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INTRODUCTION

Three States of Matter:
— Solids

— Liquids

— Gases

Solids:

The aggregates of atoms which preserve their volumes and
shapes unless subjected to large external force are called
solids”.

There are two types of solids :
Amorphous (non-crystalline) and
Crystalline
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Difference Between Amorphous and Crystalline Solids

Amorphous

Amorphous solids (means
without form) are the solids
which lacks the regular
arrangement of atoms or
molecules and hence they
have a short range order or no
order in their structure

Do not have sharp melting
point (because all bonds are
not equally strong)
Isotropic (Physical properties
are same in
different directions)

Examples: glass, wax, plastics,
etc.

Crystalline

A crystalline solid is the one in
which there is a regular
repeating pattern in the
structure, or in other words,
there is long-range order

Have sharp melting point
(because all bond are equally
strong)

Anisotropic (Physical
properties are different in
different directions)

Examples: diamond, table salt,
ice, methanol, sodium
chloride, etc.




CRYSTAL LATTICES

A lattice is an infinite, regular array of points in space.

# In the definition it should be noticed that no mention is made
of atoms or any physical objects, just points in space - no
more, no less. Hence we treat the lattice as a mathematical
abstraction. Therefore, it is clear that there is no lattice inside
the crystal. Even if we look the crystal through a powerful
microscope we will not be able to see the lattice points, but
rather atoms or groups of atoms. The lattice provides the
'recipe' that determines how the atomic or molecular units
are to be repeated throughout the space to make the crystal
structure.




Plane Lattice

Consider an array of points in such a way that the environment
about any point is identical with the environment about any other
point. Such an array of points in two dimensions is shown in Fig.
and is called a plane lattice.

For constructing a two dimensional lattice, choose any two
convenient axis such that the points lie at equal intervals g and b
along these axis as shown in the Fig. There are generally 5 lattices in
two dimensions: Oblique, Square, Hexagonal, Rectangular and
Centered Rectangular lattice.




Space Lattice

If this array of points is extended to three dimensions then
the array of points is called space lattice. For constructing the
space lattice the points are arranged at equal intervals c in the
third direction also. There are 14 space lattices in total, called
Bravais Lattice.

Thus a lattice may also be defined as a parallel net like
arrangement of points such that the environment about any

point is identical with the environment about any other
point.




Basis

A basis is defined as an assembly of atoms, ions or molecules
identical in composition, arrangement and orientation.

Basis consists of the simplest arrangement of atoms which is
repeated at every point in the lattice to build up the crystal
structure.

The number of atoms in a basis may be one as in case of many
metals and inert gases, but could be as large as 1000 in many
structures.

In ionic crystals, a basis is composed of two distinct types of ions.
For example, Na* and Cl-in a NaCl crystal.




When basis is attached identically to each lattice point, the actual
crystal structure is formed as shown in the Fig.
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The relation can be written as
Lattice + Basis = Crystal Structure




UNIT CELL

A unit cell is a region of space which when repeated by primitive
translation vectors fills all space. Thus a unit cell is defined as the
smallest geometrical figure, the repetitions of which give the
actual crystal structure.

crystal

molecule unit cell

The choice of the unit cell is not unique. It can be constructed in a
number of ways, but the unit cell should be chosen in such a way
that it conveys all the symmetry of a crystal lattice, by having
shortest possible size, which makes the mathematical calculations
easy.

Each atom or molecule in a unit cell is considered as a lattice point.
The distance between the two atoms or ions of the same type is
the ‘length of the unit cell’.
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In general, a unit cell may be defined as the smallest volume of a solid
from which the entire crystal may be constructed by translational
repetitions in 3-dimension and which represent fully all the characteristics
of a particular crystal. In Fig. a three dimensional unit cell is shown by the
shaded portion.
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For a three dimensional case, the unit cell is a parallelopiped
formed by basic vectors a, b and ¢ as concurrent edges and the
angles o, p and vy, between (b, c), (c, a), and (a, b) respectively as
explained in the following Figures.
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Primitive and Non - primitive unit cell

Primitive unit cells
* f contain just one lattice point
1 . 1 i Non-primitive unit cells
contain more than one lattice point
* L 2
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Type of unit cells

P
I

F
C

Simple
Body-centred
Face-centred

Base(side)-centred
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CRYSTAL SYSTEMS AND BRAVAIS LATTICES

Crystals of different substances have similar shapes and hence the
crystals are classified into the so called crystal systems depending
upon their axial ratio and the interfacial angles o, B and y. In three-
dimension, there are 7 crystal systems. Bravais showed that
throughout the seven crystal systems there are fourteen unique
lattice types possible. These are known as Bravais or space lattices.
These seven crystal systems with examples are :

* Cubic(CsCl, NaCl, Cu)

* Tetragonal(Sn02)

* Orthorhombic(PbS04, MgS04)

* Monoclinic(FeSO4, LiSO4 - H20)

