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Abstract

The first part of these notes is devoted to the way in which the amount of water vapour is quantified, 
then  measured  in  atmospheric  physics.  The  concept  of  humidity  is  presented  and  the  different 
definitions of humidity are discussed. The second part of the lecture deals with the various kind of 
temperatures adopted in the physics of the atmosphere. Temperature are easy to measure quantities 
and deeply related to the energy transfers, for this reason several kids of temperatures are defined 
according to the different processes (transformations) acting on the atmospheric elementary volumes 
(parcels). Many of these temperatures are related to the amount of atmospheric water vapor, then are 
essentially ways to measure humidity.

Measuring moisture in atmospheric sciences

The dependence of saturation vapor pressure by absolute temperature alone helps us in measuring the 
amount of water vapor in atmosphere. Several quantities used to quantify moisture were developed, 
some of them with similar (or even equal names). One of these is absolute humidity which is defined 
as the water vapor density

Ah≡ρ= e
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This quantity is useful when dealing with processes that are strictly related to the bulk amount of 
water vapor in a fixed volume, e.g., absorption of radiation. This moisture measurement is seldom 
used for meteorological purposes and in its place another quantity called specific humidity is used. 
The specific humidity is the ratio between the current water vapor density in a fixed volume (parcel) 
and the total parcel density, that is
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where we used the ideal gas law for the air and water vapor to express specific humidity as a function 
pressures. Remember that p is the total air pressure (i.e., that measured by the barometer).

Another quantity often used in meteorology is mixing ratio defined as the ratio between the water 
vapour density in a parcel and the dry air density (i.e., withdrawing the contribution of water vapour 
to total density). With this definition we obtain
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This means that for almost all the meteorological purposes mixing ratio and specific humidity can be 
considered almost the same (substitute  p=1013 hPa and  e =6.11 hPa in the above formula for a 
check).

Both  the  above  definitions,  even  if  widely  used  in  atmospheric  physics,  have  two  slight 
disadvantages: the first  is that both depend upon air pressure (the same amount of water vapour 
molecules has a different specific humidity and mixing ratio for different air pressures); the second is 
that both specific humidity and mixing ratio do not give any  information concerning where are we in 
respect to saturation.
The first disadvantage is more theoretical than practical (meteorologists are very rude people). In fact 
for the great majority of purposes pressure, during horizontal (equipotential, indeed) displacements, 
just by a few tens of hPa. Try to substitute 1013 hPa with 993 hPa or 1033 hPa to have an idea of 
pressure influence on specific humidity and mixing ratio. 
The second disadvantage is a little bit more tricky. In fact for the great majority of situations, water 
vapour is negligible apart when condensation takes place. In that case even if the amount of water 
vapour is small compared to the remaining atmospheric constituents, because of its latent heat of 
condensation, its presence becomes fundamental for atmospheric (thermo)dynamics.

For this reason meteorologists invented another quantity to quantify moisture in atmosphere, which 
is  relative humidity. Relative humidity is defined as the ratio between the observed water vapour 
amount  and  the  saturation  for  the  observed  parcel's  fixed  temperature.  The  definition  seems 
straightforward  but  conceptually  it  depends by the way in  which you define  the “water  vapour 
amount”.  Two definitions are  available  and are used,  the first  recommended by WMO uses the 
mixing ratio r, the second used in the great majority of applications and textbooks uses the specific 
humidity q. The two definitions of relative humidity follow here below
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The fact we used the same acronym is not due to a typo but that is exactly what is currently done in 
all  the  theoretical  and  operational  activities.  In  other  words  you  cannot  be  sure  what  kind  of 
definition of relative humidity is adopted apart when explicitly written.
In  this  case  Nature  helps  mankind  because  for  almost  all  the  meteorological  purposes  the  two 
definitions give almost the same result. The reason why textbooks recommend specific humidity as a 
moisture quantifier is that with specific humidity relative humidity does not depend upon pressure 
(neither slightly).

Relative humidity, often represented in percent values, gives you all the fundamental information 
you  need  concerning  how  far  we  are  from  saturation,  but  has  the  great  disadvantage  to  be 
temperature dependent, in fact saturation specific humidity (or saturation mixing ratio) depends from 
temperature.  For  this  reason another  moisture  measurement  is  often  used  that  is  the  dew point 
temperature. 



