Measurement of T_1, T_2 and $T_{1\rho}$

Inversion Recovery Spin echo and CPMG Spin lock

Inversion Recovery

- T₁, is the inverse of the kinetic constant with which M_z reaches the equilibrium value, M₀. It is important to have information on its magnitude in order:
- to determine the pulse length
- to perform multipulsed experiments
- to gain information on molecular motions or on the motion of molecular subunits (groups of atoms)
- to gain information on molecular structure

Longitudinal relaxation
$$\frac{dM_{z}(t)}{dt} = -\frac{M_{z}(t) - M_{0}}{T_{1}}$$

The integrated kinetic law:

$$\ln \frac{M_{z}(t_{a}) - M_{0}}{M_{z}(t=0) - M_{0}} = -\frac{t_{a}}{T_{1}}$$

In the inversion recovery experiments the starting condition corresponds to the maximum deviation from equilibrium: the magnetization vector is brought onto the negative z axis by a π pulse.

The intensity of the longitudinal magnetization, M_z , is measured by shifting the longitudinal magntization to the transverse plane through a $\pi/2$ pulse

The experiment is repeated about 20 times varying τ , the time interval between the inverting π pulse and the read $\pi/2$ pulse. During the time τ relaxation takes place (restoration of equilibrium).

Scheme of the Inversion Recovery experiment

In the Inversion Recovery experiment $M_{2}(t=0)=-M_{0}$, i.e., after the π pulse. The equation

$$\ln \frac{M_z(\tau) - M_0}{M_z(t=0) - M_0} = -\frac{\tau}{T_1} \qquad \text{becomes}$$

$$\ln \frac{M_z(\tau) - M_0}{-2M_0} = -\frac{\tau}{T_1} \qquad \text{i.e.}$$

$$\ln \frac{M_0 - M_z(\tau)}{2M_0} = -\frac{\tau}{T_1} \qquad \text{Experiment}$$

$$\ln \frac{M_0 - M_z(\tau)}{2M_0} = -\frac{\tau}{T_1} \qquad \text{Experiment}$$

$$\ln [\mathsf{M}_0 - \mathsf{M}_z(\tau)] = \ln(2\mathsf{M}_0) - \tau/\mathsf{T}_1 \qquad \text{Experiment}$$

eriomental data be fitted to a ight line, the slope hich corresponds **/**T₁

i.e.

After each experiment the system must be let fully return to equilibrium waiting at least 5 T_1 .

For τ small with respect to T₁ the signal is still inverted, for τ_{null} = 0.693 T₁ the longitudinal magnetization is zero, whereas for longer τ it is positive and grows with τ .

To get a quick estimate of T₁, to be used later to choose the best suited τ values, one determines the τ for the null signal, M_z(τ = τ_{null})= 0

$$\ln \frac{M_{z}(\tau_{null}) - M_{0}}{-2M_{0}} = -\frac{\tau_{null}}{T_{1}} \quad \text{i.e.} \quad \ln \frac{1}{2} = -\frac{\tau_{null}}{T_{1}}$$
$$\tau_{null} = T_{1} \ln(2) = 0.693T_{1} \quad \text{and} \quad T_{1} = 1.44 \tau_{null}$$

A non linear fit to the experimental data can be performed as well:

$$\frac{M_0 - M_z(\tau)}{2M_0} = \exp\left(-\frac{\tau}{T_1}\right)$$

$$M_{z}(\tau) = M_{0}\left[1 - 2\exp\left(-\frac{\tau}{T_{1}}\right)\right]$$

Here M_0 and 2 can be optimized in order to minimize the errors between calculated and experimental data. The departure from the value of 2 suggest a deviation for the π pulse, usually due to B_1 inhomogeneity. Owing to the non linear dependence of $M_z(\tau)$ on τ it is convenient to to use not linearly increasing τ that reflect such dependence

τ/T_1	0.01	0.05	0.11	Inversion Recovery
0.16	0.22	0.29	0.36	1.5 1.5 0.5 1
0.43	0.51	0.6	0.69	
0.8	0.92	1.05	1.2	-0.5 0 2 4 6 8
1.39	1.61	1.9	2.3	-1 -1.5
3	7			t

Experimental data

Experimental cautions (usefuls also in the determination of the $\pi/2$ pulse)