* Triclinic(FeSO4 - 5H20, K2Cr207)

* Trigonal (Rhombohedral)(Sb, As, CaCO3)

* Hexagonal(Zn, Cd, Ni, As, Si02)

The characteristics features of these crystal systems and the
corresponding Bravais lattices are as follows:




No. | Crystal class | Intercepts | Angles between | Bravais space lattice
on Axes Axes

1 Cubic a=b=c a=p=y=900 Simple, body-centred,
face-centred

2 Tetragonal a=b#c o=p=y=90° Simple, body-centred

3 Orthorhombic |[a=b=c a=p=y=900 Simple, body-centred,
face-centred,
Base(side)-centred

4 | Trigonal a=bh=c |a=B=y=90° Simple

5 Hexagonal a=b=#c |a=p=909 Simple

y=1200
6 Monoclinic azb=c a=y=900=p Simple, base-centred
7 Triclinic azb=#c a#EP£Y Simple
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The 14 possible BRAVAIS LATTICES

{note that spheres in this picture represent lattice points, not atoms!}

CUBIC

a=b=c

TETRAGONAL

a=bzc P

ORTHORHOMBIC

azbzc P

0‘=B=Y=9U.
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HEXAGONAL
a=bzc
o=p=%°
y=120°

MONOCLINIC
azbzc
oa=y=90°
p#120°

TRICLINIC
azbzc
ot peyr90°

1
1]

TRIGONAL
a=b=c¢ P
a=p=y290°

4Tyl?es of Unit Cell
= Primitive
I = Body-Centred
F = Face-Centred
C=Side-Centred

+
7 Crystal Classes
— 14 Bravais Lattices
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MILLER INDICES

The crystal structure may be regarded as made up of an aggregate of
a set of parallel equidistant planes passing through at least one
lattice point or a number of lattice points. These planes are known
as Lattice Planes. For a given crystal, lattice planes can be chosen
in different ways as shown in Fig.
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In order to designate a lattice plane, British mineralogist William H.
Miller, in 1839, developed a method by using three numbers (h k)
which are known as Miller Indices.

Miller Indices are the three smallest possible integers, which have
the same ratio as the reciprocals of intercepts of the plane
concerned on the three axis.

# Miller indices are integer sets that were created to distinguish
directions and planes in a lattice. They are used primarily in crystalline
structures because they describe planes in relation to a larger lattice
in relative terms, as opposed to absolute terms. An example of this is
describing planes in a building, Miller indices would distinguish the
floor from the walls, and north wall from west wall, however it would
not distinguish the 4th floor from the 5th floor. This is useful in crystal
lattices because the planes are the same in many directions(like floors
in a tall building).
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The Rule to Obtain Miller Indices

I. Set up coordinate axes along the edges of the unit
cell and then note where the plane to be indexed
intercepts the axes. Then divide each intercept
value by the unit cell length along the respective
coordinate axis. Record the resulting normalized
intercept sent in the order X, y, z.

2. Invert the intercept values (i.e. 1/intercepts)

3. Using an appropriate multiplier, convert the
I/intercept set to the smallest possible set of whole
numbers

4. Enclose the whole-number set in curvilinear
bracket
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Important points:

Miller indices define the orientation of the plane within the
unit cell

If a set of planes is parallel to any of the axes, it would cut that
axes at oo, hence the Miller index along that direction is 1/w0 =
0.

If a plane to be indexed has an intercept along the negative
portion of a coordinate axis, a minus sign is placed over the
corresponding index.

The Miller Index defines a set of planes parallel to one
another (remember the unit cell is a subset of the “infinite”
crystal), e.g., (002) planes are parallel to (001) planes, and so
on.
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Let us take an example to find the Miller Indices of a given plane(see
Fig.):

* Intercepts: 2a 1b 1c

* Dividing by unit translation vectors:
2afa 1b/b 1c/c=2 1 )

* Taking the reciprocals: »oo1/1 1/1

* Reducing to whole numbers: 1 2 2

* Miller indices: (122)
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Primitive
cubic lattice

Face-centred
cubic lattice

Body-centred
cubic lattice

200 planes

Miller indices for three types of cubic lattices.
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INTERPLANER DISTANCE OR SPACING

Interplaner spacing is defined as the perpendicular distance d,
between corresponding planes. It is also perpendicular distance from
the origin to the set of parallel planes (see Fig.)
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,» a b ¢
A

For a cubic lattice, a = b = ¢, therefore, we get

a
dh.w =

Also, For a cubic lattice,
dyo =2, dyg =a/N2 and dyp; = a/V3.
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Physical Parameters for Crystal Structure

(i) Number of Atoms per Unit Cell

Number of atoms per unit cell determines how closely the solid is
packed and is given by

N=N/8+Ny/2+N,
here N_ is the number of corner atoms, N; the number of face
centred atoms and N, the number of body centred atoms(see Fig.).