Temperatures in atmosphere

Temperature  is  a  fundamental  variable  for  the  description  and prediction  of  atmospheric 
processes because it gives information concerning the direction in which the exchanges of thermal 
energy  take  place.  But  the  temperature  of  an  air-mass  or  better  of  an  air  parcel  can  change 
accordingly to its evolution, it is useful to introduce several “temperatures” that are not real in the 
sense that they can be currently measured by a simple thermometer, but they are going to be reached 
when an air parcel is subject to a well defined transformation. For this reason these temperatures are 
function  of  the  current  air  parcel  properties  (e.g.  fraction  of  water  vapor,  ...)  and  of  the 
transformation (e.g., isobaric, adiabatic, ...).

Dew point temperature

Dew temperature is defined as the temperature reached by an air-mass when it  is cooled 
isobarically, keeping constant its content of water vapor (e.g, de /dt=0 ), up to the level in which the 
condensation of water vapor takes place.  This temperature can be computed using the Clausius-
Clapeyron equation
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where  es is  the  saturation  vapor  pressure,  T  the  absolute  temperature,  lv the  latent  heat  of 
condensation per unit mass and νv and νw are respectively the specific volume (inverse of density) of 
water vapor and liquid water.

The above equation can be simplified, for atmospheric purposes, keeping in mind that the specific 
volume of water is usually very small compared to the specific volume of vapour (i.e., the density of 
liquid water is usually higher than water vapor density) then we can write
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approximating the behavior of water vapor with an ideal gas we can write es=ρv Rv T that,  when 
inserted into the above equation, becomes
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that can be written in the following, more readable, form 
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where  A=eref exp
lV
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  is  a  constant  that  can be experimentally determined for  a  reference 

temperature T ref . This constant depends, once the reference temperature is fixed, depends only from 
the latent heat of vaporization and from the water vapor “gas constant”. Latent heat of vaporization is 
not strictly constant, but it just slightly decreases with the increasing of temperature (less than 1% for 

the meteorological temperature range, lV≃2.5⋅106 J kg−1

 at 0 °C and l V≃2.3⋅106 J kg−1

 at 100 °C), 
for this reason it can be considered as constant. The above equation states that saturation water vapor 
pressure (over liquid water) is function of temperature only and, once inverted, it can be used to 
determine the dew point temperature of an air-mass, then
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Dew point temperature does not depend from total dry air pressure pd or from other variables than 
its partial vapor pressure e , for this reason it is a good marker of air-masses. In particular dew point 
temperature does not change if we modify its temperature only, then it can characterize an air-mass 
in spite of its diabatic heating due to, as an example, the diurnal cycle.

It can be useful, for didactic purposes, to express dew point temperature as a function of relative 

humidity.  In  fact,  once the  air-mass  relative humidity  rh= e
es

 is  known as  well  as  its  absolute 

Fig.0.  Dew  point  temperature  (solid  line),  temperature  (dashed  line  with  crosses)  and  relative  
humidity (dotted line with ) as measured by the Vivaro weather station (Friuli Venezia Giulia) during  
a tornado event that took place in the day of 4th June 1999 at 09:20 UTC.



temperature,  using the saturation water vapor pressure equation we can obtain its current partial 
vapor pressure e , then according to the isobaric transformation that defines dew point temperature, 
e will stay constant up to the moment in which saturation occurs. For an air-mass characterized by 
the relative humidity rh (expressed in relative values) and the absolute temperature T, the dew point 
temperature T dew  becomes
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T
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Since  l v≫RV T  the above equation states that dew point  temperature is  always lower than the 
observed thermometer temperature and, for a fixed temperature, it increases with the increasing of 
relative humidity, coinciding with the observed thermometer temperature at saturation, that is when 
relative humidity rh=1 .
Before to conclude the part  related to the dew point,  it  is important to compute how dew point 
temperature changes with height.  This can be easily  done simply taking the  z derivative of  the 
equation that gives T dew as a function of vapor pressure e . This differentiation gives
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Since e  is proportional to the dry air pressure pd  by way of the relationship 
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obtained through the definition of mixing ratio r≡e / pd⋅Rd /Rv , the above derivative becomes
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then, using the equation of state for dry air ρ, we obtain
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At  this  point,  assuming  the  hydrostatic  approximation  
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simplify the above equation, that is
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remembering that the dry adiabatic lapse rate is given by the relation Γ d=−g /c p
d , where cd

