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THE RIEMANN-STIELTJES INTEGRAL

The present chapter is based on a definition of the Riemann integral which
depends very explicitly on the order structure of the real line. Accordingly,
we begin by discussing integration of real-valued functions on intervals. Ex-
tensions to complex- and vector-valued functions on intervals follow in later
sections. Integration over sets other than intervals is discussed in Chaps. 10
and 11.

DEFINITION AND EXISTENCE OF THE INTEGRAL

6.1 Definition Let [a, b] be a given interval. By a partition P of [a, b] we
mean a finite set of points x4, X, ..., x,, where

a=x<x <" <x,_1<x,=0b.

We write
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Now suppose f is a bounded real function defined on [a, b]. Corresponding to
each partition P of [a, b] we put

M; = sup f(x) (xi-1 < x < xy),

m; = inf f(x) (xi-y < x < Xy),

U(P,f)='_i M, Ax;,

L(P,f) =3 m; Ax,,
i=1

and finally

(1) Ib fdx = inf U(P, f),
b

2 [ rdx =sup L(P.),

where the inf and the sup are taken over all partitions P of [a, b]. The left
members of (1) and (2) are called the upper and lower Riemann integrals of f
over [a, b], respectively.

If the upper and lower integrals are equal, we say that f is Riemann-
integrable on [a, b], we write fe # (that is, # denotes the set of Riemann-
integrable functions), and we denote the common value of (1) and (2) by

) [ ras,
or by

b
4) fa f(x) dx.

This is the Riemann integral of f over [a, b]. Since f is bounded, there
exist two numbers, m and M, such that

m<f(x)<M (a<x<b).
Hence, for every P,
mb —a) < L(P,f) < U(P,f) < M(b — a),
so that the numbers L(P, f) and U(P, f) form a bounded set. This shows that
the upper and lower integrals are defined for every bounded function f. The
question of their equality, and hence the question of the integrability of f; is a

more delicate one. Instead of investigating it separately for the Riemann integral,
we shall immediately consider a more general situation.
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6.2 Definition Let « be a monotonically increasing function on [a, b] (since
o(a) and a(b) are finite, it follows that « is bounded on [a, b]). Corresponding to
each partition P of [a, b], we write

Aa; = a(x;) — ax;-1).

It is clear that Aa; > 0. For any real function f which is bounded on [a, b]
we put

UP,f,a)= '; M, Aa;,

L(P,f,0) =) m;Aa;,
i=1
where M;, m; have the same meaning as in Definition 6.1, and we define

Y
(5) j fda =inf UP, f, ),

b
6) f fdo=sup L(P, f, a),

a

the inf and sup again being taken over all partitions.

If the left members of (5) and (6) are equal, we denote their common
value by

1) [ ra

or sometimes by

b
(8) f £(x) da(x).

This is the Riemann-Stieltjes integral (or simply the Stieltjes integral) of
f with respect to a, over [a, b].

If (7) exists, i.e., if (5) and (6) are equal, we say that f is integrable with
respect to o, in the Riemann sense, and write /'€ #(a).

By taking a(x) = x, the Riemann integral is seen to be a special case of
the Riemann-Stieltjes integral. Let us mention explicitly, however, that in the
general case o need not even be continuous.

A few words should be said about the notation. We prefer (7) to (8), since
the letter x which appears in (8) adds nothing to the content of (7). It is im-
material which letter we use to represent the so-called ‘‘variable of integration.”
For instance, (8) is the same as

[[70) ety
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The integral depends on f, «, a and b, but not on the variable of integration,
which may as well be omitted.

The role played by the variable of integration is quite analogous to that
of the index of summation: The two symbols

n
. Ci»
i=1

are the same, since each means ¢, + ¢, + --* + ¢,.

Of course, no harm is done by inserting the variable of integration, and
in many cases it is actually convenient to do so.

We shall now investigate the existence of the integral (7). Without saying
so every time, f will be assumed real and bounded, and « monotonically increas-

ing on [a, b]; and, when there can be no misunderstanding, we shall write f in

place of fb.

6.3 Definition We say that the partition P* is a refinement of P if P* o P
(that is, if every point of P is a point of P*). Given two partitions, P, and P,,
we say that P* is their common refinement if P* = P, U P, .

6.4 Theorem If P* is a refinement of P, then

()] L(P,f, o) < L(P*, f, o)
and
(10) U(P*, f,a) < U(P, f, ®).

Proof To prove (9), suppose first that P* contains just one point more
than P. Let this extra point be x*, and suppose x;_; < x* < x;, where
x;_, and x; are two consecutive points of P. Put

wy =inff(x)  (xi-y S x < x¥),
w, =inff(x) (x* <x<x).

