Magnetization Evolution after the r.f. Pulse (isofrequency)

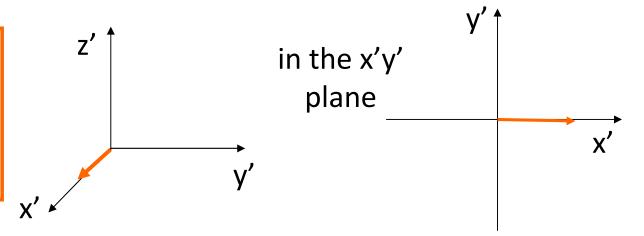
In this case

$$B_{eff}^{r} = \begin{vmatrix} 0 \\ 0 \\ 0 \end{vmatrix}$$
 therefore

$$\frac{dM_x^r(t)}{dt} = 0$$

$$\frac{dM_y^r(t)}{dt} = 0 \qquad \frac{dM_z^r(t)}{dt} = 0$$

In this case the magnetization is static in the rotating frame



Magnetization Evolution after the r.f. Pulse

For $\omega_0 \neq \omega_{rf}$

$$B_{eff}^{r} = egin{bmatrix} 0 \ 0 \ \Delta B_{0} \end{bmatrix}$$

Time deriving the first equation and substituting the from the second equation the expression of the M_v^r derivative

$$\frac{dM_x^r(t)}{dt} = \gamma M_y^r(t) \Delta B_0$$

$$\frac{dM_{x}^{r}(t)}{dt} = \gamma M_{y}^{r}(t) \Delta B_{0}$$

$$\frac{dM_{y}^{r}(t)}{dt} = -\gamma M_{x}^{r}(t) \Delta B_{0}$$

$$\frac{dM_z^r(t)}{dt} = 0$$

$$\frac{d^2 M_x^r}{dt^2} = \gamma \Delta B_0 \frac{d M_y^r}{dt} = -\gamma^2 (\Delta B_0)^2 M_x^r$$

The general solution is:

$$M_x^r = C_1 \cos(-\gamma \Delta B_0 t) + C_2 \sin(-\gamma \Delta B_0 t)$$

If at t=0 the magnetization was lying on x, the constant C_2 = 0 and the solution is:

$$M_x^r = M_0 \cos(-\gamma \Delta B_0 t)$$

since
$$\Omega_0 = -\gamma \Delta B_0$$

$$M_x^r = M_0 \cos(\Omega_0 t)$$

Substituting in:

$$\frac{dM_y^r(t)}{dt} = \Omega_0 M_x^r(t)$$

in the x'y' plane

One obtains:

$$M_y^r = M_0 \sin(\Omega_0 t)$$

 $\frac{\mathsf{y}'}{\Omega_0 \mathsf{t}}$

The magnetization is precessing in the rotating frame with angular frequency $\Omega_{\rm o}$

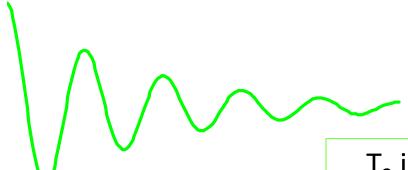
NMR Signal

• M, although static in the rotating fram (isofrequency case), is rotating with angular velocity $\omega_0 = \omega_{rf} + \Omega_0$ in the xy plane of the lab frame

 This causes an oscillating current in the receiver coil, which is parallel to the z axis

http://dotynmr.com/products/liquids-nmr-probes/

- The signal decays owing to the dephasing of the various isochromats components of the transverse magnetization (transverse relaxation).
- The term accounting for relaxaion must be added to the equations of motion
- According to experimetal observation the decay of the signal takes place with a kinetics of the first order