For SC crystal : In a SC crystal, there are 8 atoms only, each at one
corner. Each atom is shared by 8 unit cells. Therefore, we have

N=N/8=8/8=1
For BCC crystal N=N/8 + N;/2+N,=8/8+0+1=2
For FCCcrystal (N=N_/8+N/2+N.=8/8+6/2+0=4
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(ii) Coordination Number (CN)

In a crystal, the number of nearest neighbours of the same type
and at equal distances from the given atom is called
coordination number.

For SC : The corner atoms are the nearest neighbours of each
other. Here CN = 6 (see Fig.) which is a group of 8 unit cell and
atom at the centre has six corner atoms as its nearest

A
=

a8

-
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For BCC: In this case all the corner atoms are at equal
distances from the body centered atom.

Hence CN = 8.

For FCC : Here the nearest neighbours of any corner atom
are the face centered atoms of the surrounding unit cells.
Now for any corner atom there are 4 face centered atoms
in each plane and there are three such planes. Therefore,
CN=12.

34



(iii) Atomic Radius and Nearest Neighbour Distance (NND)

In a crystal the atoms are assumed to be spheres in contact. Now
atomic radius is defined as half the distance between the nearest
neighbours in a crystal of pure element, i.e., the distance between
the centres of neighbouring atoms.

For SC : In a SC structure, corner atoms are the nearest neighbours and
are in touch with each other. If the side of the unit cell is ‘a’ and ‘r’
be the radius, then

2r=a or r=a/2
Now Nearest Neighbour Distance(NND) is given by 2r
Therefore, NND=2r=a
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For FCC :

r=v2a/4

NND = a/\2

(a)

a
(lattice parameter)

r = radius of atom
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For BCC :

r=3 a/4
NND = V3 a/2.

(b)
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(iv) Atomic Packing Fraction (or Factor) (APF)

It is defined as the ratio of the volume of the atoms occupying the unit cell to
the volume of the unit cell. It is also called relative packing density.

APF = Volume occupied by the atoms in a unit cell / Volume of the
unit cell.

SC Crystal : No. of atoms/unit cell = 1
Volume of one atom = 4/3 nr3
Side of the unit cell=a =2r
Volume of the unit cell = a3
APF= = =1t/6 =0.52 = 52%.

BCC Crystal : No. of atoms/unit cell = 2
Volume of two atoms = 2x4/3 nr3
Side of the unit cell = a = 4r/\3
Volume of the unit cell = a3
APF = = =37/8 = 0.68 = 68%.

FCC Crystal : No. of atoms/unit cell = 4
Volume of four atoms = 4x4/3 nr3
Side of the unit cell = a = 4r/\2
Volume of the unit cell = a3
APF = = =\271/6 = 0.74 = 74%.




Closed Packed Structures

In a closed packed structure the constituent atoms are so arranged as to occupy
minimum possible volume, reaching the maximum density.

2-layers closed packed structure

Planar closed packed spheres

Fig. 1.13 Two close packed layers arranged in A and B
positions. The B layer occupies the P positions shown in
Fig. 1.12
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Closed Packed Structures

hcp ccp

Hexagonal Closed Packed Cubic Closed Packed
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c.c.p. structure

Cubic close packing (ABCABC...)

Fig. 1.16 Face centred cubic unit cell of a c.c.p. arrangement of spheres
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h.c.p. structure

Hexagonal close packing (ABABAB...)
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h.c.p. structure
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Interstitial sites in Closed Packed Structures

1
(a) (b) i s
'@ (c)
3 2

6

Fig. 1.18 Interstitial sites in a c.p. structure. Heavy circles are above and the
dashed circles beiow the plane of the paper: (a) T, site, (b) T_ site (¢) O site

@ octahedral sites
A T+ tetrahedral sites
A T=- tetrahedral sites

Fig. 1.19  Distribution of interstitial sites between two c.p.
layers. Dashed circles are below the plane of the paper
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Interstitial sites in Closed Packed Structures

Having determined what types of interstitial sites are available, we must now decide:

(a) Which sites are occupied by a given cation: this determined by the radius ratio (=

rcatiun/ranion)
(b) How many sites are occupied: this is determined by the stoichiometry.

For an octahedral site:
2R
-

d=2Rapion + eation

op 50 9= Y(@Rancn)? +(2Reicn’]

Therefore: foqonffanion = 0414

For a tetrahedral site, ryion/Tanion = 0-225.

For these two values, the close packed structure of anions is maintained.
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Interstitial sites in Closed Packed Structures

Stable Bonding Configurations in lonic solids.

In reality an ideal fit of a cation into the close packed anion arrangement almost never
occurs. Now consider what would be the consequence of placing a cation that is (a) larger
than the ideal, (b) smaller than the ideal, into the cation sites.

For a stable coordination the bonded
cation and anion must be in contact
with each other.

