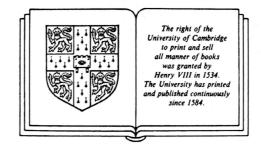
LEZIONE 5-6

VORTEX ELEMENT METHODS FOR FLUID DYNAMIC ANALYSIS OF ENGINEERING SYSTEMS

R. I. LEWIS

Professor of Fluid Mechanics and Thermodynamics University of Newcastle upon Tyne



CAMBRIDGE UNIVERSITY PRESS

Cambridge

New York Port Chester

Melbourne Sydney

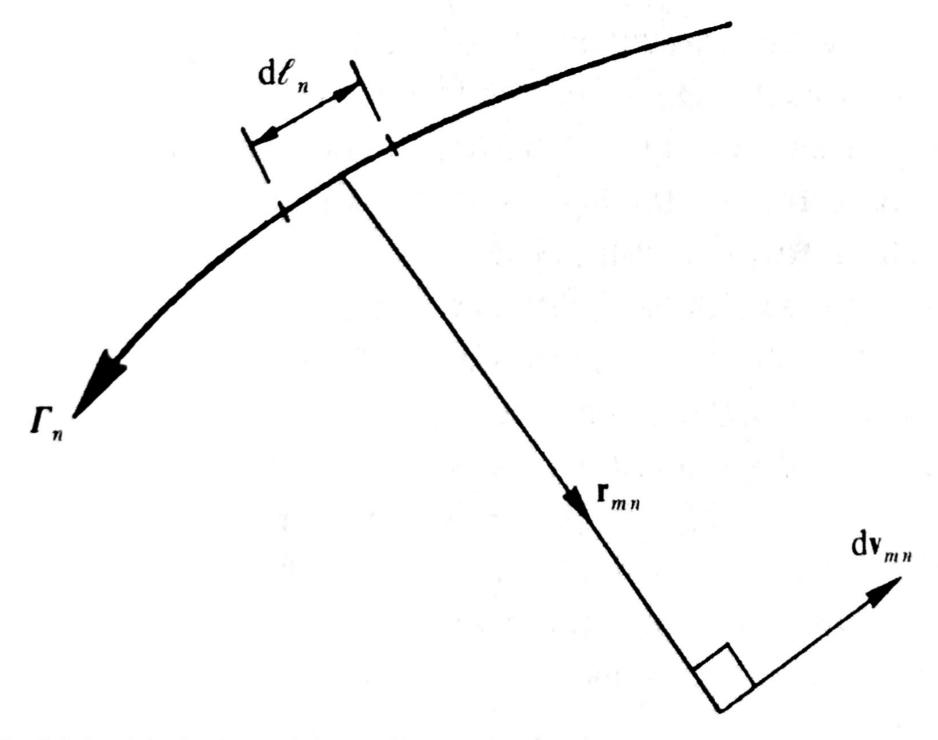


Fig. 1.2. Velocity induced by a line vortex element.

velocity induced at m by a small line vortex element at n of strength Γ_n per unit length* and of length dl_n is given by the Biot-Savart law, namely, with reference to Fig. 1.2,

$$d\mathbf{v}_{mn} = \frac{\Gamma_n \, dl_n X \mathbf{r}_{mn}}{4\pi r_{mn}^3} \tag{1.8}$$

By taking the cross product of dv_{mn} with the unit vector i_m normal to the surface at m twice, we obtain the velocity parallel to the surface at m induced by the line vortex element. Thus

$$d\mathbf{v}_{smn} = \mathbf{i}_{m} X (d\mathbf{v}_{mn} X \mathbf{i}_{m})$$

$$= \frac{\mathbf{i}_{m} X ((\mathbf{\Gamma}_{n} X \mathbf{r}_{mn}) X \mathbf{i}_{m}) dl_{n}}{4\pi r_{mn}^{3}}$$
(1.9)