T₂ is the reciprocal of the rate constant

Equations of Motion for Transverse Magnetization in the Absence of B₁

$$\frac{dM_x^r(t)}{dt} = \gamma M_y^r(t) \Delta B_0 - \frac{M_x^r(t)}{T_2}$$

$$\frac{dM_y^r(t)}{dt} = -\gamma M_x^r(t) \Delta B_0 - \frac{M_y^r(t)}{T_2}$$

The solutions, starting with the transverse magnetization aligned with x' axis at t=0, are:

$$M_x^r(t) = M_0 \cos(\Omega_0 t) \exp(-t/T_2)$$

$$M_y^r(t) = M_0 \sin(\Omega_0 t) \exp(-t/T_2)$$

Longitudinal Relaxation Spin-Lattice Relaxation

In the exclusive presence of the static magnetic field, B_0 , the longitudinal component of magnetization reaches the equilibrium value, M_0 , by exchanging energy with the surroundings, according to a first order kinetics

$$\frac{dM_z(t)}{dt} = -\frac{M_z(t) - M_0}{T_1}$$

$$\int_{Mz(t=0)}^{Mz(t=ta)} \frac{dM_z}{M_z - M_0} = -\frac{1}{T_1} \int_{0}^{ta} dt \qquad \int_{Mz(t=0)}^{Mz(t=ta)} \frac{d(M_z - M_0)}{M_z - M_0} = -\frac{1}{T_1} \int_{0}^{ta} dt$$

$$\ln \frac{M_z(t_a) - M_0}{M_z(t=0) - M_0} = -\frac{t_a}{T_1}$$

The value of $M_z(t=0)$ depends on the experimental conditions and on time considered as t=0

Kinetics for M₀ Establishment

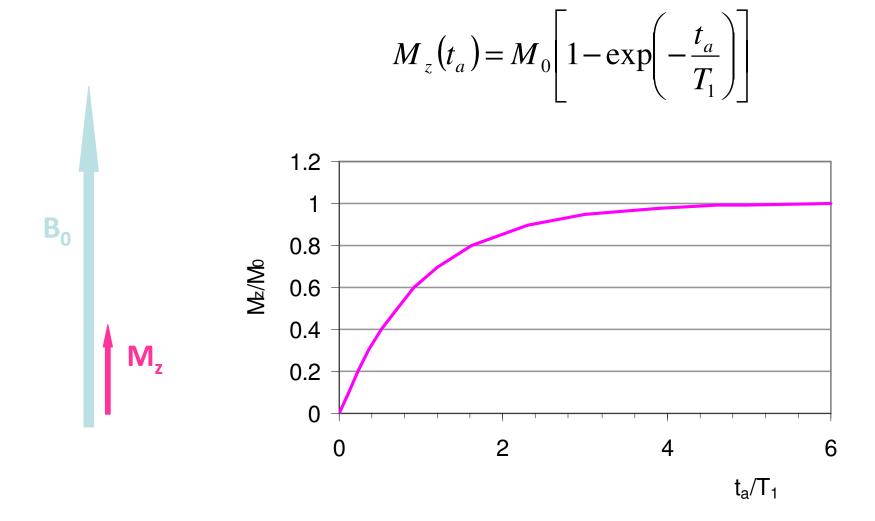
- If t= 0 when the sample was placed into the instrumental magnetic field In questo caso vale M_z(t=0)=0
- and the relevant solution is:

$$\ln \frac{M_z(t_a) - M_0}{-M_0} = -\frac{t_a}{T_1}$$

which, by exponentiation, corresponds to:

$$\frac{M_z(t_a) - M_0}{-M_0} = \exp\left(-\frac{t_a}{T_1}\right)$$

$$M_z(t_a) = M_0 \left[1 - \exp\left(-\frac{t_a}{T_1}\right) \right]$$



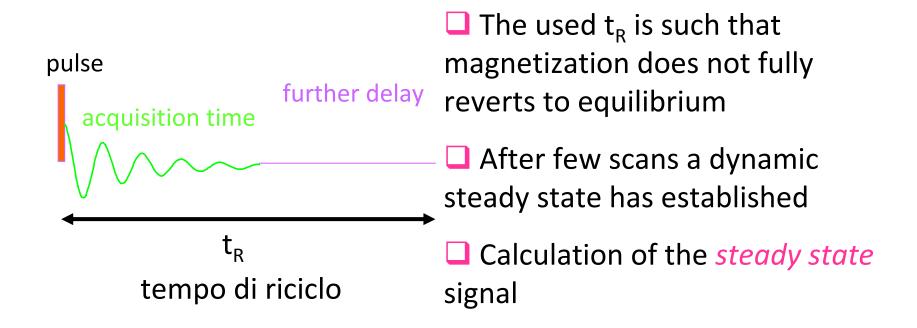
BLOCHPHENOMENOLOGICAL

$$\frac{dM_x^r(t)}{dt} = \gamma \left[M_y^r(t) B_z^{eff} - M_z^r(t) B_y^{eff} \right] - \frac{M_x^r(t)}{T_2}$$