Teation!Tanion > ideal Feation'Tanion = 14€al  Togyion/Tanion < ideal
Stable Stable Unstable

If I tion/ Tanion DECOMES toO big, the
close packed structure of anions is
converted into a simple cubic

feationTanion = 0225 0.414 0.73 structure
tetrahedral octahedral cubic
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Interstitial sites in Closed Packed Structures

Table 1.4 Some close packed structures

Anion arrangement T

Interstitial sites

T_ Oct

Examples

c.c.p.

1

1

8

1

1
hc.p. —
1

1
8
1
1
2

c.c.p. ‘BaOy’ layers

1
8

[~

[

| | o |

e I N R e | oo | =

NaCl, rock salt

ZnS, blende or sphalerite
MgAl,O,, spinel
CdCl,

CuFeS,, chalcopyrite
CrCl,

K, O, antifluorite
NiAs

ZnS, wurtzite

Cdl,

TiO%, rutile

Al,04, corundum
Mg,SiO,, olivine
B-Li,PO,

y-Li; PO¥

BaTiO,, perovskite

*The h.c.p. oxide layers in rutile and y-Li;PO, are not planar but are buckled. The oxide ion

arrangement in these may alternatively be described as tetragonal packed (Lp.).

47



Cubic structures

(a) (b) (c)

Fig. 1.24 Unit cell of (a) NaCl, (b) ZnS, sphalerite, and (¢) Na, Q. Open circles are cations;
closed circles anions

Rock salt: O sites occupied by cations; T, T_ empty
Zinc blende: T, (or T_) sites occupied; O, T_ (or T.) empty
Antifluorite: T, T_ occupied; O empty.
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Rock salt structure

O Nat r,=0.102 nm
o C= r5=0.181 nm

I'na/r ) = 0.564

Octahedral sites preferred

Table 1.7 Some compounds with the NaCl structure

a(A) a(A) a(d) a(A)
MgO 4213 MgS 5200 LiF 40270 KF 5347
CaO 48105 CaS 56948 LiCl  5.1396 KCl 62931
50 5.160 S1S 6020 LiBr 55013 KBr 65966
BaO 5539 BaS 6386 Lil 6.00 KI 7.0655
TiO 4177 aMnS 5224 LiH 4083 RbF 56516
MnO 4445 MgSe 5462 NaF  4.64 RbCl 65810
FeO 4307 CaSe 5924 NaCl 56402 RbBr  6.889
CoO 4260 SrSe  6.246 NaBr 59772 RbI  7.342
NiO 41769 BaSe  6.600 Nal 6473 AgF 492
CdO 46953 CaTe 6356 NaH 4890 AgCl 5549
SnAs 57248 SrTe 6660 ScN 444 AgBr 57745
TiC 43285 BaTe  7.00 TiN 4240
ucC 4955 LaN 530 UN 4890
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Zinc blende structure

ryelrs = 0.074/0.184= 0.402

tetrahedral sites preferred

Table 1.8(a) Some compounds with the zinc blende (sphalerite) structure (in dngstroms)

CuF 4.255 BeS  4.8624
CuCl 5416 BeSe  5.07

p-CuBr 5.6905 BeTe 5.54

y-Cul 6.051 f-ZnS 5.4060
y-Agl 6.495 ZnSe 5667
p-MnS, red 5.600 ZnTe 6.1026
p-MnSe 588 -SIiC 4358

f-Cds 5.818
CdSe 6077
CdTe 6.481
HgS 58517
HgSe 6.085
HgTe 6.453

BN
BP
BAs
AlP
AlAs
AlSb

3616
4.538
4777
5.451
5,662
6.1347

GaP 5448
GaAs 5.6534
GaSb 6.095
InP  5.869
InAs  6.058
InSb  6.4782
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Fluorite and antifluorite
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0 Ca* O F-

Fluorite structure

Calcium Fluorite (CaF,)

« Cations in cubic sites

£

+ UO, ThO,, ZrO,, CeO,

ap ) )

« Antifluorite structure —
positions of cations and
anions reversed

Fluorite structure Antifluorite structure
- a(h) a(A) a(A) a(A)
Ea_l; 5.4626 PbO, 5349 Li,O 46114 K,0 6449
StF, 5.800 CeO, 54110 ngS 5710 K,S ;482
SrCl, 69767 PrO, 5392 LijSe 6002 K,Se 7.6
BaF, 6.2001 ThO, 5600 Li;Te 6517 K,Te 8.168
BfACl2 7311 vuo, 5372 Na,O 5.55 Rb,O 6.74
CdF, 53895 NpO, 54334 Na,$ 6539 Rb,S  7.65
HgF, 5.5373 CmO, 53598 Na,Se 6.823
EuF, 5.836 PuO, 53806 Na,Te 7.329
B-PbF, 5.940 AmO, 5376
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Perovskite ABO,

e Perovskite structure o/a

Ex: complex oxide
BaTiO,

!