Clearly w, > m; and w, > m;, where, as before,

m; = inf f(x) (xi-1 <x<x)).
Hence

L(P*, f.a) = L(P, [, @)
= wy[a(x*) — a(x;-y)] + wala(x) — a(x*)] — mifa(x;) — a(x;-4)]
= (wy — m)[o(x*) — a(x;-1)] + (W — mp[ax;) — a(x*)] = 0.

If P* contains k points more than P, we repeat this reasoning k
times, and arrive at (9). The proof of (10) is analogous.
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b =b
6.5 Theorem f fda _<_f fda.

Proof Let P* be the common refinement of two partitions P; and P,.
By Theorem 6.4,

L(P,,f, o) < L(P*, f.a) < U(P*, f, 0) < U(P,, f, a).
Hence
(11) L(P,, f, ) < U(P,, [, ®).

If P, is fixed and the sup is taken over all P,, (11) gives

(12) ffda < U(P,, [, o).

The theorem follows by taking the inf over all P, in (12).

6.6 Theorem fe #(x) on [a, b] if and only if for every ¢ >0 there exists a
partition P such that

(13) UP,f,0) — L(P,f, a) < e.
Proof For every P we have
LP.f,0) < [fdus [fdo< UP,J,0).
Thus (13) implies

Osffda—ffda<s.

Hence, if (13) can be satisfied for every ¢ > 0, we have

I fdo = f fdo,

that is, f e Z(a).
Conversely, suppose fe #(x), and let ¢ >0 be given. Then there
exist partitions P; and P, such that

€
g

(14) U(P, , f, o) — ffda <3

(15) [fdu—Lipyf0) <.
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We choose P to be the common refinement of P, and P,. Then Theorem
6.4, together with (14) and (15), shows that

§<L(P1,f,a)+asL(P,f,a)+e,

so that (13) holds for this partition P.

UP,f, o) < U(pz,f,a)<ffda+

Theorem 6.6 furnishes a convenient criterion for integrability. Before we
apply it, we state some closely related facts.

6.7 Theorem
(@) If (13) holds for some P and some ¢, then (13) holds (with the same ¢)
for every refinement of P.
(b) If (13) holds for P ={x,, ..., x,} and if s;, t; are arbitrary points in
[xi_, x;], then

3 Ifts) = f@)] B <.
(¢c) If fe R(x) and the hypotheses of (b) hold, then
; ) Ao —
£y o= |1 da

Proof Theorem 6.4 implies (a). Under the assumptions made in (b),
both f(s;) and f(¢;) lie in [m;, M;], so that | f(s;) — f(¢;)] < M; — m;. Thus

< E.

3 1£) = fit)| Ay < UP,£, ) = LLP. £, ),

which proves (b). The obvious inequalities

LP,f,0) < f(t;) Ax; < U(P, fo)
and
L(P,f,0) < [fda < U(P, f, )
prove (c).

6.8 Theorem If fis continuous on [a, b] then f € Z(«) on [a, b].
Proof Let e > 0 be given. Choose n >0 so that

[%(b) — ala)ln <e.

Since f is uniformly continuous on [a, b] (Theorem 4.19), there exists a
0 > 0 such that

(16) lf) —f(O)] <n
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if xe[a, b], t€(a,b], and |x —t| <.
If P is any partition of [a, b] such that Ax; < ¢ for all i/, then (16)
implies that
(17) M;,—m;<n i—-1,...,n

and therefore

UP,f,a) — L(P, f. ) = nz (M; — m;) A

i=1

<Y Ax, =nla(b) — a@)] < e.
i=1
By Theorem 6.6, f € Z(2).

6.9 Theorem If f is monotonic on [a, b], and if « is continuous on |a, b), then
fe€ A). (We still assume, of course, that a is monotonic.)

Proof Let ¢ >0 be given. For any positive integer n, choose a partition
such that

o(b) —
Aai=M (f:l,_._,n)‘
n
This is possible since « is continuous (Theorem 4.23).
We suppose that fis monotonically increasing (the proof is analogous

in the other case). Then

Mi =f(xi), ’ni =f(xi—l) (I= ls ""n),

so that
b _ n
U, f,2) = P, fw) = T2 S (1) — fx, )
b) — a(h
=20 10y~ s <o

if n is taken large enough. By Theorem 6.6, fe Z(v).

6.10 Theorem Suppose f is bounded on [(a, b), f has only finitely many points
of discontinuity on [a, b], and o is continuous at every point at which f is discon-
tinuous. Then fe€ Z(a).

