
Kinetics at Equilibrium 



Analogously to other spectroscopic 
methods, and also to non spectroscopic 
techniques, either the disappearing of a 
reagent (A) or  the increasing of a product 
(B) can be followed    A  B 

Exclusively by NMR the kinetic constants 
are determined at equilibrium 

A↔B 

Under the usual assumption of a 
first order law.  

The main methods are: 

 Lineshape analysis 

 EXSY (2D) 



Parameters to be considered 

• R1 

• intrisinc linewidth Dn1/2= R2/p 

• shift separation (in w= 2pn, field dependent) between the 
exchangin sites 

• k 

For k< R1 no effect (the spin system reverted to equilibrium 
before exchange took place) 

For R1< k <<wA-wB  separate signals and cross-peaks in the 
EXSY 2D spectra  

For R2< k <<wA-wB  linebroadening 
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At high magnetic field the system  can be in 
the slow exchange regime since k<< wA-wB, 
but exhibits broad lines if k is large 



In the simplest case of mutual exchange, the lineshape depends 
only on: 

• frequency difference between the two sites (dn),  

•k (or equivalentely on the lifetime in each site t=1/k),  

• linewidth in the absence of exchange (Dn1/2) 

Simple formulas relate the lineshapes with these parameters  

under the assumption that the exchange process is fast 
compared to T1 
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For coalescence in the case of 

mutual exvhange 

signal occurs at nav= pAnA + pBnB 

if k> kc there is just one broad signal with linewith: 

Fast exchange  
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with dn shift difference in Hz 

Dn1/2 decreases upon increasing k 

For k>> dn the linewidth is determined by the average of the 
transverse relaxation rates 



k depends on temperature according Arrhenius’s law 
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therefore the NMR spectrum changes with temperature 



Let’s consider the Bloch Equations for a 
system of a single kind of spins, A,  

after the pulse,  

in a slightly off-resonance rotating frame 
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It is convenient using the complex magnetization M+A 

M+A=MxA+iMyA 

Its evolution in the transverse plane is obtained by solving the 
differential equation 
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Let’s consider that the molecule with the spin A (which, for 
simplicity,  is not scalarly coupled with any other nucleus) 
undergoes a reaction with a first order kinetics and the 
reaction is reversible 



i.e., it takes part to an equilibrium of the kind: 
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The differential equations decribing the evolution of 
transverse magnetization are now coupled 
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Matrix Form of Bloch McConnell Equations Matrix Form of Bloch McConnell Equations 
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The solution can be obtained by 

• finding two linear combinations of MA+ e MB+ in which the 
equations are not coupled any longer 

• exponentiating both such linear combination and 
transforming back to M(t)A+ and M(t)B+ 

• summing them, so obtaining the time signal 

• Fourier transforming the time signal 



In the symmetric case: 

   |L|=|U|-1|M||U| 

•  |L| eigenvalues matrix (diagonal), 

•  |M| starting matrix, to diagonalize 

•  |U| trasformation matrix (the columns are the eigenvectors) 

In the non-symmetric case the diagonalization is more complex 

   |L|=|S||M||D| 
it holds: 

       |S||D|=|D||S|=|1|       
 where: |1|= unit matrix (diagonal) 
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Peculiarity: |U|=|U|-1 
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The signal in the frequency domain is obtained by the Fourier 
transform of the signal in the time domain: 

S(w)=Re FT{|E||U||eLt||U|-1|M+(0)| 

|E| is introduced to make the sum.  It is a row matrix with all 
elements equal to 1. The product of twhis row matrix by a 
column matrix with the same dimension reults in a matrix of only  
one element, which is the sum of the elements of the column 
matrix.  

e.g. cba
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|M+(0)| column matrix of the populations of the two sites at 
the beginning of acquisition 



Signal Analysis in Exchanging Systems 

• The simplest case is an exchange 
that is transferring nuclei between 
two sites with equal populations 
and in the absence of scalar 
coupling  

• N,N’-dimethylacetamide is 
considered a good approximation of 
this ideal system. The coupling 
between the two methyls’ protons is 
small and it can be safely 
neglected.molto piccolo 
(trascurabile) 
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For k> 1/T1 several regimes occure, according to k 
and dn ratios 

When the exchange is very slow k< 1/T1: no effect on the NMR 
signal 
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1 cross peaks in the 2D 
spectra (EXSY) 

Until k< 1/T2 no effect on the linewidth 



Lineshape analysis 

• When k > 1/T2 the effect on the linewidth is 
detectable 

• The relevant factors for this analysis are: 

• the natural linewidth (Dn1/2) and the shift 
separation (in Hz) between the exchanging sites 
(A e B) 



slow exchange 
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the linewidth increases with k 

in the slow exchange regime at high B0 
(large shift diference) Dn1/2 may be large 
for large k 



Coalescence 
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the signal position is the weighted 
average of the positions of the signals 
of the two exchanging partners 



Fast exchange 
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k=1000

k=300

k>kcoal 

There is just one broad signal with linewidth: 
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19F NMR 

E. Laurini et al. Chem. Commun. 2012, 48, 4284-4286 

564.6 MHz on Varian Inova-600 spectrometer 

F…..S interaction 



Non Mutual Exchange 
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mutual exchange 

non mutual exchange: two sites with different 
populations 

slow exchange 
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k1=20  k2=60

enlargement of the previous spectrum 
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k1=20  k2=500

Il segnale di B è impercettibile, ma c’è allargamento del 
segnale di A 



Fast Exchange 
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k1=300  k2=500

The position of the maximum of the signal is the weigthed 
average of the shifts of di A and B 
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Intermediate Rate 
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k1=300  k2=500

The lineshapes are calculated by solving the Bloch-
McConnell equations 