.
_—
o
o

o® 0 6®

o Ti** @ Ba2* 0%
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Perovskite ABO,

® Sr ()

N

B e |

N

=y
— N

i

N

close packed ~

Sr,0 layer

Table 1.17  Some compounds with the perovskite structure

Compound a(A) Compound a(h)
KNbO, 4.007 SrTiO, 3.9051
KTaO, 3.9885 S1ZrO, 4.101
K10, 4.410 SrHfO, 4.069
NaNbO, 3915 SrSn0O; 4.0334
NaWO, 3.8622 SrThO,

LaCoO, 3.824 CsCaF, 4,522
LaCrO, 3.874 CsCdBr, 5.33
LaFeO, 3.920 CsCdCl, 5.20
LaGaO, 3.875 CsHgBr, 5.97
Lavo, 3.99 CsHgCl, 5.44
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Spinels

Spinel AB,0,
©@o oa

B site — one metal with six
nearest-neighbor oxygens.
Octahedral site

© Mg

A Site - one metal with four

nearest-neighbor oxygens.
Tetrahedral site

Normal

[A] tet [B2]OCIO4

Inverse

[B]*“[A, B]*“O,
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Spinels Table 1.19(a) Some compounds with the spinel

structure
Crystal Type a(A) Structure
MgAl, O, 2,3 8.0800 Normal
Normal CoAlLO, 23 8.1068 Normal
guCrzS4 2,3 9.629  Normal
uCr,Se, 2,8 10.357  Normal
[A] tet [Bz] ogt 04 CuCryTe, 23 11051  Normal
MgTi,0, 2,3 8474  Normal
Co,GeO, 2,4 8318  Normal
Fe,GeO, 2,4 8411 Normal
MgFe,0, 2,3 8389  Inverse
| nverse NiFe,0, 2.3 83532  Inverse
Mglnzo‘l 23 8.81 Inverse
tet oct gIn,S, 2,3 10.708 Inverse
[B] [A, B:l 04 Mg, TiO, 2,4 8.44 Inverse
Zn,5n0, 2,4 8.70 Inverse
Zn,TiO, 2,4 8467  Inverse
LIAITiO, 1,3,4 8.34 Li in 8a
LiMnTiO, 1,3,4 8.30 Li in 8a
LiZnSbO, 1,2.5 8.55 Li in 8a
LiCoSbO, 1,25 8.56 Liin 8a

In order to explain the adoption of a particular cation distribution in a spinel structure, one must take into
account the crystal field stabilization energies (CFSE) of the transition metals present. Some ions may have
a distinct preference for the octahedral site depending on the d-electron count. If the A2* ions have a strong
preference for the octahedral site, they will displace half of the B3* ions from the octahedral sites to
tetrahedral sites. Similarly, if the B3* ions have a low or zero octahedral site stabilization energy (OSSE),
then they will occupy tetrahedral sites, leaving octahedral sites for the A% ions.
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DEFECTS IN SOLIDS

No real crystal is perfect. Real crystals feature defects or irregularities
in their ideal arrangements and it is these defects that critically
determine many of the electrical and mechanical properties of real
materials.

Ideally a perfect crystal is the one in which atoms are arranged in
perfectly regular manner in all directions. The deviations of crystals
from their perfect periodicity are called defects or imperfections.

These imperfections can be of different types such as:

point defects (zero—dimensional defects),
line defects (one—dimensional)

defects over a surface or a plane (two—dimensional) and volume
defects (three—dimensional).
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Point Defects

A point defect is a very localized imperfection in the regularity of a
lattice and it does not spread over more than one or two lattice
spacings. These defects are observed in metallic crystals (vacancies,
substitutional impurity and interstitials) as well as in ionic crystals
(Schottky and Frenkel) and are discussed here in brief.

Vacancies

The absence of an atom or ion from a normally occupied site in a
crystal is called a vacancy (see Fig.)

Substitutional Impurity
In this kind of defect, a foreign atom occupy a regular site in the
crystal structure (see Fig.), i.e., .substitutional atom replaces the
host atom from its position. For example, when a pure
semiconductor crystal of Silicon or Germanium is doped with a
trivalent or pentavalent impurity, we call it a substitutional
impurity.
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Interstitial Impurity

An interstitial is an atom or ion which can be inserted into the
voids between the regularly occupied sites. In a closed packed
arrangement of atoms the packing fraction is generally less
than one. Therefore an extra atom, of smaller size than the
parent atom, can enter the interstitial space without
disturbing the regularly positioned atoms. Such an extra
impure atom is called interstitial impurity while an extra
atom in an interstitial position is called self — interstitial
atom,as shown in Fig. If the size of the extra atom is not small
then it will produce atomic distortion.
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CHEMICAL COMPOSITION OF GEMSTONES
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Emerald and Ruby:
Cr3* impurities

Cr,0;: green
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Charge compensation: vacancy formation

8,858

When a divalent cation replaces a monovalent cation, a
second monovalent cation must also be removed, creating
a vacancy.
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Charge compensation: change in oxidation state

00 069
@ PO
090 090

When a divalent cation replaces a monovalent cation, an
anion must change its oxidation state.

