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With the term “specific radiation intensity” I(P,k) (even called spectral radiance in the International 
System or simply intensity in Astrophysics or even brightness in old literature) coming out from an 
infinitesimal surface ds with position in space P(x,y,z), we refer to the flux of the energy dE in a 
given direction k, across the infinitesimal surface perpendicular to the direction r, in an interval of 
time  dt,  in an infinitesimal  solid angle  dω and in an infinitesimal interval of wavelengths  dλ (or 
frequency  dv). In formulas we would have

dE = I(P,r)ds dω dλdt [1]

Because of its definition, mathematically speaking specific radiation intensity belongs to the family 
of  “distributions”, which encompasses in a sub-set even functions, but it is not strictly a function 
because it has a meaning only in conjunction with the differentials that are used for its construction. 
The main consequence of the fact that specific radiation intensity is a distribution is that if we want 
to switch over its dependence from the wavelength to its dependence from frequency, we have to 
take into account even the switch of the frequency differential over the  wavelength. In formulas

I λ P , r dλ=I ν P ,k  ν2

c
dν .

One of the interesting aspects of specific radiation intensity is that it does not depend from the 
distance of radiation source, but only from the position P and from the direction r. This differently 
form the radiation flux over the solid angle Ω (or better density of radiation flux over the solid angle 
Ω, called in the SI emittance), which is related to specific radiation intensity by the relationship

F λ , rP =∫Ω
I λ P , r  r⋅ j dω j  [2]

where  the  scalar  product  r⋅j represents  the  cosine  of  the  angle  between  the  two  unitary 
directions r and j.

If specific radiation intensity does not depend from the position P, then it is called homogeneous, if 
it does not depend from the direction r, it is called isotropic.  

Knowing the specific intensity of radiation of the Sun, we might calculate the flux of solar radiation 
over a unit surface, e.g., of the Earth, simply integrating it in this way

 F λ , rP =∫sun
I λ P , r  r⋅j dω j

 
If we substitute the solar specific radiation intensity with its average value over the solar disk, i.e.,

I λ P , r ~ I λ , sun r  into the above integral and, because of the distance between Earth and Sun , 
we consider constant the cosine r⋅j~cos α  remembering that this cosine is equal to the sin of 
the solar declination, i.e., cos α =sinδ  , we would have

F λ , rP ~∫sun
I λ P , r  r⋅j dω j= I λ , sun sinδ ∫sun

dω j



then

F λ , rP ~I λ , sunsin δ ∫sun
dω j I=sin δ  I λ, sun ΔΩsun

where ΔΩ sun is the apparent angular extension, that is the solid angle covered by the sun disk (the 
apparent diameter of the sun is roughly half a degree).

 The quantity I λ , sun ΔΩsun , when integrated over all the wavelengths, then taking into account the 
contribution of the whole solar spectrum, is the “solar constant”, which is not constant,  indeed, 
because it changes according to the variations of  I λ , sun due to the solar variability and according 
to the variations of ΔΩ sun , which are mainly related to astronomical factors like the eccentricity 
variation  of  Earth's  orbit  discovered  by  Milankovich.  The  current  average  value  of  the  “solar 
constant” is of the order of 1373 Wm-2.

Blue  dashed line  represents  the  five  years  (2007-2011)  average time series  of  the  daily  solar 
radiation over Udine (roughly LAT. 46 N), green shadow represents the above five years average 
daily standard deviation.

Another important parameter  for the definition of the radiative budget is represented by energy 
density of the radiation field. To evaluate the energy density we have to compute the amount of 
energy contained into an infinitesimal cylinder parallel to the direction k with length  dr = c dt, 
where  dz is the distance run by a photon in the time interval  dt. Since the amount of energy that 
crosses the surface ds is given by equation [1], we will have that the amount of energy contained 
into the cylinder will be



dE=I  P , r dsdω dλdt c
c

 then, dividing by the infinitesimal volume ds cdt , we will obtain the energy density
 

du= I P , r 
c

dωdλ

If we remember that, according to the definition [2], the flux of radiation is represented by

 F λ , rP =∫Ω
I λ P , r  r⋅ j dω j

the convergence (negative of divergence) of this flux will represent the heating hλ of the volume 
(then the cooling of the matter), which in formulas become 

 −∇ F λ=
∂ F λ , x

∂ x

∂ F λ , y

∂ y

∂ F λ , z

∂ z
=hλ

then, thanks to equation [2], we will have 

−∇ F λ=
∂∫Ω

I λP , r r⋅x dωx

∂ x

∂∫Ω

I λ P ,r  r⋅y dω y

∂ y

∂∫Ω

I λP , r  r⋅z dω z

∂ z
=hλ

then

−∇ F λ=∫Ω
r⋅x

∂ I λP , r 
∂ x

r⋅y
∂ I λ P , r 

∂ y
r⋅z

∂ I λ P , r 
∂ z

dωr=hλ

then, remembering the definition of gradient in Cartesian coordinates, we can write
 

−∇ F λ=∫Ω
r⋅∇ I λP , r dωr=hλ  [3]

if heating, i.e., the convergence of flux is null, then the situation is called of (monochromatic) 
radiative equilibrium.  

