
Exercise n. II
(Pseudo)random numbers
with uniform distribution

1. Linear congruent method; periodicity

(a) The linear congruent method consists in the following algorithm to
generate pseudorandom numbers:

Xi+1 = (aXi + c) mod M = remainder

(
aXi + c

M

)
with arithmetic operations within the integer numbers. In the follo-
wing there is a simple code (random lc.f90) where this method is
implemented.

!

! generation of pseudorandom numbers - linear congruent method

!

program random_lcm

implicit none

!

! declaration of variables

integer :: i, number, old, seed, x, a,m,c

!

! supply initial values of some variables:

! seed: to start;

! number: how many numbers we want to generate

print*, ’ seed, a ,m , c>’

read (*,*) seed, a, m, c

number = 20

!

OPEN(unit=1, file="random.dat", status="replace", action="write")

old = seed

!

do i = 1, number

x = mod ((a*old+c), m)

WRITE (unit=1,fmt=*) x

old = x

end do

close(1)

stop

end program random_lcm

1

(b) Test the program with X0=3, a=4, M=9, c=1. Which is the interval
over which the numbers are generated? Are ALL the numbers over
the interval generated?

(c) What do you observe in a sequence long enough? You should reco-
gnize that, at most after M numbers, the sequence repeats.

(d) Test the program with X0=1, a=3, M=32, c=4. Determine the pe-
riod, that is, how many numbers are generated before the sequence
repeats. Change and try with X0. Does the period depends on X0 ?

(e) Run the program with X0=10, a=57, M=256, c=1. Determine the
period. (how ? “by hands” ? Can the program itself do the job for
you?)

2. Intrinsic generators: uniformity and correlation (qualitative tests)

Use a pseudorandom numbers intrinsic generator to generate a sequence
of random numbers (in this exercise don’t worry about the seed).

For instance, random number() is an intrinsic subroutine in Fortran 90
generating real random numbers in the range [0,1[.

The argument of the subroutine random number() is real, has intent

out, and can be a scalar or an array. See for instance rantest intrinsic.f90,
that shows different ways of calling the subroutine, generating one number
at a time, or a sequence of the desired length. Note in the example the
use of the dynamical allocation of memory (the instruction allocatable)
for the array x and the use of print instruction with a specified format.

(a) Produce a sequence of random numbers in [0,1[. Test the uniformi-
ty of the produced numbers making an histogram. Use for instance
gnuplot with the command w[ith] boxes. Is the distribution uni-
form?

Hint: to do the histogram, divide the range into a given number of
channels of width ∆r, then calculate how many points fall in each
channel, r/∆r:

integer, dimension(20) :: histog

:

histog = 0

do n = 1, ndata

i = int(r(n)/delta_r) + 1

histog(i) = histog(i) + 1

end do

2

(b) We can test the presence of correlation. Consider the sequence of
random numbers and plot the points (without connecting them wi-
th lines) corresponding to the pairs of consecutive numbers in the
sequence:

(xi, yi) = (r2i−1, r2i) i = 1, 2, 3....

How many points (different pairs) would you expect? What do you
see from the plot?

program rantest_intrinsic

!

! test program, call to intrinsic f90 random number generator

! generate random numbers in [0,1[; then,

! generate random integers between n_min and n_max.

!

implicit none

real :: rnd

real, dimension (:), allocatable :: x

integer :: L,i,n_min,n_max,ran_int

! generates ONE random number in [0,1[

call random_number(rnd)

print *,’ A real random number in [0,1[is:’,rnd

! generates L random numbers in [0,1[

print*,’ How many random numbers do you want to generate in [0,1[?’

print*,’ Insert the length of the sequence >’

read(*,*)L ! length of sequence

do i = 1,L

call random_number(rnd)

print *,rnd

end do

! generates integer random numbers between n_min and n_max

print*,’ Generate ’,L,’ integer random numbers in [n_min,n_max[;’

print*,’ insert n_min, n_max >’

read(*,*),n_min,n_max

do i = 1,L

call random_number(rnd)

ran_int = (n_max - n_min + 1)*rnd + n_min

print *,ran_int

end do

! use array x to generate and store L random numbers with a unique call

print*,’ Generate other ’,L,’ real random numbers in [0,1[:’

3

allocate(x(L))

call random_number(x)

print*, x

deallocate(x)

end program rantest_intrinsic

3. Intrinsic generators: uniformity and correlation (quantitative
tests)

Consider again a sequence generated by an intrinsic pseudorandom num-
ber generator.

(a) For a uniformity quantitative test, calculate the moment of order k:

〈xk〉calc =
1

N

N∑
i=1

xk
i ,

that should correspond to

〈xk〉th =

∫ 1

0

dx xk pu(x) =
1

k + 1

where pu(x) is the uniform distribution in [0,1[. For a given k (fix for
instance k=1, 3, 7), consider the deviation of the calculated momen-
tum from the expected one: ∆N (k) =

∣∣〈xk〉calc − 〈xk〉th
∣∣ , and study

its behaviour with N (N up to ∼100.000). It should be ∼ 1/
√
N . (a

log-log plot could be useful)

(b) For a correlation quantitative test, calculate:

C(k)calc =
1

N

N∑
i=1

xixi+k

that should correspond to

Cth =

∫ 1

0

dx

∫ 1

0

dy xy pu(x)pu(y) =
1

4
.

Consider the deviation of the calculated quantity from the expected
one: ∆N (k) =

∣∣C(k)calc − 1/4
∣∣ and study its behaviour with N (N

up to ∼100.000). It should be ∼ 1/
√
N .