Physical significance of the surface vorticity model

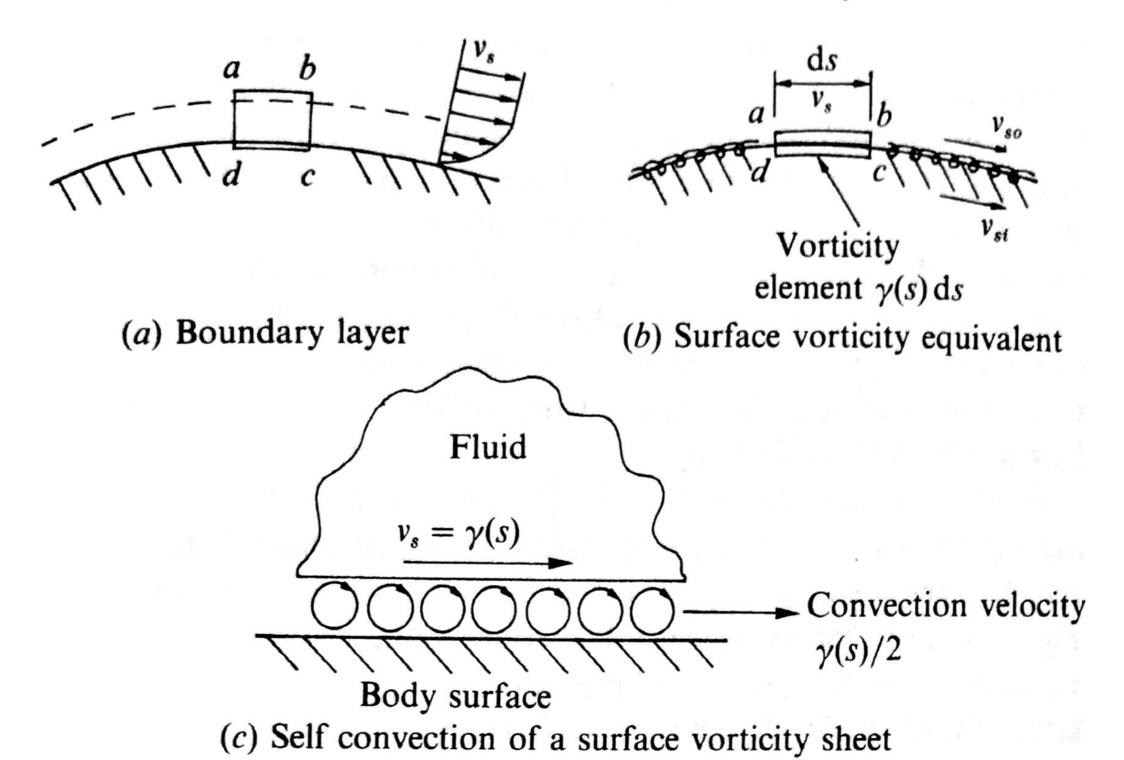


Fig. 1.3. Boundary layer and surface vorticity equivalent in potential flow.

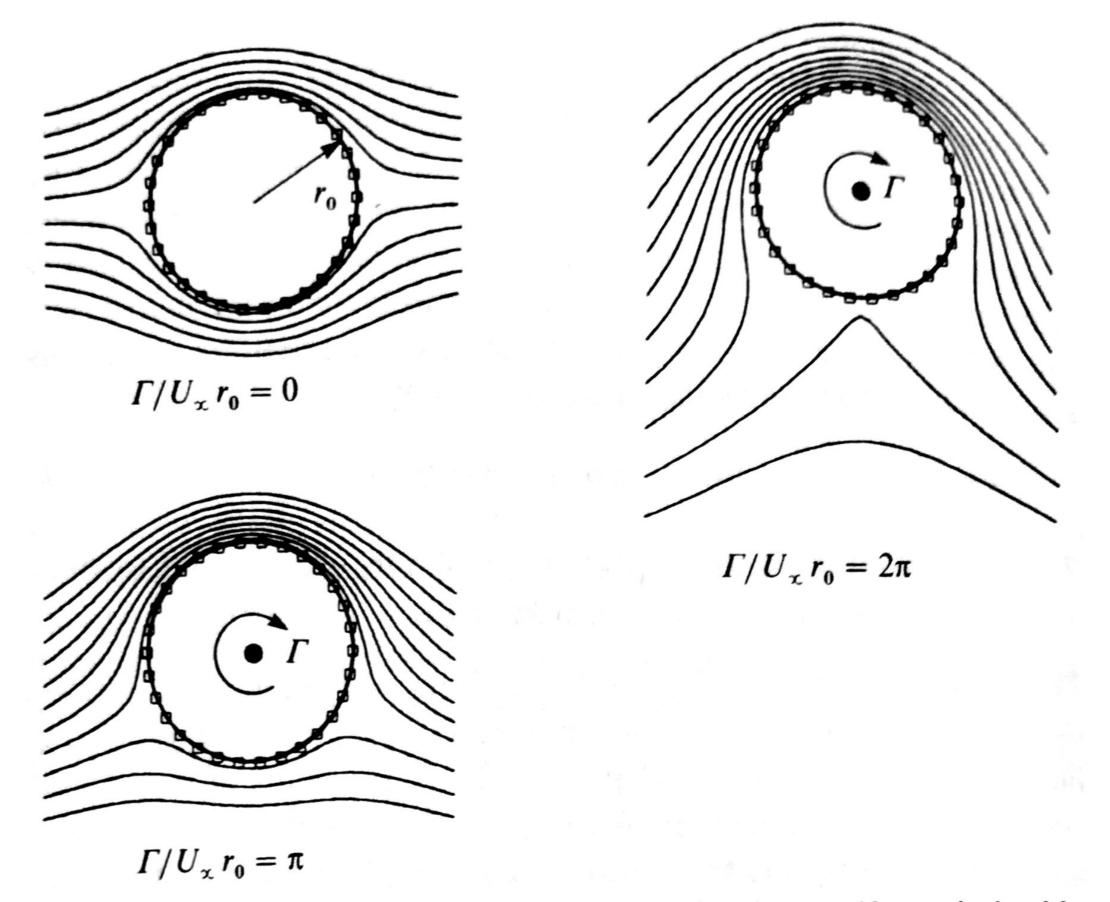


Fig. 2.1. Flow induced by cylinder with circulation in a uniform derived by the surface vorticity method.