Proof Letée > 0 be given. Put M = sup |f(x)|, let E be the set of points
at which fis discontinuous. Since E is finite and a is continuous at every
point of E, we can cover E by finitely many disjoint intervals [u;, v;] =
[a, b] such that the sum of the corresponding differences a(r;) — x(u)) is
less than ¢. Furthermore, we can place these intervals in such a way that

every point of E n (a, b) lies in the interior of some [;, v/].
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Remove the segments (u;, v;) from [a, b]. The remaining set K is
compact. Hence f is uniformly continuous on K, and there exists 6 >0
such that |f(s) —f(1)| <eifse K, teK, |s —t] <.

Now form a partition P = {xq, X, ..., X,} Oof [a, b], as follows:
Each u; occurs in P. Each r; occurs in P. No point of any segment (u;, v;)
occurs in P. If x;_, is not one of the u;, then Ax; < 4.

Note that M, — m; < 2M for every i, and that M; — m; < € unless
x;-y 1s one of the u;. Hence, as in the proof of Theorem 6.8,

U(P, f, x) — L(P, f, a) < [2(b) — x(a)]e + 2Me.

Since ¢ 1s arbitrary, Theorem 6.6 shows that fe #2(x).
Note: If fand x have a common point of discontinuity, then f need not

be in Z#(x). Exercise 3 shows this.

6.11 Theorem Suppose fe #(a) on [a,b], m< f< M, ¢ is continuous on
[m, M], and h(x) = $¢(f(x)) on [a, b]. Then h e #(x) on [a, b].

(13)

(19)

Proof Choose ¢ > 0. Since ¢ is uniformly continuous on [m, M], there
exists & >0 such that o <e¢ and |¢(s) — ¢(1)| <e¢ if |s—1] <b and
s, te[m, M].

Since f'€ :Z(x), there is a partition P = {xq, X, ..., x,} of [a, b] such
that

U(P, f, 2) — L(P, f, o) < 6.

Let M;. m; have the same meaning as in Definition 6.1, and let M} m¥
be the analogous numbers for 4. Divide the numbers 1, ..., n into two
classes: ie AiIf M; —m; <d,ie Bif M; —m; > 6.

For i € 4, our choice of § shows that M* — m¥ <.

For ie B, M* — m¥ < 2K, where K =sup|¢(t)|, m<t< M. By
(18), we have

5ZAaiS Z(A’I,""”",‘)Aai<52

ieB ieB
so that ) ;. p Aa; <. It follows that

UP, h,a)— L(P, h,2) = ) (M} —m}) Aa; -+ Y (M} — m}) Aa;

ied ieB

< e[a(b) — a(a)] + 2KS < e[a(b) — x(a) + 2K].

Since ¢ was arbitrary, Theorem 6.6 implies that /1 € Z(«).
Remark: This theorem suggests the question: Just what functions are

Riemann-integrable ? The answer is given by Theorem 11.33(b).
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PROPERTIES OF THE INTEGRAL

6.12 Theorem
(@ Iff, € () and f, € R(x) on [a, b], then

.fl +f2 € g(a)’

cf € A(a) for every constant c, and

[hsrda=[fdus [ frd

b
rcfda=cJ‘ f da.
() If /i(x) < fo(x) on [a, b], then
b b
fafl do < J; /> do.

() If fe R(o) on [a, b) and if a <c < b, then fe A(x) on [a, c] and on
[c, b], and

fcfda +f°fda =fbfda.
(d) Iffe R(2) on [a, b] and if |f(x)| < M on [a, b), then
fbfda

() If fe A(y) and f e R(a,), then fe R(a; + a,) and

< Mla(b) — a(a)].

[[rde +a)=[ rao + [ rans;

if fe R(a) and c is a positive constant, then f e %(ca) and
b b
f fd(ca) = ¢ f fdo.

Proof If f=/f, + f, and P is any partition of [a, b], we have
(20) L(P,fy, @) + L(P, f;, ) < L(P, f, &)
< U(P,f, ) < UP, f;, ) + U(P, 5, ).

If fi € A(x) and f; € #(x), let ¢ >0 be given. There are partitions P;
(j =1, 2) such that

UPj, f,,x) — L(P;, f;, 0) <E.
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These inequalities persist if P, and P, are replaced by their common
refinement P. Then (20) implies

UPP,f,a) — L(P, f, a) < 2,

which proves that fe Z(a).
With this same P we have

UP,f, o)< [fidu+e (j=1,2);
hence (20) implies
_[fdacs_ U(P,f,oz)<_(f1 doa + _[fz da + 2e.