$$\frac{dM_{y}^{r}(t)}{dt} = \gamma \left[M_{z}^{r}(t) B_{x}^{eff} - M_{x}^{r}(t) B_{z}^{eff} \right] - \frac{M_{y}^{r}(t)}{T_{2}}$$

$$\frac{dM_{z}^{r}(t)}{dt} = \gamma \left[M_{x}^{r}(t) B_{y}^{eff} - M_{y}^{r}(t) B_{x}^{eff} \right] - \frac{M_{z}^{r}(t) - M_{0}}{T_{1}}$$

- Longitudinal interference for repetitive pulse experiments
- The need for signal averaging is typical of FT techniques
- Often it is not possible to neglect the interference of successive scans
- The highest repetition rate is advantageous in order to maximixe sensitivity



Defining:

$$M_z(0+)=$$
 const M_z after the pulse β piulse length $M_z(0+)=M_z(0-)\cos\beta=$ const $M_z(0+)=M_z(0-)\sin\beta=$ const (to be maximized) $M_z(0-)=M_z(t_R)=$ cost $M_z(t_R)=M_0-[M_z(0+)-M_0]\exp(-t_R/T_1)$

$$M_z(t_R) = M_z(0_+) \exp(-t_R/T_1) + M_0 [1 - \exp(-t_R/T_1)]$$

$$M_z(t_R)=M_z(0_+)B+A$$

 $M_{7}(0)$ is obtained as

$$M_{7}(0_{-})=M_{7}(0_{+})B+A$$

$$M_{7}(0)=M_{7}(0)\cos\beta B+A$$

$$M_z(0_-) = \frac{A}{1 - B\cos\beta}$$

We want maximize $M_x(0_+) = M_z(0_-) \operatorname{sen} \beta$

using

$$A = M_0 \left[1 - \exp\left(-\frac{t_R}{T_1}\right) \right] \qquad B = \exp\left(-\frac{t_R}{T_1}\right)$$

$$M_x(0+) = \frac{A\sin\beta}{1 - B\cos\beta}$$

$$\frac{dM_x(0+)}{d\beta} = \frac{A\cos\beta(1-B\cos\beta)-A\sin\beta B\sin\beta}{(1-B\cos\beta)^2} = \frac{A(\cos\beta-B)}{(1-B\cos\beta)^2}$$

is zero for:

$$\cos \beta_{Ernst} = \exp \left(-\frac{t_R}{T_1}\right)$$
 optimum value

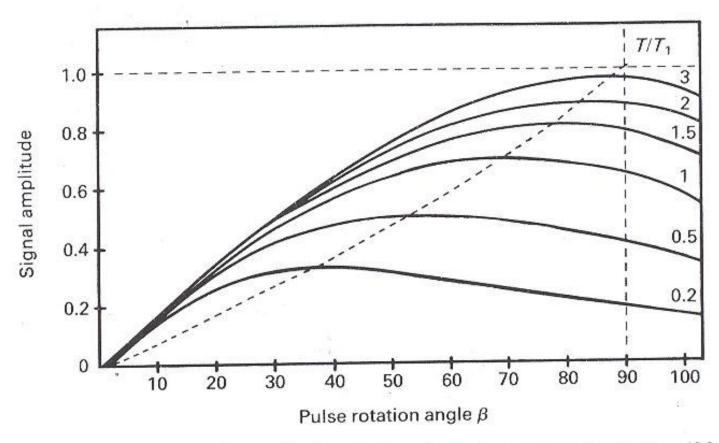
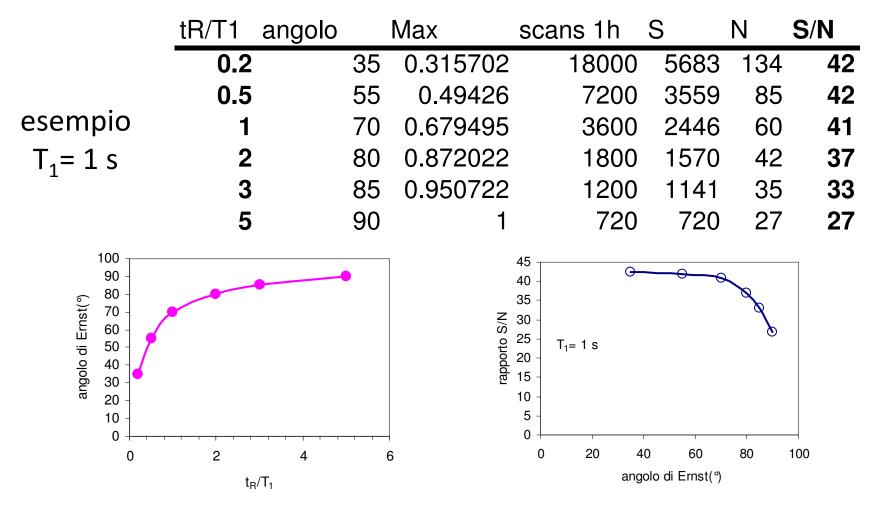