62



Schottky Defect

In a metal, a vacancy is created if an atom is missing from its
lattice position. In ionic crystals, a cation — anion pair will be
missing from the respective lattice sites, as shown in Fig. Creation
of such a pair, of one cation vacancy together with one anion
vacancy, is called Schottky defect. Thus the interior of the ionic
crystals remain electrically neutral.

Frenkel Defect

When an atom or ion leaves its normal position or site and is
found to occupy another position in the interstice we get a Frenkel
defect. Thus, in this case, two imperfections are created — an
interstitial and a vacancy as shown in Fig. Normally anion leaves its
parent site and occupy the interstitial space. These defects are
dominant in open structures such as silver halides. Also a Frenkel
defect does not affect the electrical neutrality of a crystal.
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(a) Shottky defect

(b) Frenkel defect

64



Concentration of Schottky defects

= Nei%“"

n = number of vacancy pairs
N = total number of sites

E = energy required to produce a pair of vacancies in the interior of a crystal

Concentration of Frenkel defects

n o= (NNJ)%e_E%"T

n = number of vacancies = number of atoms in interstitial sites
N = total number of sites

N, = number of interstitial positions in the crystal
E; = energy required to produce a pair of vacancies in the interior of a crystal
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Line Defects: Dislocations

Edge Dislocations Crystal defects/ Dislocations
First elementary dislocation type:
edge dislocations Dislocation geometry

Second elementary dislocation type: screw dislocations

Edge dislocation:

Burgers vector perpendicular
todislocation line.

Screw dislocation:

Burgers vector parallel to
dislocation line.

‘::j‘:l (o —
Looks like a parking
ramp
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Stacking faults

Errors in crystals packing

twin
domain 1

twin

domain 2

Domains formation

grain 1
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Electronic properties of materials

Justify:
- Electron transport properties
- Optical properties
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Metallic bond: LCAO model

Molecular orbital for N atoms:

1 2 3 4 N atoms

Fig. 2.16 Splitting of energy levels on molecular
orbital theory

Metallic bond

Overlapping of the energy states deriving for
higher occupied and lowest unoccupied atomic
orbitals: electrons are allowed to spread around
over all the atoms in the “molecule” (= crystal).

\

ENERGY

In the case of Na
(and other metals)

57
bt

S
X

3p
ﬁ’/ 3s
A
© ¥
2s

1s

o
Interatomic distance —

Fig. 2.17  Effect of interatomic spacing on atomic energy
levels and bands for sodium, calculated using tight
binding theory. Shaded areas represent bands of energy
levels, formed by significant overlap of atomic orbitals on

adjacent atoms
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Metallic bond: LCAO model

In the case of Si:
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Free Electron Model

| |
air , vacuum------ |----metal------ jm - air , vacuum
I I
T Work
| function,
£ —FERMI ENERGY, EF
PE

Fig. 2.18  Free electron theory of a metal; electrons in a potential

well
In one dimension: In 3D (crystal):
h  d*¥y h? /mZ ni n?
—————=(E-V)¥ = ——+—=+—
8m?m, dx? ( ) E Sme(a2 4 b? * ¢

Many states with the same energy!!!!

V=0, Weop = 0; Wy=q

n?h?
" 8m,a?
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Free Electron Model

Density of states

2(2m,)3/?VE/?
N(E)dE = T dE

Fermi-Dirac “filling” function

fep (E)=(E—T

e T 41

(7)_ K
K
N(E)
Occupied
energy
levels

£e ENERGY ™

Fig. 2.19 Density of states plot on the free
electron theory

EF = Fermi Level

Energy of the highest
occupied state at 0 K
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Band structure model

VAV aVaVaVs

+ distance

PE

Fig. 2.20  Potential energy of electrons as a function of distance through a
solid

| e
ME) LEVELS
ENERGY —

Fig. 2.21 Density of states on band theory

Electrical properties of a material depend on the filling of bands




Band structure model: metal

1 Valence band
el
empty levels

A A,
/occupled levels

Fig. 2.22 Band structure of a metal

T Be
NE) J
25 20

.