through α_{∞} that this expression transforms to

$$v_s = 2W_\infty \sin(\theta - \alpha_\infty) + \frac{\Gamma}{2\pi r_0}$$
 (2.2a)

As shown by Glauert by integrating the surface pressure on the cylinder, a lift force L is generated in the direction normal to W_{∞} given by the Magnus law.

$$L = \rho W_{\infty} \Gamma \tag{2.3}$$

Introducing the usual definition of lift coefficient

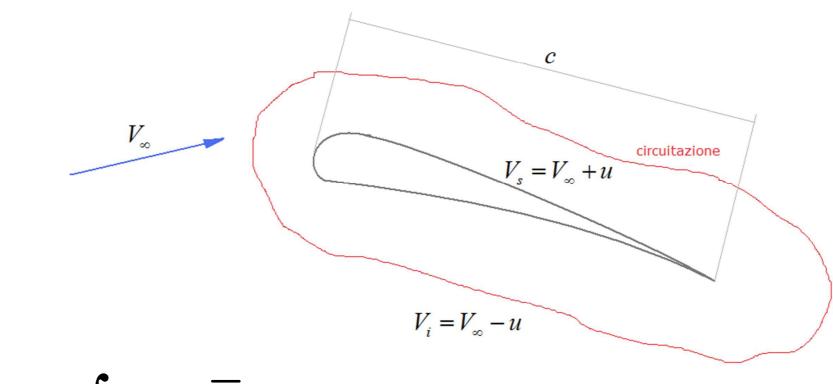
$$C_L = \frac{L}{\frac{1}{2}\rho W_{\infty}^2 \ell} \tag{2.4}$$

where ℓ is a typical dimension of the body, in this case its diameter $2r_0$, we have

$$C_L = \Gamma/W_{\infty} r_0 \tag{2.5}$$

The dimensionless parameter $\Gamma/U_{\infty}r_0$ previously referred to is in fact the lift coefficient with uniform stream U_{∞} . To estimate the

teorema di Kutta-Jukowsky

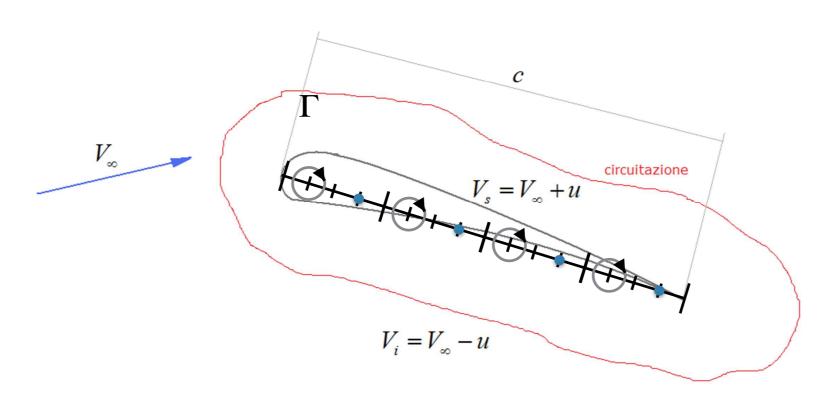


$$\Gamma = \oint_{\ell} \overline{v} \cdot d\overline{\ell} \qquad L = \rho \Gamma V_{\infty}$$

$$\Delta p = p_i - p_s = \frac{1}{2} \rho \left(V_s^2 - V_i^2 \right) = 2\rho u V_{\infty}$$