FIG. 4.2.5. Normalized peak amplitude of the absorption-mode signal $v_{\rm max}/M_0T_2$ in a repetitive Fourier experiment with negligible transverse interference as a function of the pulse rotation angle β for various interpulse spacings T normalized by the longitudinal relaxation time T_1 . The broken line connects the maximum amplitudes and indicates the optimum pulse rotation angle.

Ernst angle

Angolo di Ernst e S/N

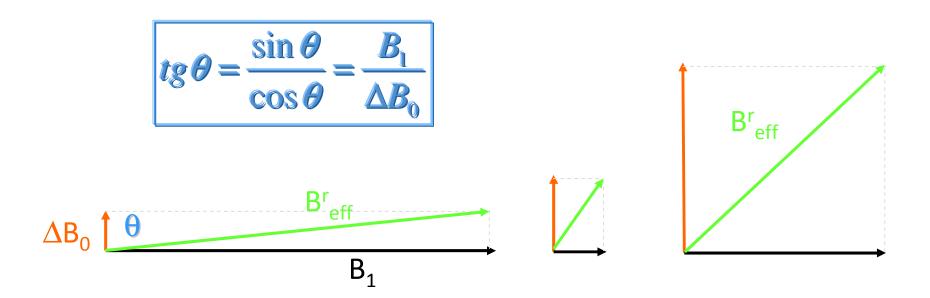


• S/N utilizzando l'angolo di Ernst diminuisce con l'aumentare di T₁. S/N va diviso per

$$\sqrt{T_1}$$

Off-resonance Effects due to Pulse Finite Length

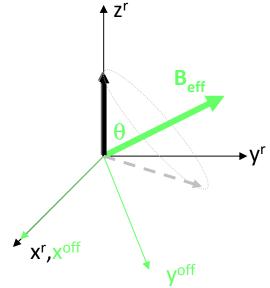
- Dependent on B₁ intensity
- For $\Omega_0 \neq 0$ M rotates about B_{eff}^r
- The weaker ${\rm B_1}$ the more different ${\rm B^r}_{\rm eff}$ and the higher Ω_0



$$\vec{B}_{1} \qquad \vec{B}_{eff}^{r} = \begin{vmatrix} 0 \\ B_{eff}^{r} sen \theta \\ B_{eff}^{r} \cos \theta \end{vmatrix}$$

Transformation from the rotating frame to a systems with
$$\vec{B}_{e\!f\!f}^r = \begin{vmatrix} 0 \\ B_{e\!f\!f}^r sen\theta \\ B_{e\!f\!f}^r \cos\theta \end{vmatrix}$$
 about x' by $-\theta$

$$\overline{\overline{T}}^{r-off} = \begin{vmatrix} 1 & 0 & 0 \\ 0 & \cos\theta & -sen\theta \\ 0 & sen\theta & \cos\theta \end{vmatrix}$$



 θ independent of time!

$$ec{B}_{\mathit{eff}}^{\mathit{off}} = egin{bmatrix} 0 & \text{Let's start (t= 0) from} \\ 0 & \text{equilibrium} \\ B_{\mathit{eff}} & \end{array}$$

$$\vec{M}_0^{off}(t=0) = \begin{vmatrix} 0 \\ -M_0 sen\theta \\ M_0 \cos\theta \end{vmatrix}$$