Fig. 2.23 Overlapping band structure of
beryllium metal
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Band structure model: insulator

hc 1240

Mum)= £ v~ E V)

Diamond

ME)

e

BAND GAP

~6 eV
full empty
£

Fig. 2.24 Band structure of an insulator, carbon (diamond)
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Intrinsic semiconductor

Eg
Band Gap
max 3.2-3.3 eV

E; Fermi level
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Extrinsic semiconductor

n-type

Ep
Ep Donor level

=

Electron

Covalent Bond

Fermi
level

A

Acceptor
level
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Electron-hole formation

Energy

Conduction
band

Energy gap

{ -
TAAAAA
Valence e
band BAAAA
7 AN

Electron-hole pair
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Direct band gap

Energy

Conduction
band

Direct
recombination

Valence
band

Photon

Momentum

Energy

Indirect band gap

Conduction
band

Phonon

Indirect band-edge
recombination

Valence

band

Momentum
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Tauc plot

ahv = A(hv — Eg)]'1

Direct

n = 1/2 for direct allowed

transitions

n = 2 for indirect allowed transitions

Indirect

(ohv)’ (€V)
&

(@) (V9

T r
15 20 30

25

hv (eV)
Material
CoWQ+4
NiWO4

CuwQ4
ZnWO04

a 0 T o

s 40 15 20

Colour Dir(eef;)Eg
Blue 268
Ochre 2.95
Brown-Green 2.41
White 5.85

2'5 3‘0 3'5 40
hv (eV)

Indirect Eg
(eV)
1.80
1.82
1.78
3.14
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Current Flow in n-type Semiconductors

* The DC voltage source has a
positive terminal that attracts
the free electrons in the
semiconductor and pulls
them away from their atoms

IeaVIng the atoms ChargEd Direction of Electron Flow
positively.

. EIectronls f]{orzn the nlegative
terminal of the supply enter =y v
the semiconductor material E illioifoncdibeiionki i
and are attracted by the ! N-type Semiconductor :
positive charge of the atoms : i
missing one of their i P i g O
electrons. I

+ Current (electrons) flows © Electron v e ol

from the positive terminal to
the negative terminal.
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Current Flow in p-type Semiconductors

* Electrons from the negative
supply terminal are attracted
to the positive holes and fill
them.

* The positive terminal of the
supply pulls the electrons

Direction of Hole Flow

from the holes leaving the @@ <@ D<@ <@
holes to attract more | @@ @@@® [
electrons. 28 CAaCha Chachachac)

the negative terminal to the
positive terminal.

1 I
1 I

* Current (electrons) flows from i P-type Semiconductor i
| :
1

Current Current ;

* |nside the semiconductor I
current flow is actually by the =~ @"oe DCVolign Source
movement of the holes from
positive to negative.
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p-n junction

E

P - sid N - side
I:-II:_I bt — N 4
Neutral n-region | | Neutral p-region i IE“ev
1 | 1
O -0 © GG)) Cf)i) ©, 0+« 06 Er E .
= S & + Ev 1
0,2 © L 06 0 06,° : |
- O e + s Electron energy | ! Ew
© 09 oio_o+2, 0 ~ : .
+* et
© - O ToioW 0'0 Mooron
Distonce Region
No {Donor) PL[R; Ny (Acceptor) *
D
I (milliamps)
A B
4.1 forward
s
2 f24 -
l—leakaqe current 1| v
N M [ 1 7 T I (| [ | L
$ -5 -4 3 -2 —11 01 2 I (volts)
reverse
c = [
reverse = = —’i—
breakdown l aa g}
v
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Solar cells

electron Energy
EC . .\ \

\. -
Front W = Back
side hole side
Best Research-Cell Efficiencies #ENREL

Efficiency (%)




Surfaces

Represent the place in which the solid interacts with the environment.

<01>

<> <ll>

Atoms on the surface have different chemical
environment with respect to those in the bulk.

*  Vertex
*  Corner Different coordination number
e  Facet

Number of superficial atoms

Metal dispersion =
Total number of atoms
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Surfaces

quantifies the disruption of intermolecular

Surface energy Yy ==
aA bonds that occur when a surface is created.

AGi = Z ]/]0]
J

represents the difference in energy between a real crystal composed of i molecules
with a surface and a similar configuration of / molecules located inside an infinitely large
crystal. This quantity is therefore the energy associated with the surface.

The equilibrium shape of the crystal will then be that which minimizes the value of AG;.
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Metal surfaces

Jloo1) loon]

o0

=4

[o11) [T10)

a.

b [011] b [001]

(a) fee (100) (b) fec (110)

001)
[oo]

(c) fec (111)

Figure 2-8 Unreconstructed surfaces of the face-centered cubic (fec) erystal surfuces. a, is the
lattice constant of the crystal. a and b are the unit-cell veetors. / is the distance between the first

and the second layer, (a) fee (100): (2 - “z-l-;. .and = "a,. T obtain the sccond Iayer,

shift the first layer by a1 in the plane, then L, in the [T00] direction. (b) fec (110):

4~ To obtain the secand layer, shift the first layer by La.+ %h

] -
obtain the second layer, shift the first layer by " “b in the plan, then “= g, in the [111]

direction,
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Metal surfaces

wlo01) ool

(3) bee (100) l¢) bee (21

Figure 2.9 U d surfaces of the body d cubic (bec) erystal surfaces. a, is the
lattice constant of the erystal. a and b are the unit-cell vectors. # is the distance between the first

and the second layer. (a) bee (100): |a (= bj=q,, and . Ta obtain the second layer, shift

the first layer by LaLb in the planc, then L, in the [100] direction. (by bee (110)