Since ¢ was arbitrary, we conclude that

[fdu< [ f; du+ [ f, da.

If we replace f; and f, in (21) by —f, and —f;, the inequality is
reversed, and the equality is proved.

The proofs of the other assertions of Theorem 6.12 are so similar
that we omit the details. In part (c) the point is that (by passing to refine-
ments) we may restrict ourselves to partitions which contain the point c,
in approximating | f do.

Theorem If fe #A(«) and g € A(a) on [a, b), then
(@) fg€R(x);

b b
®) |f] € R(a) and f fde| < f If| do.

Proof If we take ¢(1) = 12, Theorem 6.11 shows that f? € Z(a) if f € A().
The identity

4fg=(+9)*—-(f—9)°

completes the proof of (a).
If we take ¢(¢r) = |¢]|, Theorem 6.11 shows similarly that |f| € Z(x).
Choose ¢ = +1, so that
c¢|fdou>0.
Then
| [fda| =c[fdu= [cfdu< [|f] da,

since ¢f < |f].

6.14 Definition The unit step function I is defined by

0 (x<0),
I(x) =
1 (x> 0).
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6.15 Theorem If a<s <b, [ is bounded on [a, b), f is continuous at s, and
a(x) = I(x — s), then

L” Fdo=f(s).

Proof Consider partitions P ={xq, x;. X,, X3}, where x,=a, and
x, =85§<x,<x3=>b. Then

U(P,.f’ a)=M2’ L(P’.f’ 1)="12'
Since f is continuous at s, we see that M, and », converge to f(s) as

X, —S.

6.16 Theorem Suppose ¢, >0 for1,2,3, ..., Xc, converges, {s,} is a sequence
of distinct points in (a, b), and

(22) a(x) = i c,I(x —s,).

Let f be continuous on [a, b]. Then

o 0]

b
(23) [[fdu=¥ e.fGs)

Proof The comparison test shows that the series (22) converges for
every x. Its sum a(x) is evidently monotonic, and a(a) = 0, a(b) = Z¢, .
(This is the type of function that occurred in Remark 4.31.)

Let ¢ > 0 be given, and choose N so that

z c, <&
Put
N oc
al(x) = Z CnI(x - Sn), aZ(x) = Z cnl(x - sn)'
n=1 N+1
By Theorems 6.12 and 6.15,
b N
(24) [ fdo =} cuf (5.
Since a,(b) — a,(a) < e,

(25) < Mg,

bedaz
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where M = sup|f(x)|: Since a = a; + a,, it follows from (24) and (25)
that

b N
(26) f fdou =Y c,f(s)| < Me.

If we let N — oo, we obtain (23).

6.17 Theorem Assume a increases monotonically and «' € R on [a, b). Let f
be a bounded real function on |a, b).
Then fe A(a) if and only if fa' € R. In that case

27) f: fdo = f: F0)'(x) dx.

Proof Let ¢ >0 be given and apply Theorem 6.6 to «’': There is a par-
tition P = {xq, ..., x,} of [a, b] such that

(28) U(P,a') — L(P, &) < €.
The mean value theorem furnishes points ¢; € [x;_,, x;] such that
AO(,- = O(’(I,-) Ax,
fori=1,...,n Ifs;e[x;_, x;], then
(29) 2 (s — o'(t)] Ax; <e,

i=1

by (28) and Theorem 6.7(b). Put M = sup|f(x)|. Since

3 f) Bay = 3 f(s)e) Ax,

it follows from (29) that

(30) Y f(s) Ay = Y f(s)a'(s;) Ax;| < Me.
i=1 i=1
In particular,

Y f(s9) Ao < U(P, fo') + Me,
i=1

for all choices of s; € [x;_,, x;], so that

U(P, f, @) < U(P, fo') + Me.
The same argument leads from (30) to

UP, fa') < U(P, f, a) + Me.
Thus
@31 | U(P, f, ®) — U(P, fo')| < Me.
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Now note that (28) remains true if P is replaced by any refinement.
Hence (31) also remains true. We conclude that

=b =b
j fda —f f(x)a'(x) dx| < Me.
But ¢ is arbitrary. Hence
=b —b
(32) [[faa =] fea(x) dx,

for any bounded f. The equality of the lower integrals follows from (30)
in exactly the same way. The theorem fotlows.