p  is the 
specific heat at constant pressure for dry air, we can easily show that 
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Substituting the constants and assuming that T dew≈270  and T≈280  (the current values, being in 
the absolute scale, are not extremely important) we will have  Γ dew≈0.2 Γ d . This simple equation 
gives the explanation of the cloud formation. In fact that relationship states that the thermal lapse rate 
of dry air is greater (in absolute value) than the dew point lapse rate. This means that, during the 
adiabatic ascent (cooling), the temperature of dry air decreases more than its dew point temperature. 
This is the reason why a lifted parcel of air might reach saturation. There are some other vapors, in 
any case not relevant under the meteorological point of view, where the dew point lapse rate is 
greater, in absolute value, than that of dry air. For those vapors clouds does not for because of the 
lifting but because of sinking.

Wet bulb temperature

Wet  bulb  temperature  is  defined  as  the  temperature  reached  by  air  when  liquid  water 
ievaporates in it isobarically (e.g., at constant pressure) up to saturation. It is necessary not to confuse 
wet bulb temperature with dew point temperature. In fact dew point temperature is reached after an 
isobaric transformation (i.e., vapor pressure e is kept constant) in which temperature T decreases and 
the mixing ratio  r is kept constant at the same time up to the temperature in which condensation 
occurs, that is 
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On the contrary wet bulb temperature is reached after an isobaric transformation of the air in which 
mixing ratio is increased by evaporation of water and, then, at the same time temperature decreases 
up to the level in which the saturation equilibrium is reached, that is
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Even if this transformation is quite simple to describe, it is not so easy to practically realize it. 
One possibility, that is exactly what is operationally done, is that of producing a steady flow of the 
air we are interested in, over a source of moisture (water). If the flow is enough strong, after a certain 
amount of time that depends from the mass and exposed surface of the moisture source, a steady 
state  is  reached in  which the temperature of  the moisture source is  no more decreasing.  In this 
situation, the amount of thermal energy given by the flow to the moisture source is exactly the same 
amount of energy taken by the evaporation of the moisture source. In fact the flow, at this regime, 
does  not  give  anymore  thermal  energy  to  the  moisture  source,  otherwise  the  moisture  source 
temperature had to increase. At the same time, the source of moisture is not giving anymore thermal 
energy to the air flow, otherwise the air flow temperature had to decrease. This is possible only when 
the outgoing flow of air is saturated and when its temperature is the same of the moisture source, 
otherwise we could not observed the equilibrium.

The so called wet bulb equation (or psychrometric equation) describes the asymptotically 
reached dynamic equilibrium, and it is represented by the following simple relationship



Q given byair=Qabsorbed by evaporation

which is based on the general principle of energy conservation. The first term of the above equation 
can be split into the two components of energy given by the incoming dry air and by water vapor, 
that is

QdQv=Q absorbed byevaporation

the second term can be written keeping into account the mass of liquid water transformed in vapor 
M v and the latent heat per unit mass Lv , that is

QdQv=M v Lv

at this point the thermal energy given by dry air and water vapor can be written using the mass of dry 

air M d and the mass of water vapor M v
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then, dividing by M d and remembering that water vapor mixing ratio is defined as
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the above equation becomes
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If we write as T w  and r s  respectively the equilibrium temperature and the saturation mixing ratio 
reached by the outgoing flow while T  and r  represent the actual temperature and mixing ratio of 
the incoming air, the above equation becomes

c pr c p
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where T w  is the wet bulb temperature of the incoming air.

Wet bulb temperature is an extremely useful quantity in the atmosphere sciences for several reasons. 
First of all it can be used to measure the amount of moisture of the air in fact, knowing the wet bulb 
temperature and the current temperature, we can retrieve the current air mixing ratio (remember that 

the saturation mixing ratio  r s  can be determined as a function of the wet bulb temperature and 
pressure). Moreover, wet bulb temperature is the asymptotic value of the temperature reached by 
hydrometeors during their fall into the atmosphere, which is then useful for the determination of their 
melting and/or evaporating rate as well as for their impact on downdraft enhancement. Wet bulb 
temperature  is  even  extremely  useful  in  thermodynamic  diagrams,  because  it  is  connected  with 
another  temperature,  that  is  equivalent  potential  temperature,  which  is  directly  linked  to  the 
atmospheric potential instability.
The differences between temperature and wet bulb temperature are shown in figure 1, where these 
two variables are displayed in conjunction with the relative humidity.