- accurate probe syntonization
- adequate receiver gain (use the autogain option for a spectrum recorded by a π/2 pulse which give the maximum signal, then decrease the gain by 2 units, deselect the autogain option)
- delay betwee two experiments long enough
- check the $\pi/2$ pulse on the sample of interest

NMR Signal

• The NMR signal has a Lorentzian shape

$$S(\nu) = \frac{T_2}{1 + [2\pi(\nu - \nu_0)T_2]^2}$$

- The line-width at half height is
- in the absence of B₀
 inhomogeneity
- actually they are constantly present
- are expressed as δB_0

$$\Delta v_{1/2} = \frac{1}{\pi T_2}$$

$$\Delta v_{1/2} = \frac{1}{\pi T_{2}^{*}}$$
$$\frac{1}{T_{2}^{*}} = \frac{1}{T_{2}} + \frac{\gamma \delta B_{0}}{2\pi}$$

Lorentzian Lineshape

$$h = \frac{H_{MAX}}{1 + 4\pi^2 \Delta v_h^2 T_2^2}$$

$$1 + 4\pi^2 \Delta v_h^2 T_2^2 = \frac{H_{MAX}}{h}$$

$$\Delta v_h = \pm \frac{1}{2\pi T_2} \sqrt{\frac{H_{MAX}}{h}} - 1$$

h/H _{MAX}	$2\Delta v_h$
0.5	$\frac{1}{\pi T_2}$
0.55 %	13.4 $\frac{1}{\pi T_2}$
0.11 %	30.1 $\frac{1}{\pi T_2}$

Lineshape test

Actually the NMR signal is the hystogram of B₀ inhomogeneities

How to tell whether a broad signal is either the sum of many Lorentian lines centrered at slightly diffeent frequencies or an inherently broad signal?

Irradiating a single, broad signal, it disappears because of saturation: the populations of the two level are equalized

In the presence of many signals, unless high power levels are employed, only the signals closest to the irradiation frequency are saturated

NB solvent signal presaturation

Shims

- The shims for field homogenity are coils projected to be carry tunable direct currents
- they originate small magnetic field in the sample region
- with the appropriate current are established these magnetic field counteract the deviations of the static magnetic field making B₀ highly homogeneous across the whole sample
- The were introduced (1957) by Marcel Golay (1902-1987), a mathematician of *Perkin Elmer Corporation*.
- He stopped by ... and gave us High Resolution

Shim Circuits: Real Spherical Harmonics

Spin Echo

Soon after a π/2 pulse along y' : all isochromats lie on the x' axis After a certain time t they are defocussed because they precess in the rotating frame with different Ω , owing to different δB_0

 π pulse along x': the position of each isochromat is inverted

Hahn echo

Fig. 9.2 Dephasing and reversal on a race track, leading to coherent rephasing and an "echo" of the starting configuration. [From *Phys. Today*, front cover, November 1953. Reproduced by permission.]

Per determinare il T₂ di solito non si fanno esperimenti a τ via via crescenti, ma si aumenta via via il numero di echi. Si danno impulsi di π a τ dispari e si campiona l' intensità del segnale a τ pari

Carr Purcell Meiboom Gill

- to compensate for the effects of imperfect π pulses π pulses with the same phase of the first $\pi/2$ pulse are used
- The deviations compensate every second pulse
- Every second echo is sampled because of the alternating signs of echo signals

Thus the data are collected at every 4 n τ

The π pulses refocus the magnetic field inhomogeneities and the chemical shift, but not homonuclear J coupling.

Thus in scalar coupled systems the J echo modulation is observed

After getting the magnetization to the x'axis of the rotating frame by a $(\pi/2)_y$ pulse

a magnetic r.f. field B₁ is applied along x' (it is termed **spin lock**)

in the rotating frame the magnetization feels exclusivelythe magnetic field B_1 (the only one component of B^r_{eff}) and it becomes the quantization axis

it is very weak, therefore the populatin difference among the levels is very small and the related equilibrium magnetization is tiny A strong decrease of transverse magnetization intensity occurs. Its module decays from M_0 (which is due to the population difference induced by B_0) to the value corresponding to the population difference coherent with B_1

The decay is ecponential with rate constant $1/T_1\rho$

In the case of fast (compared to the Larmor frequency), isotropic motion

$$T_1 = T_2 = T_{1\rho}$$