Evolution of magnetization in the frame with z axis along B_{eff}

$$\frac{d\vec{M}^{off}(t)}{dt} = \gamma \vec{M}^{off}(t) \wedge \vec{B}_{eff}^{off}$$
 the transform matrix, Tr-off, is independent of time

Supplementary material

$$\frac{dM_{x}^{off}}{dt} = \gamma M_{y}^{off} B_{eff}$$

$$\frac{dM_{y}^{off}}{dt} = -\gamma M_{x}^{off} B_{eff}$$

$$\frac{dM_z^{off}}{dt} = 0$$

Making the time derivative of the first equation and substituting the second equation one obtains the second order differential equation:

$$\frac{d^2 M_x^{off}}{dt^2} = -\gamma^2 B_{eff}^2 M_x^{off}$$

Supplementary material

The general solution is: $M_x^{\text{off}} = C_1 \cos(-\gamma B_{\text{eff}} t) + C_2 \sin(-\gamma B_{\text{eff}} t)$

Considering the starting condition (t=0) $M_x^{\text{off}} = 0$, it ensues $C_{1f}^{0} = 0$

Substituting in the second equation $M_x^{off} = C_2 sen(-\gamma B_{eff}t)$

$$\frac{dM_{y}^{off}}{dt} = -\gamma B_{eff} C_{2} sen(-\gamma B_{eff} t)$$

The solution is: $M_y^{off} = -C_2 \cos(-\gamma B_{eff} t)$

Considering the starting condition (t=0) $M_y^{off}(t=0) = -M_0 sen\theta$

$$C_2 = M_0 sen\theta$$

 M_z^{off} does not change because:

$$\frac{dM_z^{off}}{dt} = 0$$

Solutions in the rotating frame

 $M^{r}(t) = T^{r-off-1}M^{off}(t)$

$$\vec{M}^{r}(t) = \begin{vmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & \sin \theta \\ 0 & -\sin \theta & \cos \theta \end{vmatrix} M_{0} \sin \theta \cos \beta_{eff} = M_{0} \begin{vmatrix} \sin \theta \cos \beta_{eff} \\ \cos \theta \sin \theta (1 - \cos \beta_{eff}) \\ \cos^{2} \theta + \sin^{2} \theta \cos \theta \end{vmatrix} M_{0} \cos^{2} \theta + \sin^{2} \theta \cos \beta_{eff}$$

$$M_{x}^{r}(t, \theta) = M_{0} \cos \theta \sin \theta (1 - \cos \beta_{eff})$$

$$M_{z}^{r}(t, \theta) = M_{0} \cos \theta \sin \theta (1 - \cos \beta_{eff})$$

$$M_{z}^{r}(t, \theta) = M_{0} \cos^{2} \theta + \sin^{2} \theta \cos \beta_{eff}$$

The magnetization vector precesses about B_{eff} lying on a cone with vertex angle θ .

For small θ M does not even reach the equatorial plane.

For small ratios, but still $B_1/\Delta B_0 > 1$

In order to obtain the maximum signal (magnetization in the transverse plane) β_{eff} > 90° must be used

It can be calculated deriving $M_x^{\ r \ 2} + M_y^{\ r \ 2}$ with respect to $cos\beta_{eff}$

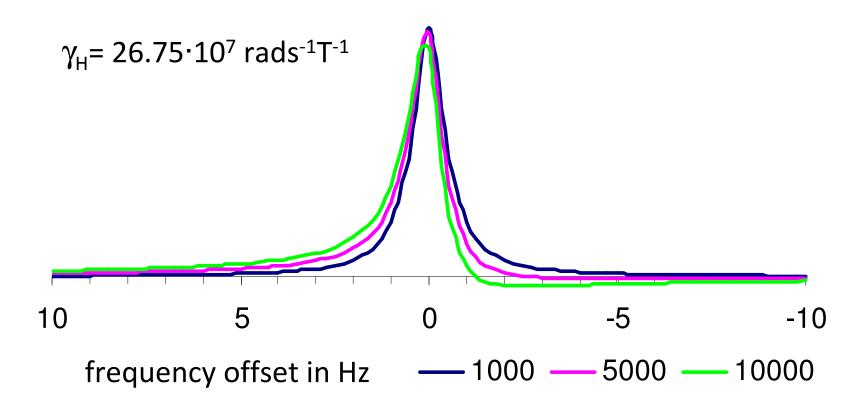
Obtaining:
$$\cos \beta_{eff} = -\frac{\cos^2 \theta}{\sin^2 \theta}$$