In figure 1 it is clear that temperature and wet bulb temperature differ quite a lot, specially when 
atmosphere is far from saturation, as evidenced by the relative humidity trend (lowest panel). This is 
as  well  an  explanation  of  why we can  keep  a  bottle  of  drink  cooler  than  its  surroundings  just 
maintaining it constantly wet. Moreover it is an evidence of how smart had been Nature in using 
sweating to keep cool the human bodies.

Wet  bulb  temperature  depends  form the  mixing  ratios  r s  and  r  which,  in  turn,  depend from 
pressure; for this reason wet bulb temperature depends from dry pressure as shown in figure 2. In 
that figure it is clear that the increasing of pressure produces a growth of wet bulb temperature. This 
can be naively interpreted keeping in mind that increasing of pressure, keeping constant the water 
vapor pressure and the saturation vapor pressure (which depends only from temperature), we cause a 
decrease in the mixing ratio, which is defined as the ratio between the mass of water vapor per mass 
of dry air. Increasing pressure, then, we increase the mass of dry air, then we increase the amount of 
thermal energy given by the air to the source of moisture. The differences in wet bulb temperature 
due to dry air pressure, in any case, are not particularly huge, at least for the typical atmospheric 
conditions and, obviously, disappear at saturation, when temperature, dew point temperature and wet 
bulb temperature coincide.
Operationally, wet bulb temperature is used to compute the mixing ratio of the air masses. This is 
done by way of two thermometers, one with a bulb kept wet and the other with the bulb kept dry. 
Both these thermometers are maintained under a vigorous steady vigorous (of the order of several 
meters per second). The difference observed in the two thermometers, when equilibrium is reached, 
is used to compute the air mass mixing ratio, then the relative humidity. Before to conclude it is 
important to specify that the process which bring to the wet bulb temperature, is not isentropic for the 
air mass, in fact this process is not adiabatic since thermal energy is withdrawn from the air mass.

Figure 1. Temperature, wet bulb temperature, dew point temperature and relative humidity as 
observed at Udine between 07:00 and 15:00 UTC (solar time – 2 hours) an 29th March 2006.



Figure 2. Temperature, wet bulb temperature for the observed pressure, wet bulb temperature for a 
10% increased pressure and dew point temperature as observed at Udine between 07:00 and 15:00 
UTC (solar time – 2 hours) an 29th March 2006.



Equivalent potential temperature

Equivalent potential temperature is the temperature reached by an air parcel (mixture of dry 
air and water vapor) when adiabatically lifted (i.e., cooled) up to a pressure such that all the water 
vapor is condensed and then brought back in a dry adiabatic descent (then after removing all its water 
content) up to a standard level pressure (usually 1000 hPa). This temperature is considered important 
because this process mimic the lifting of an air mass due to convection and it is useful to determine 
the  potential  and  conditional  instability.  Equivalent  potential  temperature  is  not  a  real  adiabatic 
process  because  water  is  fully  removed  before  to  start  the  dry  adiabatic  descent.  Even  if  not 
completely correct, this temperature is nevertheless called equivalent potential and adiabatic. The 
expression pseudo-equivalent potential temperature is reserved to the temperature reached by an air 
mass which is lifted adiabatically, removing the condensed water as soon as it is formed, up to a 
pressure when all the water vapor is condensed and then draw back up to the standard level pressure 
with a dry (now all the water is disappeared) adiabatic descent. This temperature is called pseudo-
equivalent potential temperature because it is not a pure adiabatic process even during the ascent of 
the  air  parcel  in  the  sense  that  there  is  an  exchange  of  matter  with  the  environment.  Pseudo-
equivalent potential temperature mimic a process where the water condensed rains out as soon as it is 
formed, while equivalent potential temperature mimic a process where the condensed water rains out 
only from the top of the cloud. Reality is something in between, then both equivalent potential and 
pseudo-equivalent potential temperatures are only a model of real air ascents and they can differ by a 
few degrees.