$$\Gamma = 2cu$$

Metodo delle singolarità vorticose

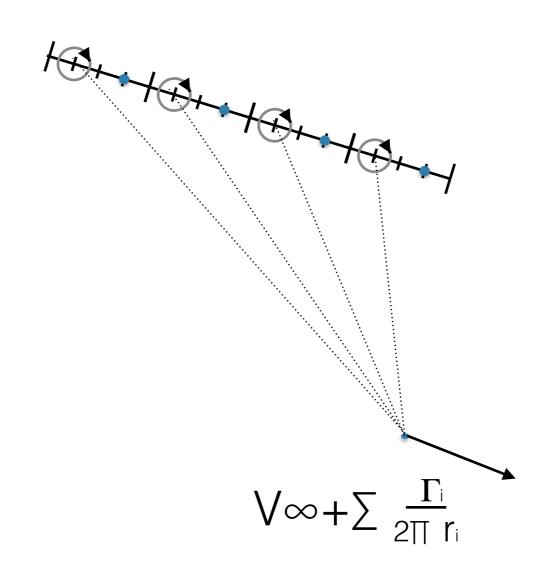


$$\Gamma = \oint_{\ell} \overline{v} \cdot d\overline{\ell} \qquad L = \rho \Gamma V_{\infty}$$

$$\Delta p = p_i - p_s = \frac{1}{2} \rho \left(V_s^2 - V_i^2 \right) = 2\rho u V_{\infty}$$

$$\Gamma = 2cu$$

Metodo delle singolarità vorticose



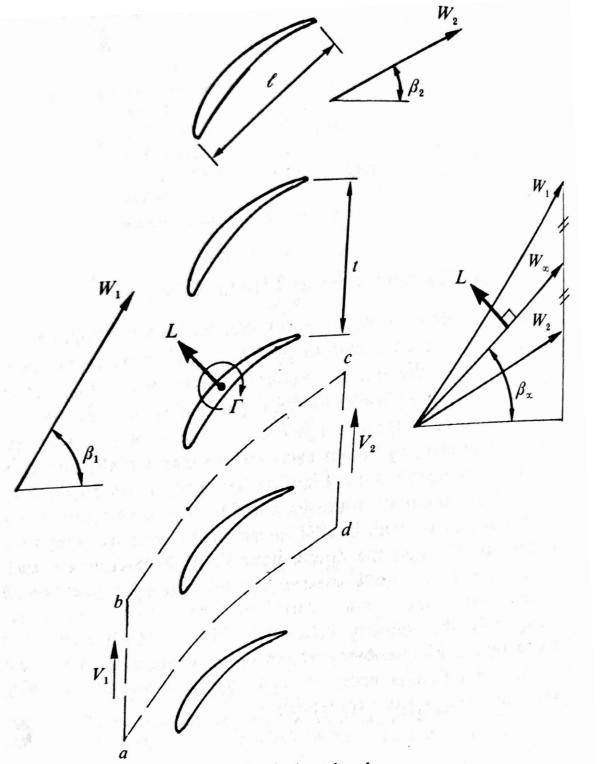


Fig. 2.12. Cascade geometry and velocity triangles.

Turbomachine linear cascades

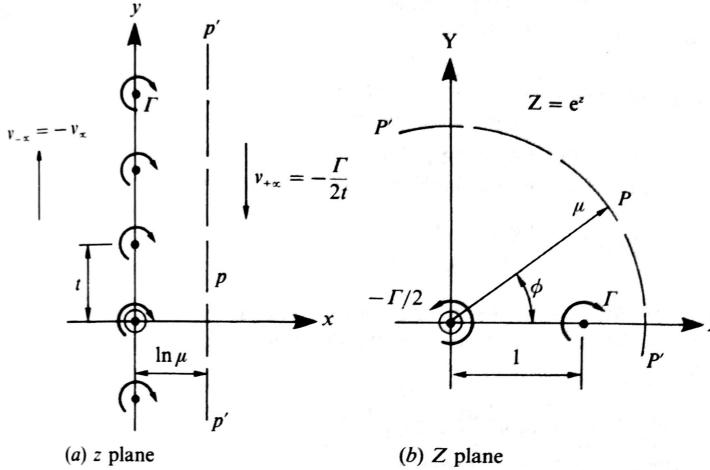


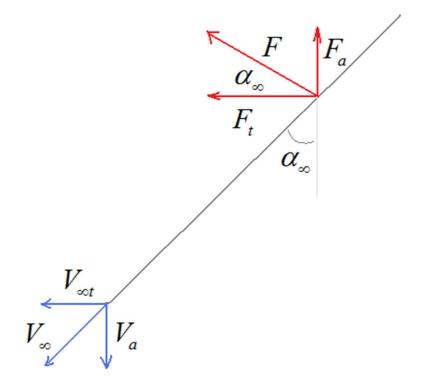
Fig. 2.13. Transformation of vortex array in z plane to vortex pair in Z plane.