4

4. Intrinsic generators - use of the seed

The subroutine random seed([size] [put] [get]) inizializes the sequen-
ce (it can be useful to control the initialization in case you want for instan-
ce to reproduce exactly a sequence of random numbers), but it can also
return informations on the random numbers generator. It does not need
necessarily an argument, and you cannot use more than one. The output
variable SIZE is a scalar integer and gives the dimension N of the integer
array (SEED). SIZE is compiler and machine dependent. The input varia-
ble PUT is the array of integers supplied by the user and that are used to
inizialize the sequence. The output variable GET (which is also an integer
array) reads the istantaneous value of SEED. If no argument is given, the
seed is initialized depending on the processor.

The code rantest intrinsic with seed.f90 (a bit more complicate than
the previous one) calls also random seed, in a way which is valid for any
dimension of the seed.

The relevant part is:

call random_seed (sizer)

allocate(seed(sizer))

allocate(seed_old(sizer))

...

call random_seed (put = seed) ! Initialized by the user

call random_seed (get = seed_old) ! Gives the present values

Here there is another example (rantestbis intrinsic.f90), where you
can see three different sequences (with changes of the seed):

program rantestbis_intrinsic

! test program, call to intrinsic random number f90 generator

! iluustrate the use of "put" and "get" in call random_seed

implicit none

integer, dimension(:), allocatable :: seed, seed_old

integer :: L,i,sizer,n_min,n_max,ran_int

integer :: i, sizer

real, dimension(3) :: harvest

call random_seed(sizer)

allocate(seed(sizer))

allocate(seed_old(sizer))

print *,’Here the seed has ’,sizer,’ components; insert them (or print "/") >’

read(*,*)seed

call random_seed(put=seed)

call random_seed(get=seed_old)

5

print*, "Old starting value: ",seed_old

call random_number(harvest)

print*,"3 random numbers: ",harvest

do i=1,3

call random_seed(get=seed_old)

print*,"Present values of seed: ",seed_old

call random_number(harvest)

print*,"Other 3 random numbers: ",harvest

call random_number(harvest)

print*,"and other 3 random numbers: ",harvest

end do

deallocate(x)

deallocate(seed)

deallocate(seed_old)

end program rantestbis_intrinsic

Play with the use of random seed and its arguments. It is instructive to
run the same code on different compilers/machines (or compare results
with classmates). What about the size of the seed, for instance?

5. Intrinsic generators - initialisation of the seed

Check whether the seed is changed automatically or not using random seed()

subroutine in your computer (run the code for random number generation
more than once). In general, you should see that the initialisation is
processor dependent.

You can force a change using the system clock, like in the following
subroutine. Do experiments!

SUBROUTINE init_random_seed

INTEGER :: i, nseed, clock

INTEGER, DIMENSION(:), ALLOCATABLE :: seed

CALL RANDOM_SEED(size = nseed)

ALLOCATE(seed(nseed))

CALL SYSTEM_CLOCK(clock)

seed = clock/2 + 37 * (/ (i - 1, i = 1, n) /)

CALL RANDOM_SEED(PUT = seed)

DEALLOCATE(seed)

END SUBROUTINE

6

6. Random numbers generators in libraries (Optional)

Use other “good” random number generators, that you can find for in-
stance in the book Numerical Recipes; for Fortran 90 see:
http://nrbook.com/a/bookf90pdf.php.
Here there is an example of a call to ran func using a module (nrdemo ran.f90).

module ran_module

implicit none

public :: ran_func

contains

FUNCTION ran_func(idum) result(ran)

! IMPLICIT NONE

INTEGER, PARAMETER :: K4B=selected_int_kind(9)

INTEGER(kind=K4B) , intent(inout) :: idum

REAL :: ran

! "minimal" random number generator;

! returns a uniform random deviate between 0.0 and 1.0 (not endpoints).

! Fully portable, scalar generator;

! has the "traditional" (NOT Fortran 90) calling sequence with

! a random deviate as the returned function value:

! call with IDUM a NEGATIVE integer to initialize;

! thereafter, do not alter IDUM except to reinitialize.

! The period of this generator is about 3.1 * 10^18

INTEGER(kind=K4B), PARAMETER :: IA=16807,IM=2147483647,IQ=127773,IR=2836

REAL, SAVE :: am

INTEGER(kind=K4B), SAVE :: ix=-1,iy=-1,k

if (idum <= 0 .or. iy < 0) then ! initialize

am=nearest(1.0,-1.0)/IM

iy=ior(ieor(888889999,abs(idum)),1)

ix=ieor(777755555,abs(idum))

idum=abs(idum)+1 ! set idum positive

end if

ix=ieor(ix,ishft(ix,13)) ! Marsaglia shift sequence, period 2^32-1

ix=ieor(ix,ishft(ix,-17))

ix=ieor(ix,ishft(ix,5))

k=iy/IQ ! Park-Miller sequence, period 2^31-2

iy=IA*(iy-k*IQ)-IR*k

if (iy < 0) iy=iy+IM

ran=am*ior(iand(IM,ieor(ix,iy)),1) ! combine the two generators with

END FUNCTION ran_func ! masking to ensure nonzero value

end module ran_module

7

program demo

use ran_module

implicit none

integer :: i,idum

real :: x

print*, "idum (<0) = "

read*,idum

x =ran_func(idum)

print*,"Random number: ",x

do i=1,10

x = ran_func(idum)

print*,"Random number: ",x

end do

end program demo

8