. Shift the first layer by L b in

20 |bj=a,. and n the second lay

Z

n. () bee (111): [l b= 2a,. and ) (’:..

the plane, then L. in the [170] dire

obitain the second layer, shift the first layer by

b in the plane,

dircetion.
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Metal surfaces — High-Miller-Index Stepped Surface

4(111) x (100)

6(111) x (100)

8(111) x (100)

fee (533)

fec (755)

fee (977)

fec (331)

fec (332)

fee (443)
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Metal surfaces - Superlattice

fcc (100) — (2x2)

fee (100)-(1X 1) fee (100)-(2X2) fee (100)-c(2 X 2) or

I'ccflnm—t\/i x -,/5 JR45°




Metal surfaces - Superlattice

fcc (111) — (2x2)

" . B T i
fec (111)-e(2% 2y or fee (1111043 x 3 IR30
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Metal surfaces - Superlattice

Superlattice Unit Cell

Substrate Abbreviated Notation Matrix Notation
10
fee(100), bee(100) p(1x1) ‘n 1‘
f~ 1 -1
22 =@ V2 x V2 et ‘1 \ ‘
‘: ol
pl2x1) jo 1|
p(lx2)
p(2x2)

f e 5
2V2 x¥2)pase

fee(111)(60° between basis vectors) p(2 x 1)

p(2x%2)
£ R
(v3 « \f‘)asn“
fee(110) pl2 % 1) I ““
p3x1) e
i
2x2) [
bee(110) pl2x1) |“ 9
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Metal surfaces - Reconstruction

Pd(110)

—— [001]

2y IllV Tlllﬂl

2 e 72T 1 71
I N - =

,_ P p— [CLEN
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Metal surfaces - Reconstruction

A. Top views

Au(111)-(22x v/3) Au(100)-(hex)

B. Profile views

0000900000000 00909080 ¢

Au(111)-(22xv/3)

Au(100)-(hex) Au(100)-(hex) A(1o).(1)

Au(110)-(1x2)

Au(110)~( 1x3)
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Metal surfaces - Reconstruction

(7x7) Reconstruction of Si (111)

19 dangling bonds of (7x7) reconstructed surface
(12 adatom, 6 rest atom, 1 corner hole)
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Coverage of adsorbate molecules

%4

¢
E
¢
[
>
e

&

Definition of coverage: one monolayer corresponds to one adsorbate atom or
molecules for each unit cell of the clean, unreconstructed substrate surface.
For example, the surface coverage of atom on fcc(100) is one-half a monolayer.
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Metal surfaces — Adsorbate induced reconstructuring

-

Ni (100) - ¢(2x2) - C

3D view of Ni (100)-¢(2x2)-C

Top view

Ideal fec (100)-c(2x2)-C Ni (100)-c(2x2)-C with

substrate restructuring

Carbon chemisorption induced restructuring of the Ni (100) surface.
Four Ni atoms surrounding each carbon atom rotate to form reconstructed substrate.
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Metal surfaces — Adsorbate induced reconstructuring

3D view of Fe (110){2x2)-$

Fe (110) — (2x2)-S

TN
‘.’I'.‘I‘.’

Top view

418%
(0)1\041(0)
B

1! ®:
.IQOQI(O)I.
(K X XD
Ideal fce (110)-(2x2)-S Fe (110)-(2x2)-S with
substrate restructuring

S-Fe (110), Sulfur-chemisorption-induced restructuring of the Fe(110) surface.
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Metal surfaces — Adsorbate induced reconstructuring

Sulfur-chemisorption-induced restructuring of the Ir (110) surface

3D view of Ir (110)-(2x2)-25

Top

Ideal fec (110) Ir (110)(2%2)-25

fce(111) surface restructure more frequently upon chemisorption than do the closer-
packed crystal faces.
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lonic material surfaces

Polar/Non-polar surfaces
el Stable ter Type li

Not stable

P W Tasker 1979 J. Phys. C: Solid State Phys. 12 4977

Type 1 is neutral with equal numbers of anions and cations on each plane and type 2 is charged
but there is no dipole moment perpendicular to the surface because of the symmetrical stacking
sequence. Both these surfaces should have modest surface energies and may be stable with
only limited relaxations of the ions in the surface region. The type 3 surface is charged and has a

dipole moment in the repeat unit perpendicular to the surface. This surface can only be
stabilised by substantial reconstruction.
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lonic material surfaces

(a)

001
(6%)

101
(94%)

o2

BB
a B" N ‘1'-

h Wy el
0.40

R e e,
h o W
-0.59

® , ®» Il

S Ve W
e e
[ E - n -0_

-0.85
(101) Surface
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lonic material surfaces
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