Schiere di pale

$$\Delta p_0 = 0$$
 ipotesi perdite nulle

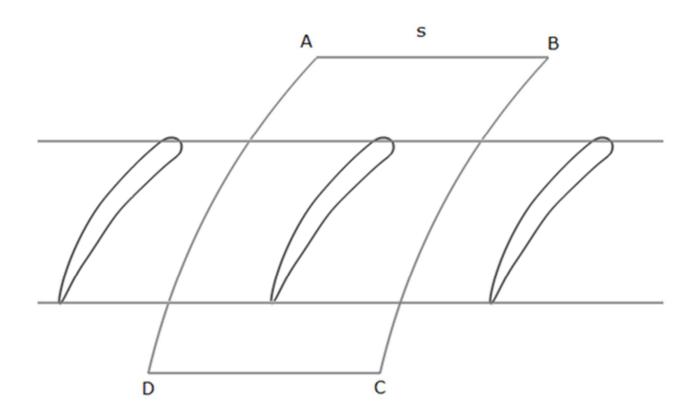
$$F_a = s\rho V_{\infty t} \left(V_{2t} - V_{1t} \right)$$
$$F_t = s\rho V_a \left(V_{1t} - V_{2t} \right)$$

$$\frac{V_{\infty t}}{V_a} = -\frac{F_a}{F_t} = \tan \alpha_{\infty}$$



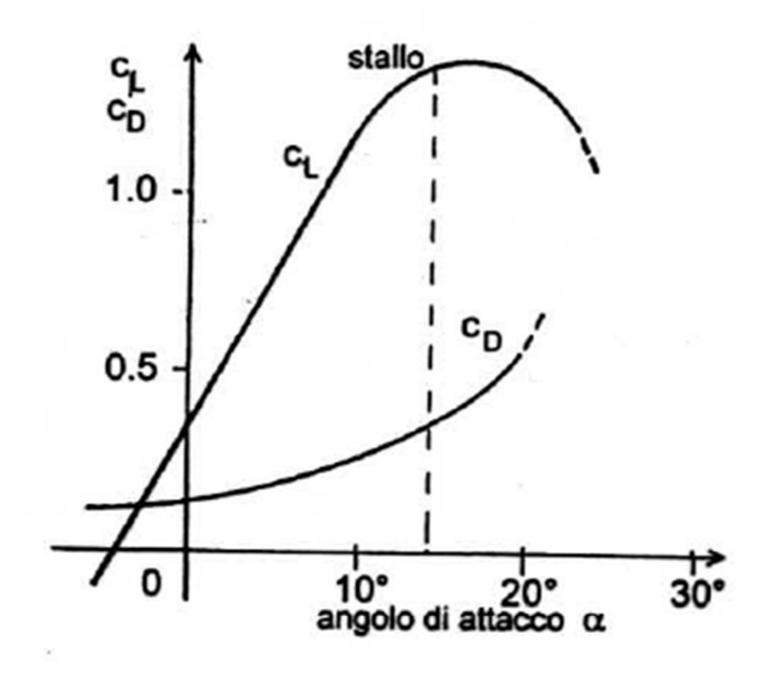
$$F = \frac{F_t}{\cos \alpha_{\infty}} = \rho \frac{V_a}{\cos \alpha_{\infty}} s(V_{1t} - V_{2t}) = \rho V_{\infty} s(V_{1t} - V_{2t}) = L$$

