età x > 0Poiché

$$T_x = (T_0 - x)|T_0 > x$$

si può esprimere la distribuzione di probabilità del n.a. T_x attraverso la distribuzione di T_0

Sia
$$F_x(t) = P(T_x \le t), \quad t \ge 0$$

si ha

$$F_x(t) = 1 - \frac{S(x+t)}{S(x)}$$

Si definisce la funzione di sopravvivenza $t p_x = P(T_x > t) = 1 - F_x(t) = \frac{S(x+t)}{S(x)}$

Si definisce la funzione di ripartizione della distribuzione condizionata

$$_{t}q_{x}=1-_{t}p_{x}=F_{x}(t)$$

Si può esprimere inoltre la funzione di densità condizionata

$$f_x(t) = \frac{d}{dt}F_x(t) = -\frac{1}{S(x)}\frac{d}{dt}S(x+t) = \frac{f_0(x+t)}{S(x)}$$

Ricordando che l'intensità istantanea di mortalità relativa alla distribuzione di T_0 è

$$\mu(t) = \lim_{\Delta t \to 0} \frac{P(T_0 \le t + \Delta t | T_0 > t)}{\Delta t} = \frac{f_0(t)}{S(t)}$$

per definire l'intensità istantanea di mortalità relativa alla distribuzione di T_x si considera

$$\lim_{\Delta t \to 0} \frac{P(T_x \le t + \Delta t | T_x > t)}{\Delta t} = \frac{f_x(t)}{t p_x} = \frac{f_0(x+t)}{S(x+t)} = \mu(x+t)$$

quindi l'intensità istantanea di mortalità della distribuzione condizionata coincide con l'intensità istantanea di mortalità della distribuzione di T_0

Poiché

$$\frac{f_x(t)}{t p_x} = \frac{f_0(x+t)}{S(x+t)} = \mu(x+t)$$

si ha

$$f_{x}(t) = {}_{t}p_{x} \mu(x+t)$$

Osservazione: a meno di infinitesimi di ordine superiore al primo si ha

$$P(T_x \le t + \Delta t | T_x > t) \cong \mu(x+t) \Delta t$$

Si definisce **vita media residua** di una persona di età *x*

$$\overline{e}_{x} = E(T_{x}) = \int_{0}^{+\infty} t \ dF_{x}(t)$$

Si ha

$$\overline{e}_{x} = E(T_{x}) = \int_{0}^{+\infty} t \, dF_{x}(t) = \int_{0}^{+\infty} 1 - F_{x}(t) \, dt = \int_{0}^{+\infty} t p_{x} \, dt = \int_{0}^{+\infty} \frac{S(x+t)}{S(x)} \, dt$$

Si definisce tasso centrale di mortalità relativo all'intervallo di età (x, x+1)

$$m_x = \frac{\int\limits_0^1 \mu(x+t)S(x+t) dt}{\int\limits_0^1 S(x+t) dt}$$

Più in generale si può definire il **coefficiente di mortalità** relativo all'intervallo di età (x, x + n)

$${}_{n}m_{x} = \frac{\int\limits_{0}^{n} \mu(x+t)S(x+t) dt}{\int\limits_{0}^{n} S(x+t) dt}$$