Under the mathematical point of view, the term r⋅∇ I λ represents the projection of the intensity 
gradient on the r direction (remember that r is a versor), then it is the directional derivative, which 
sometimes is represented in this way

r⋅∇ I λ=
d I λ

d r
 [4]

Before to treat the aspects of extension and emission, it is important to spend a few more words on 
the suffix λ in the above formulas, which is refers them to a specific wavelength. If we want to 
consider the whole radiative budget, we have to integrate on the whole spectrum (then on dλ
 or dv) the above expressions. This is relevant because almost always atmospheres interact 
differently with different parts of radiation spectrum

Extinction and emission



When radiation crosses a portion of matter (say, the atmosphere) changes its properties. All their 
changes can be divided in two classes: those which correspond to a reduction of intensity in the 
direction of propagation (called “extinctions”) and those which correspond to an increase in the 
intensity of radiation in the direction of propagation (called “emissions”).

Dealing with extinctions and emissions, the fundamental approximation, which holds for almost all 
the relevant atmospheric processes, is that called with the name of the two pioneers that dealt with 
this problem, i.e., Lamberts and Bouguet. This approximation says that the amount of extinction 
and emission are linear, i.e., proportional to the radiation intensity, with eV , λ the specific (for the 
specific wavelength) emission coefficient per unit volume V and −eV , λ the specific extinction 
coefficient per unit volume V provided that the state of the medium (i.e., pressure, temperature and 
composition) is kept constant. Then, according to the Lamberts-Bouguet approximation, we will 
write that the amount of extinct intensity  I λ along to the path r is given by

 I λ=−eV , λ I λr
 
while the increase in the intensity  I λ along the same path r is given by

 I λ=eV , λ J λr

Merging the two terms, we will have

 I λ=−eV , λ I λreV , λ J λr

then, moving to the limit when r tends to zero, we will have

d I λ

d r
=−eV , λ  I λ−J λ [5]

which, remembering equation [4] can even be written as

r⋅∇ I λ=−eV , λ  I λ−J λ .
Equation [5] is called the equation of transfer of Schwazschild equation and it is the fundamental 
mathematical tool to deal with radiation problems. The physical content of the equation of transfer 
is mainly related to the extinction/emission factor eV , λ and to the source function J  λ which, 
in the approximation of thermal emission, is often approximated by the Plank's distribution. 

If we remember equation [3], we can substitute in it the equation of transfer, obtaining

hλ=∫Ω
 r⋅∇ I λ P , r dωr=−eV , λ∫Ω

 I λ−J λdωr

or, in a much more compact form, defining 4 I λ− J λ=∫Ω
 I λ− J λdωr , we will have

hλ=−eV , λ 4 I λ− J λ

This expression is the base to explain the so called greenhouse mechanism(a). In fact, heating springs 

(a) Some people considers that the expression “greenhouse mechanism” is not epistemologically correct, because the 
mechanism why greenhouses remain warmer than the surroundings is because they damp the convective transport of 
heating and they only barely interact under the radiative point of view.  



out from a difference between the monochromatic  extinction and emission. Under this point of 
view, in fact, Earth's atmosphere has an almost null extinction on the visible band (say among 300 
and 700 nm), while it is strongly emitting in the infrared band (say above 700 nm) mainly because 
of the presence of water  vapour and even for the presence of carbon dioxide and of the other 
greenhouse gases (methane, CH4 and dinitrogen oxide, N2O).

Scattering mechanism

An important mechanism present in atmosphere is that related to the interactions of radiation with 
matter that do not change the amount of energy in the radiation field. If there is no net change of 
energy, the interaction is defined as “scattering”. If the amount of energy absorbed by matter is 
sudden re-emitted at the same wavelength (frequency),  then the scattering is called  coherent,  if 
there is a cascade of energy at different wavelengths, the scattering is called incoherent.   Even if in 
the scattering mechanism the amount of energy absorbed and released is the same, the direction in 
which this radiation is re-emitted is different from the previous one, for this reason a scattering 
mechanism corresponds often to an extinction of the radiation field as soon as it penetrates into the 
atmosphere. This is, for example, what happens in the cumulonimbus clouds, which are particularly 
white if seen from above, but extremely dark is seen from below.

Thermal absorption

In the scattering mechanism, energy is absorbed by matter, but even sudden re-emitted. Because 
there is no interaction between the matter constituents (molecules) during the interval of time in 
which radiation interacts with a single molecule,  this process is essentially related to the single 
molecule. But what happens if the amount of time during which the interaction between radiation 
and matter is enough large (or the interactions between matter constituents are enough frequent) to 
admit  contemporary interactions between molecules?.  In this case the amount of radiant  energy 
absorbed by a single molecule can pass to another molecule and so on and so forth before than it 
might be re-emitted and then radiation is distributed among molecules. This is what happens during 
thermal absorption.  

 



Planetary and emispheric average temperatures. It is interesting to notice the stationary or slightly 
decrease of temperatures of the northern emisphere in the 60es and 70es. 

References

Goody R. M, and Yung Y. L., 1989. Atmospheric Radiation, theoretical basis (Second Edition). 
Oxford University Press, 519 pp. 