The analytical expression of the equivalent potential temperature is obtained making use of 
the first principle of thermodynamics, the Clausius-Clapeyron equation and the rate of change of 
latent heat of vaporization with temperature. In particular, assuming that the process is adiabatic and 
reversible (with the caveats above mentioned) entropy must conserve, then 

ds=dQ
T

=0  

where  s is the entropy and  dQ the global variation of thermal energy. When splitting  dQ into the 
contributions due to the condensation of water vapor dQc , to the liquid water absorption dQw , the 
vapor absorption dQv , and the dry air absorption dQd , we will have
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Before to go ahead it is important to stress the fact that the above equation assumes that entropy is 
conserved (variation assumed as 0) without keeping into account the transition from water to ice, in 
other words the terms  dQi and  dQs due to the ice presence and solidification of liquid water are 
considered  as  null.  This  means  that  the  equivalent  potential  temperature  will  be  a  conservative 
variable  only  if  the  ice  formation  is  absent  or  negligible.  In  other  words  equivalent  potential 
temperature computed  for a real air mass might change because the liquid water is partially or totally 
removed during the lifting or because ice is forming in it.

The above equation can be expanded by way of the first principle of thermodynamics, in particular: 
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where  M v  is the vapor mass,  cv
v

 is the specific heat at constant volume for the vapor and  e its 
partial vapor pressure;
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where dM v  is the mass of vapor that condenses and l v  is the latent heat of condensation.

Merging all these equations we obtain
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assuming that both dry air and water vapor behave as ideal gases, we can use the equation of state for 
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Introducing these two expressions into the above entropy conservation equation we obtain

l v

dM v

T
M w cw dT

T
M v cv

v dTe [
Rv

e
dT −

Rv

e2 de] 1
T
M d cv

d dT p [
Rd

p
dT−

Rd

p2 dp ] 1
T
=0

then

l v

dM v

T
M w cw dT

T
M v cv

v dTRv dT−
Rv

e
de 1

T
M d cv

d dTRd dT−
Rd

p
dp 1

T
=0 .

Remembering that  Rv=c p
d−cv

d

 and  Rd=c p
d−cv

d

,  with  c p
v

 and  c p
d

 the specific  heat  at  constant 
pressure respectively for vapor and dry air, the above equation becomes
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Now to go ahead it is useful to assume that the air we are lifting is saturated, then the vapor pressure 



e  is function only of temperature, that is  e=es=e sT  . With this assumption that, as we will see 

below,  is  not  restrictive,  we  can  write  
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At this point it is wise to collect all the terms multiplied by the differentials, then
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To proceed further it is necessary to introduce the total mass of water (both vapor and liquid), that is 
M=M wM v  according to which M w=M−M v . With this new parameter we obtain
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It is now time to introduce the Clausius-Clapeyron equation 
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and the rate of change of latent heat of vaporization with temperature, that is
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The above approximation of the Clausius-Clapeyron equation is due to the fact that usually, for the 
common atmospheric  conditions,  the  specific  volume of  water  is  usually  much higher  than  the 

specific volume of vapor, that is V v/M v≫V w /M w .

The introduction of the Clausius-Clapeyron equation and of the rate of change of latent heat with 
temperature is important to reduce the number of different differentials. In fact, inserting these two 
relationships into the above equation, we obtain
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assuming that the water vapor behaves like an ideal gas, we can use the following equation of state 
es V =M v Rv T  and use it into to eliminate the water vapor es  term into the above equation, that is



l v

dM v

T
 M cwM v

dl v

dT
−M d c p

d  dT
T

−
M v Rv l v M v

M v Rv T 2 dT−M d

Rd

p
dp=0  and

l v

dM v

T
 M cwM v

dl v

dT
−M d c p

d  dT
T

−
lv M v

T 2 dT −M d

Rd

p
dp=0 .

At this point we can reorganize all the terms into the entropy conservation equation obtaining

l v

dM v

T
M v

dl v

T
−

l v M v

T 2 dTM cw−M d c p
d  dT

T
−M d

Rd

p
dp=0 .

the first three terms are the partial differentials of d l v M v/T  , then we can write

d 
l v M v

T
M cw−M d c p

d  dT
T

−M d

Rd

p
dp=0 .