The maximum attainable value for transverse magnetization is M_0

On the contrary, for $\Delta B_0/B_1 > 1$ the magnetization rotates about B_{eff} lying on the surface of a cone with vertex angle θ and it will never completely reach the transverse plane

$$\tau_{\pi/2}$$
= 10 µs

$$B_1 = 5.87 \cdot 10^{-4} \text{ T}$$



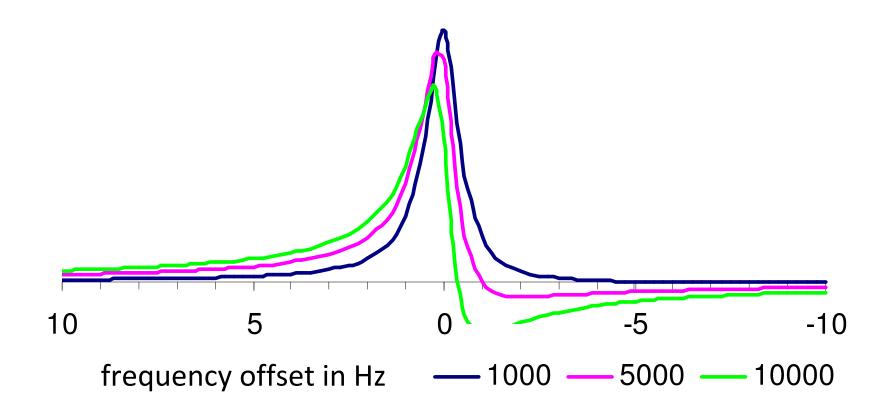
$$\Delta B_0 = 3.74 \cdot 10^{-6} \text{ T}$$

$$\Delta B_0 = 1.87 \cdot 10^{-5} \text{ T}$$

$$\Delta B_0 = 3.74 \cdot 10^{-5} \text{ T}$$

$$\tau_{\pi/2}$$
= 25 µs

$$B_1 = 2.35 \cdot 10^{-4} \text{ T}$$



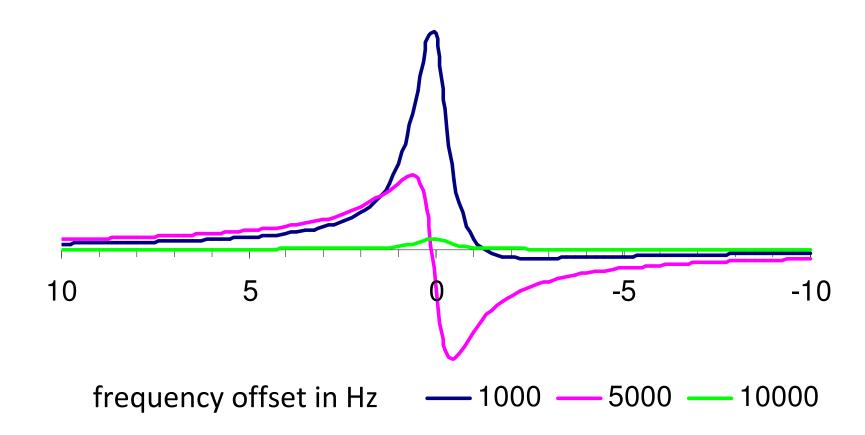
$$\Delta B_0 = 3.74 \cdot 10^{-6} \text{ T}$$