Schiere di pale

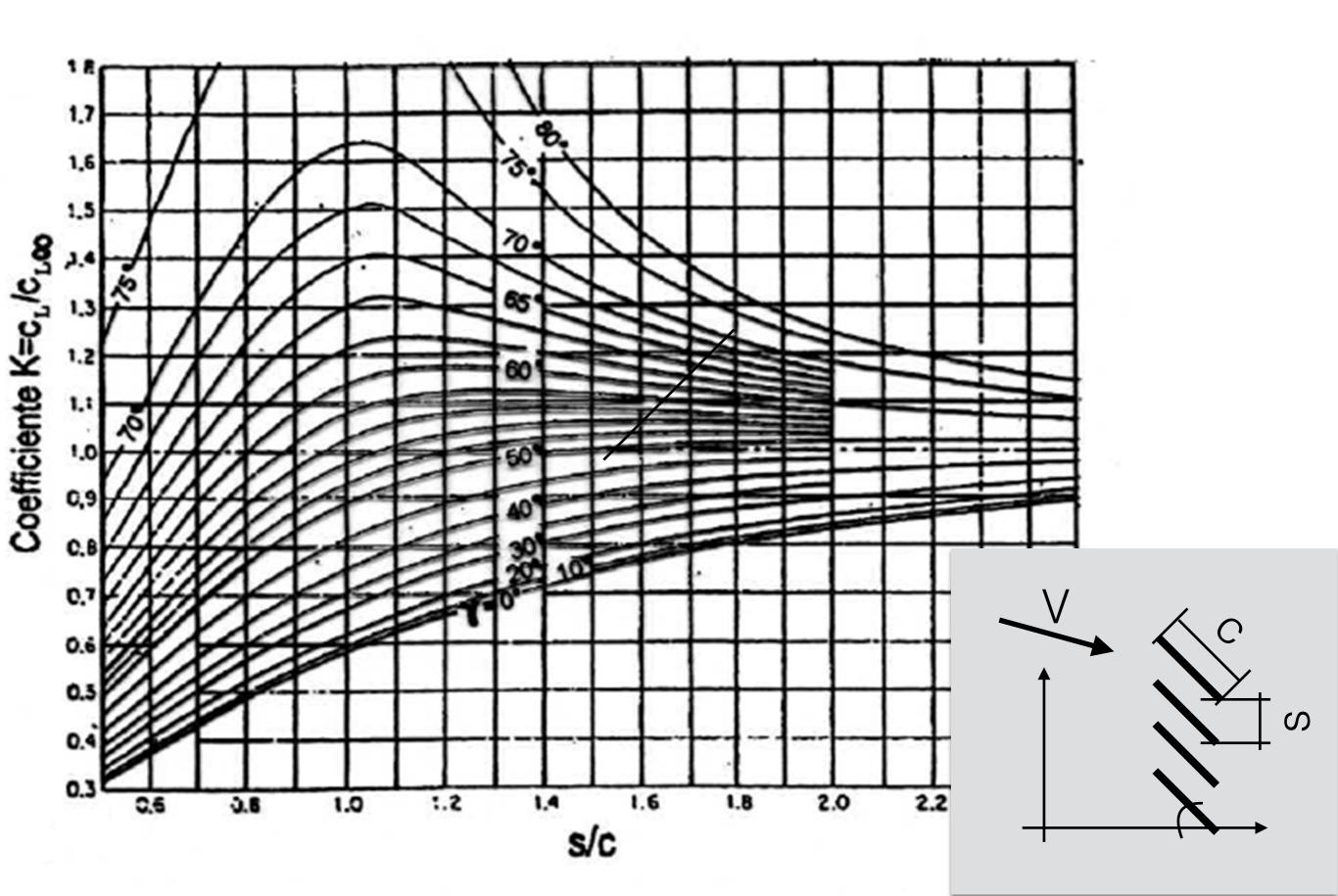


$$\Gamma = s(V_{1t} - V_{2t}) \longrightarrow L = \rho V_{\infty} \Gamma$$

Effetto schiera sulle prestazioni del profilo



Effetto schiera sulle prestazioni del profilo



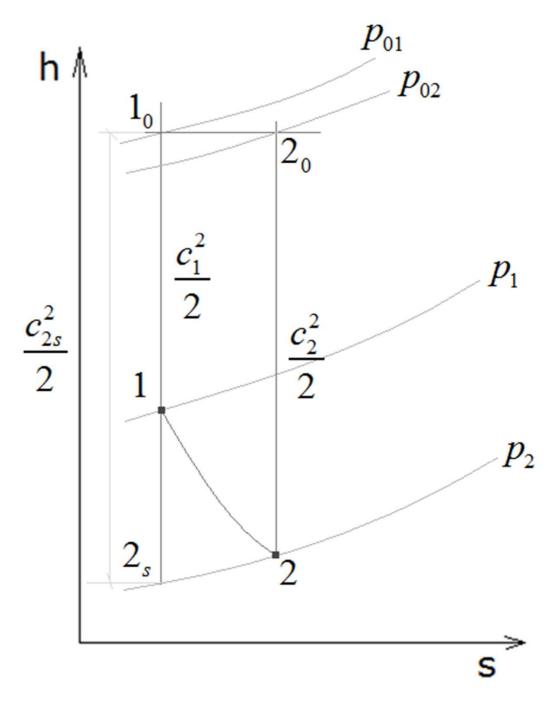
ugelli e diffusori

Distinguiamo due casi:

- 1) Nell'elemento abbiamo un incremento di velocità a spese di una riduzione di pressione. Questi saranno gli *ugelli*.
- 2) Nell'elemento l'energia cinetica diminuisce ed aumenta la pressione. Questi saranno i *diffusori*.

ugelli

$$\eta_{is} = \frac{h_1 - h_2}{h_1 - h_{2s}} = \frac{\frac{c_2^2}{2} - \frac{c_1^2}{2}}{\frac{c_{2s}^2}{2} - \frac{c_1^2}{2}} = \frac{c_2^2 - c_1^2}{c_{2s}^2 - c_1^2}$$



ugelli

(Ma < 0,3)