6.18 Remark The two preceding theorems illustrate the generality and
flexibility which are inherent in the Stieltjes process of integration. If a is a pure
step function [this is the name often given to functions of the form (22)], the
integral reduces to a finite or infinite series. If a has an integrable derivative,
the integral reduces to an ordinary Riemann integral. This makes it possible
in many cases to study series and integrals simultaneously, rather than separately.

To illustrate this point, consider a physical example. The moment of
inertia of a straight wire of unit length, about an axis through an endpoint, at
right angles to the wire, is

(33) folxz dm

where m(x) is the mass contained in the interval [0, x]. If the wire is regarded
as having a continuous density p, that is, if m'(x) = p(x), then (33) turns into

1
(34) jo x2 p(x) dx.

On the other hand, if the wire is composed of masses m; concentrated at
points x;, (33) becomes

(35) Z x2 m;.

Thus (33) contains (34) and (35) as special cases, but it contains much
more; for instance, the case in which m is continuous but not everywhere
differentiable.

6.19 Theoreni (change of variable) Suppose ¢ is a strictly increasing continuous
Sfunction that maps an interval [A, B] onto [a, b]. Suppose a is monotonically
increasing on [a, b] and f€ A(«) on [a, b). Define B and g on [A, B] by

(36) BOY) = a(e(»), 9(») =Sf(e(»)).
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Then g € R(P) and

(37) J': gdB= j: fda.

Proof To each partition P = {xo, ..., x,} of [a, b] corresponds a partition
0 ={yo,.-.,ya Of [A4, B], so that x; = ¢(y;). All partitions of [4, B]
are obtained in this way. Since the values taken by f on [x;_,, x;] are
exactly the same as those taken by g on [y;_,, y;], we see that

(38) U@Q,9,p)=URP,f,0), L(Q,9,B)=L(P,f, ).

Since f'€ #(a), P can be chosen so that both U(P, f, «) and L(P, f, a)
are close to _[ fda. Hence (38), combined with Theorem 6.6, shows that
g € Z(B) and that (37) holds. This completes the proof.

Let us note the following special case:
Take a(x) = x. Then f = ¢@. Assume ¢’ € X on [4, B). If Theorem
6.17 is applied to the left side of (37), we obtain

b B
(39) [ 7@ dx =] 1eteo) dy.

INTEGRATION AND DIFFERENTIATION

We still confine ourselves to real functions in this section. We shall show that
integration and differentiation are, in a certain sense, inverse operations.

6.20 Theorem Letfe X on[a,b). Fora < x < b, put

F(x) = j 1) dt.

Then F is continuous on [a, b), furthermore, if f is continuous at a point x, of
[a, b), then F is differentiable at x,, and

F'(x0) = f(xo).

Proof Since fe, f is bounded. Suppose |f(t)| < M for a<t<b.
Ifa< x <y<b, then

|F(y) — F(x)| = < M(y - x),

f’ £(1) dt

by Theorem 6.12(c) and (d). Given ¢ > 0, we see that
|F(y) — F(x)| <e,
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provided that |y — x| <e¢/M. This proves continuity (and, in fact,
uniform continuity) of F.

Now suppose f is continuous at x,. Given ¢ > 0, choose 6 > 0 such
that

f(t) = f(xo)| <€
if [t —xy| < d,and a <t <b. Hence, if
Xo—0<S§<Xy<t<xy+9 and a<s<t<b,
we have, by Theorem 6.12(d),

F(t) — F(s)
t—ys

It follows that F'(x,) = f(x,).

1 t
~fxo)| = | — f Lf(u) — f(x0)] du| < e.

6.21 The fundamental theorem of calculus If f € # on [a, b] and if there is
a differentiable function F on [a, b) such that F' = f, then

| ’ fx) dx = F(b) — Fl@).

Proof Let ¢ >0 be given. Choose a partition P = {xo, ..., x,} of [a, b]
so that U(P,f) — L(P,f) <e&. The mean value theorem furnishes points
t;€[x;_y, x;] such that

F(x;) — F(x;_y) =f(t)) Ax;
fori=1,...,n Thus
> f{ty) Ax; = F(b) — F(a).
i=1
It now follows from Theorem 6.7(c) that

<E&.

b
F(b) — Fa) — f f(x) dx

Since this holds for every ¢ > 0, the proof is complete.

6.22 Theorem (integration by parts) Suppose F and G are diffcrentiable func-
tionson [a,b), FF =feR,and G' =ge€ R. Then

j:F(x)g(x) dx = F(b)G(b) — F(a)G(a) — j "F(0G(x) dx.

Proof Put H(x) = F(x)G(x) and apply Theorem 6.21 to H and its deriv-
ative. Note that H' € #, by Theorem 6.13.