$$\Delta B_0 = 1.87 \cdot 10^{-5} \text{ T}$$

$$\Delta B_0 = 3.74 \cdot 10^{-5} \text{ T}$$

$$\tau_{\pi/2}$$
= 100 µs

$$B_1 = 5.87 \cdot 10^{-5} \text{ T}$$



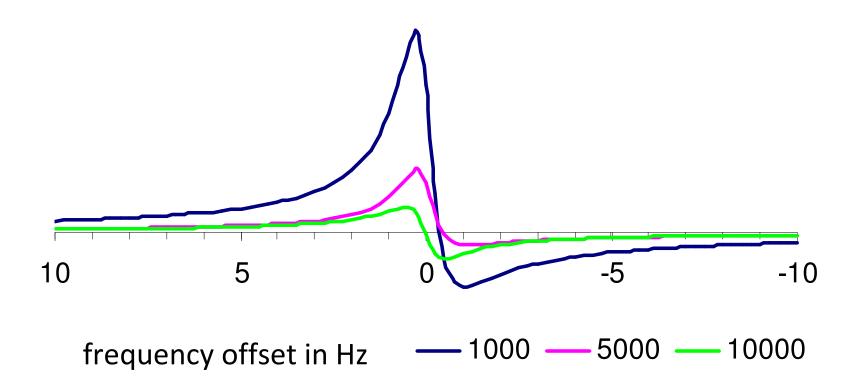
$$\Delta B_0 = 3.74 \cdot 10^{-6} \text{ T}$$

$$\Delta B_0 = 1.87 \cdot 10^{-5} \text{ T}$$

$$\Delta B_0 = 3.74 \cdot 10^{-5} \text{ T}$$

$$\tau_{\pi/2}$$
= 250 µs

$$B_1 = 2.35 \cdot 10^{-5} \text{ T}$$



$$\Delta B_0 = 3.74 \cdot 10^{-6} \text{ T}$$

$$\Delta B_0 = 1.87 \cdot 10^{-5} \text{ T}$$

$$\Delta B_0 = 3.74 \cdot 10^{-5} \text{ T}$$

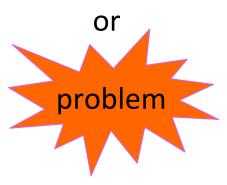
FT-NMR signal dependence on both B₁

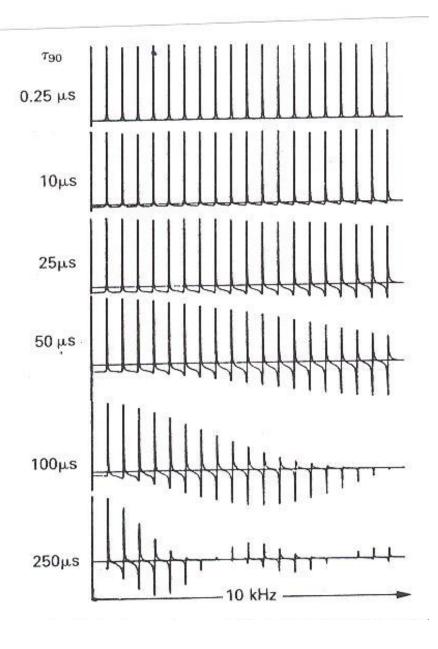
and Ω_0

either exploited in

selective

excitation





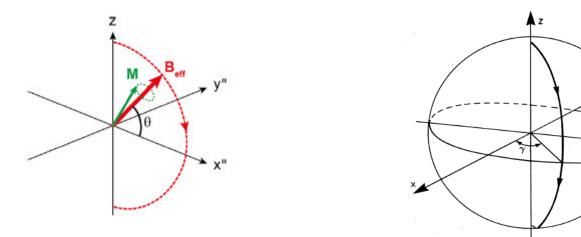
Adiabatic Passage for Broadband Inversion

- The use of short pulses can overcome the off-resonance problems for excitation in 1D spectra
- An established technique for inverting spin populations over a large bandwidth is adiabatic rapid passage (old CW NMR spectroscopy with B₀ sweep):
- the frequency of B₀ (or the r.f. radiation) is swept through resonance at a constant rate that must be:
- small compared to the r.f. amplitude $|\gamma|B_{eff}>> d\theta/dt$ (adiabatic condition)
- large compared to the relaxation rates (actually R₂, because R₂> R₁) and for this reason is known also adiabatic fast passage or simply fast passage
- If the adiabatic condition is satisfied and the sweep begins with B_{eff} aligned with M0, the magnetization will follow B_{eff}
- It succeeds in cases of inhomogeneity of both B₀ and B₁ (MRI applications)