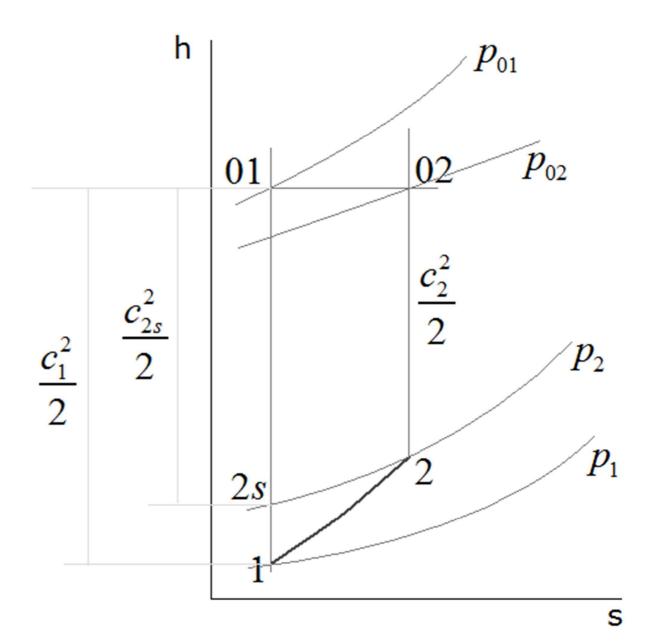
$$p_{01} = p_1 + \frac{1}{2}\rho c_1^2 \quad \Rightarrow \quad c_1^2 = \frac{2}{\rho}(p_{01} - p_1)$$

$$p_{01} = p_2 + \frac{1}{2}\rho c_{2s}^2 \quad \Rightarrow \quad c_{2s}^2 = \frac{2}{\rho}(p_{01} - p_2)$$

$$p_{02} = p_2 + \frac{1}{2}\rho c_2^2 \quad \Rightarrow \quad c_2^2 = \frac{2}{\rho}(p_{02} - p_2)$$

$$\eta_{is} = \frac{p_{02} - p_2 - (p_{01} - p_1)}{p_{01} - p_2 - (p_{01} - p_1)} = \frac{p_{02} - p_2 - (p_{01} - p_1)}{p_1 - p_2} = 1 - \frac{\Delta p_0}{p_1 - p_2}$$

$$\eta_{is} = \frac{h_{2s} - h_1}{h_2 - h_1} = \frac{c_1^2 - c_{2s}^2}{c_1^2 - c_2^2}$$



(Ma < 0,3)

$$\eta_{is} = \frac{p_{01} - p_1 - (p_{01} - p_2)}{p_{01} - p_1 - (p_{02} - p_2)} = \frac{p_2 - p_1}{p_2 - p_1 + (p_{01} - p_{02})} = \frac{1}{1 - \frac{\Delta p_0}{p_2 - p_1}}$$

coeff. recupero di pressione: $c_p = \frac{p_2 - p_1}{p_{01} - p_1}$

(Ma < 0,3)

Legame tra c_p e η_{is}

$$\eta_{is} = \frac{p_2 - p_1}{p_2 - p_1 + (p_{01} - p_{02})}$$

$$\frac{1}{\eta_{is}} = \frac{p_2 - p_1 + (p_{01} - p_{02})}{p_2 - p_1} = \frac{p_{01} - p_1 - (p_{02} - p_2)}{p_2 - p_1} = \frac{1}{c_p} - \frac{p_{02} - p_2}{p_2 - p_1}$$

$$c_{pi} = \frac{p_2 - p_1 + (p_{01} - p_{02})}{p_{01} - p_1}$$

(Ma < 0,3)