If now we define the total water mixing ratio (vapor plus liquid) r t≡M /M d  that we assume might 

be conserved during the process, and the vapor mixing ratio as r v≡M v /M d  we will have

d 
l v r v

T
rt cw−c p

d  dT
T

−
Rd

p
dp=0

At  this  point  using  the  differentiation  rules  and  defining  the  constant  c p
t =r t c

w−c p
d

,  the  above 
equation can be written in the more compact form

d 
l v r v

T
c p

t d  ln T −Rd d ln  p=0

that builds a relationship between temperature and pressure in the case of an adiabatic, reversible and 
saturated  process.  Now  we  have  to  remember  that  our  aim  is  that  of  obtaining  a  potential 
temperature, that is a temperature independent from the pressure. To describe this process we should 
eliminate the explicit dependence from pressure in the first therm. This can be done defining the 
following potential temperature

Θ=T 
p0

p


Rd

cp
t

This potential temperature is not exactly the potential temperature for dry air, because c p
v ≠c p

d

 and 
c p

t ≠r v c p
v c p

d=c p ,  but  these  two  potential  temperatures  slightly  differ  because  in  the  usual 

meteorological conditions r t≪1  and c p
t ≃r v c p

v c p
d≃c p

d

.

Taking the logarithm and differentiating the above potential temperature we will have

d ln Θ=d  lnT −
Rd

c p
t d ln  p



that  can  be  used  to  substitute  the  pressure  and  temperature  terms  in  the  entropy  conservation 
equation, that is

d 
l v r v

T
c p

t d  ln Θ=0

This equation can be easily solved integrating from the initial state characterized by r vi , T  and Θ  

to the final state characterized by r v f=0 , T f  and Θ f . After the integration we obtain

c p
t ln 

Θ f

Θ i


lv r v f

T f

−
l v r vi

T i

=0

then

c p
t ln 

Θ f

Θ i

=
lv r vi

T i



The quantity Θ f  is the final value of the potential temperature once the air parcel had been brought 
up to an altitude where all its water vapor is condensed, keeping the result of condensation (liquid 
water) into the air parcel during the ascent. This quantity, for the above reasons, is called equivalent 
potential temperature and has the form

Θe=Θ e
cp

t 
l v rv

T


where  T ,  r v and  Θ  are,  respectively,  the  current  parcel  temperature,  vapor  mixing  ratio  and 
potential temperature (but pay attention that this is just an approximation as told above). This form of 
the equivalent potential temperature is not the most general, because, as you probably remember, it 
was determined assuming that the initial parcel was saturated, i.e., its vapor pressure was that of 
saturation for its  temperature.  A more general  form, useful  even for unsaturated parcels,  can be 
obtained  assuming  that  the  unsaturated  parcel  is  lifted  adiabatically  up  to  the  level  at  which 
condensation occurs (usually called Lifting Condensation Level – LCL). Then, when condensation 
occurs and the parcel becomes saturated, we can obtain its equivalent potential temperature using the 
already  obtained  equation  for  saturated  processes.  In  other  words  the  equivalent  potential 
temperature of an unsaturated parcel is the equivalent potential temperature obtained starting from its 
lifting  condensation  level  (LCL)  which,  in  turn,  is  function  of  the  current  parcel  pressure, 
temperature and vapor mixing ratio. In its compact form the equivalent potential temperature for an 
unsaturated parcel becomes

Θe=ΘLCL  p ,T , rv ⋅e
cp

t 
lv r v

T LCL



The determination of the lifting condensation potential temperature ΘLCL  is not a real problem, in 
fact because during the adiabatic ascent the potential temperature Θ  is conserved, we can say that 
Θ≡ΘLCL .  The  only  problem,  approximations  apart,  is  the  determination  of  T LCL ,  that  is  the 
temperature at the LCL. This can be done using the Γ dew  and Γ dry  vertical lapse rates or recursively 



(more precise). 
Just  taking  the  analytical  approach  we  can  write  T dew  z=Γ dew⋅zT dew 0  and 
T dry  z =Γ dry⋅zT dew 0 ,  because  at  the  LCL  temperature  and  dew  point  temperature  must 
coincide, we are going to have T dry  z ≡Γ dew  z   then

z lcl=
T 0−T dew 0

Γ dew−Γ dry

using the so far obtained z lcl  in one of the above equations that describe the vertical temperatures 
trend, we will have

T lcl=Γ dry⋅
T 0 −T dew 0

Γ dew−Γ dry

T 0

which gives us the temperature at the lifting condensation level once are known the dew point and 
thermal vertical lapse rates as well as the current temperature of the parcel. This T lcl  can be used in 
the equivalent potential temperature equation

Θe=Θ⋅e
c p

t 
l v rv

T LCL

 .