Broadband and adiabatic inversion of a two-level system by phase-modulated pulses J. Baum, R. Tycko, A. Pines Phys. Rev. A 1985, 32, 3435

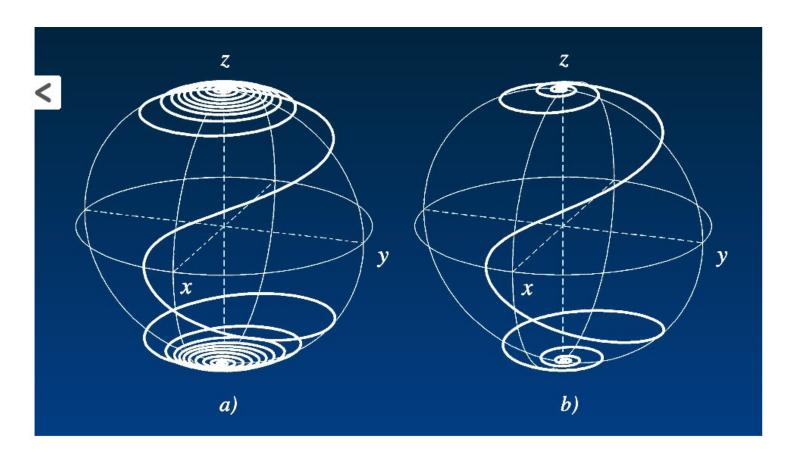
Phase Modulated Adiabatic Pulses

- Correspondence between phase and frequency modulation
- The magnetization describes a semicircular trajectory in a frequency modulated frame (frame rotating at the pulse instantaneous frequency)



Whereas it describes a more complex path in the usual rotating frame (rotating at the carrier frequency)

Magnetization trajectory in the rotating frame



WURST pulse

Hyperbolic secant pulse

Nowadays: phase modulated pulses. In practice they are piece-wise approximations of continuously phase modulated pulses

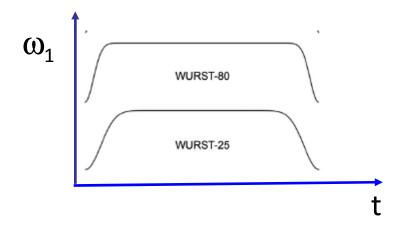
WURST pulses (wideband, uniform rate, smooth truncation)

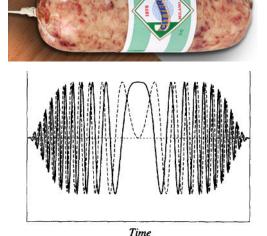
Amplitude modulation:

smooth truncation

$$\omega_1(t) = \omega_{max} \left(1 - \left| \cos \left(\frac{\pi t}{\tau_w} \right) \right|^N \right)$$

N dictates the truncation steepness, best values 20 < N < 80, t_w : overall pulse length on the order of several tens of ms, 100 ms





Real (full) and imaginary components (dashed) of WURST-20

Phase modulation

$$\phi(t) = \pm 2\pi \left\{ \left(\nu_{off} + \frac{\Delta}{2} \right) t - \left(\frac{\Delta}{2\tau_w} \right) t^2 \right\}$$

The phase $\phi(t)$ of a WURST pulse is modulated as a quadratic function of time, and can be described (in radians) as

The continuous phase modulation is implemented by discrete steps.

Wideband

Since the effective frequency of the pulse is proportional to d ϕ /dt, assuming a symmetric sweep about the transmitter frequency (i.e. v_{off} = 0), the maximum sweep range Δ is limited by the duration of the individual element, τ^e , which is < 0.5 microseconds, so that Δ > 2 MHz

$$\nu_{eff}(t) = \frac{d\phi}{dt}/2\pi = \pm \left(\nu_{off} + \frac{\Delta}{2} - \frac{\Delta}{\tau_w}t\right)$$

where Δ is the total sweep range (in Hz) and ν_{off} is the offset frequency for the centre of the sweep range

Uniform rate

This phase modulation results in the linear sweep of the pulse's effective frequency There are many other possible forms for $\nu_{eff}(t)$ that result in adiabatic inversion

The WURST kind of pulses in solid-state NMR Luke A.O'Dell Solid State NMR 2013, 55-56, 28-41