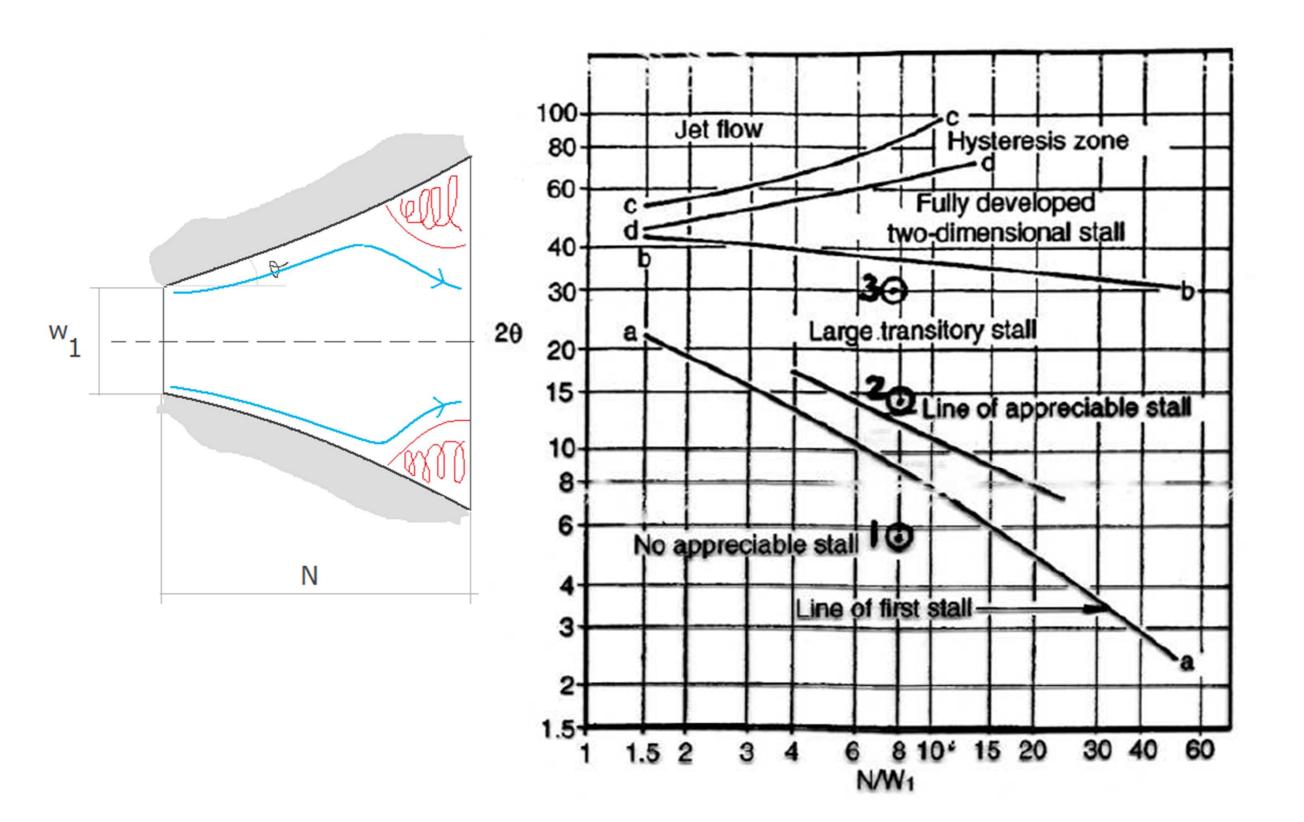
$$p_2 = p_{02} - \frac{1}{2}\rho c_2^2$$

$$p_1 = p_{01} - \frac{1}{2}\rho c_1^2$$

$$c_{pi} = \frac{c_1^2 - c_2^2}{c_1^2} = 1 - \left(\frac{c_2}{c_1}\right)^2 = 1 - \left(\frac{A_1}{A_2}\right)^2 = 1 - \frac{1}{A_R^2}$$

Legame tra c_p , η_{is} e c_{pi}

$$\frac{c_p}{c_{pi}} = \frac{p_2 - p_1}{p_{01} - p_1} \cdot \frac{p_{01} - p_1}{\left(p_2 - p_1\right) + \left(p_{01} - p_{02}\right)} = \eta_{is}$$



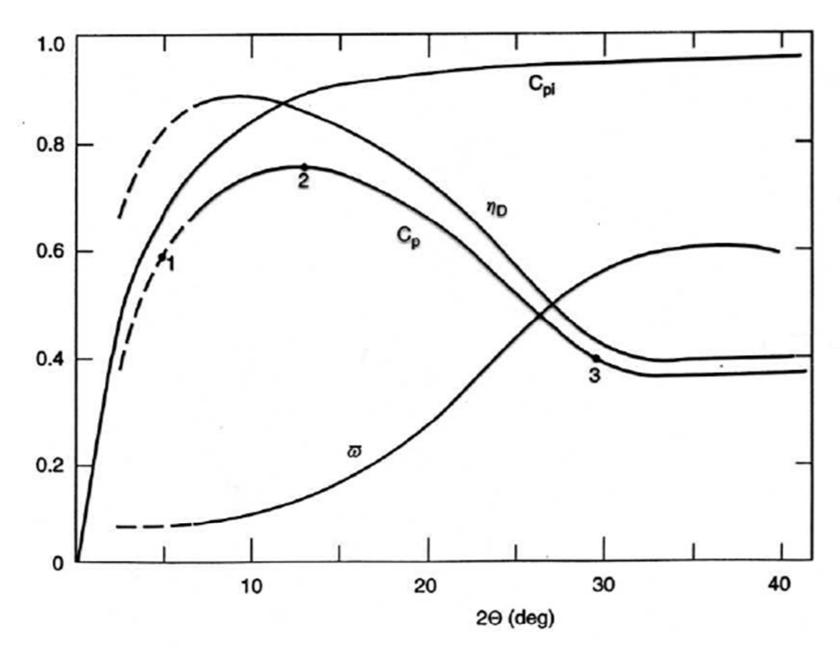


Fig. 2.16. Typical diffuser performance curves for a two-dimensional diffuser, with $L/W_1 = 8.0$ (adapted from Kline et al. 1959).

https://www.youtube.com/watch?
v=JhlEkEk7igs&list=PL0EC6527BE871ABA3&index=8