Metodi di origine finanziaria (II)

Processi e metodi di valutazione

Osservazioni sul payback

Vale sempre la relazione:

- infatti i flussi di cassa attualizzati sono sempre inferiori a quelli non attualizzati
- Questa differenza aumenta al crescere del tempo t, infatti i flussi sono moltiplicati per (1+r)-t

	t	0	1	2	3	4	5
Α		- 2.000	400	400	400	400	400
В		- 4.000	- 1.000	5.000	5.000	4.000	3.000
С		- 6.000	1.600	1.600	1.600	1.600	1.600
D		- 4.000	1.250	2.500	2.250	-	-
E		- 4.000	-	-	-	-	18.000

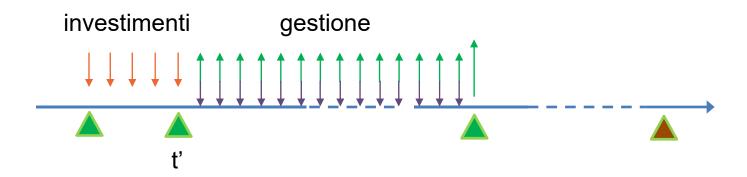
t		0		1		2		3		4	5
A	-	2.000		400		400		400		400	400
prof_A_na	-	2.000	-	1.600	-	1.200	-	800	-	400	-
prof_A_a	-	2.000	-	1.636	-	1.306	-	1.005	-	732	- 484
В	-	4.000	-	1.000		5.000		5.000		4.000	3.000
prof_B_na	-	4.000	-	5.000		(-)					
prof_B_a	-	4.000	-	4.909	-	777		2.980			
С	-	6.000		1.600		1.600		1.600		1.600	1.600
prof_C_na	-	6.000	-	4.400	-	2.800	-	1.200		400	
prof_C_a	-	6.000	-	4.545	-	3.223	-	2.021	-	928	65
D	-	4.000		1.250		2.500		2.250		-	-
prof_D_na	-	4.000	-	2.750	-	250		2.000			
prof_D_a	-	4.000	-	2.864	-	798		893			
E	-	4.000		-		-		_		-	18.000
prof_E_na	-	4.000	-	4.000	-	4.000	-	4.000	-	4.000	14.000
prof_E_a	-	4.000	-	4.000	-	4.000	-	4.000	-	4.000	7.177

Le alternative B e D consentono di recuperare l'investimento in un tempo minore anche nel caso di PBA; dovrebbero essere analizzate con altri indicatori.

Indice di redditività

- Un primo metodo che prende in considerazione lo sviluppo di tutto il profilo del progetto è l'indice di redditività (IR – profitability index).
- Questo indice è più diffuso in campo industriale, ma è a volte inserito in SdF del settore costruttivo.

 Se i costi di investimento (I_t) possono essere chiaramente definiti e distinti dai flussi dati dal bilancio ricavi-costi di esercizio (F_t), si ha:


• investimenti totali:
$$\sum_{t=0}^{r} \frac{I_t}{(1+r)^t}$$

• flussi di esercizio:
$$\sum_{t=0}^{T} \frac{F_t}{(1+r)^t}$$

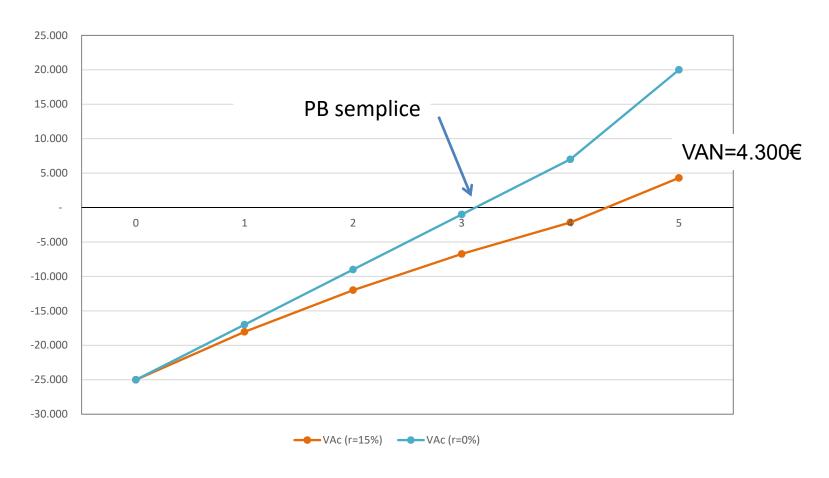
L'indice di redditività è allora:

$$IR = \frac{\sum_{t=0}^{T} \frac{F_{t}}{(1+r)^{t}}}{\sum_{t=0}^{T} \frac{I_{t}}{(1+r)^{t}}}$$

 Concettualmente, IR è una misura di efficienza dell'investimento: rapporta l'output (attualizzato) prodotto dall'investimento al valore (attualizzato) delle risorse assorbite nell'investimento iniziale.

 Nei casi più semplici, gli investimenti si manifestano solo nei primi anni (fino a un anno t') e, in fase di esercizio, i ricavi superano i costi (F_t sono positivi)

$$IR = \frac{\sum_{t=0}^{T} \frac{F_t}{(1+r)^t}}{\sum_{t=0}^{t'} \frac{I_t}{(1+r)^t}}$$


- L'investimento è conveniente quanto IR>1: in questo caso per ogni € investito l'operazione consente di recuperarlo e di generare valore.
- Nel caso di più investimenti, sarà preferito quello con IR maggiore.
- Vale rilevare che l'operatore di attualizzazione è un operatore lineare: gode quindi della proprietà di additività del valore.
- Questo significa, ad esempio, che per ottenere il valore attualizzato complessivo si potranno escludere dalla sommatoria gli anni in cui I_t o F_t sono nulli.

Valore attuale netto (VAN)

- Il VAN (o *Net Present Value* NPV) sfrutta il principio di attualizzazione dei flussi di cassa.
- Sostanzialmente VAN è una misura del valore aggiunto all'impresa dall'investimento effettuato.
- Il principio concettuale su cui si basa è quello dell'*anticipazione*.
- Un acquirente razionale non è disposto a pagare (oggi) un bene ad un prezzo superiore al valore attuale dei benefici netti (futuri) che il bene stesso sarà in grado di produrre.

- Il concetto di base è espresso attraverso il valore attuale (present worth o value) di un investimento.
- Non è sufficiente che la somma algebrica delle entrate e delle uscite sia maggiore di zero, ma si deve tenere conto del periodo in cui esse si manifestano.
- Un valore attuale netto positivo per un progetto è la misura del profitto generato in più rispetto alla quantità minima richiesta dall'investitore ed espressa attraverso il tasso di attualizzazione.

- Un sistema di lavaggio di dispositivi non medici del costo di investimento di 25 k€, consentirebbe a un'unità di chirurgia di risparmiare (dedotti i costi di esercizio) 8 k€ all'anno.
- La durata dell'investimento è fissata in 5 anni, alla fine dei quali il sistema avrà un valore stimato pari a 5 k€.
- Nell'ipotesi che il tasso di attualizzazione definito dalla direzione della clinica sia 15%, si ottiene il risultato presentato nella seguente figura.

La figura rappresenta il valore cumulato dei flussi di cassa.

- Il VAN può essere calcolato:
 - come differenza tra il valore attualizzato, all'anno 0, delle entrate annue e il valore attualizzato delle uscite annue,
 - come attualizzazione, all'anno 0, dei flussi di cassa netti che si generano in ogni anno t
 - per tutta la vita utile dell'investimento [0, T].
- Ciò deriva dalla proprietà additiva del valore:

$$VAN(\alpha A + \beta B) = \alpha VAN(A) + \beta VAN(B)$$

Possiamo quindi scrivere:

$$VAN = \sum_{t=0}^{T} \frac{R_{t}}{(1+r)^{t}} - \sum_{t=0}^{T} \frac{C_{t}}{(1+r)^{t}} - \sum_{t=0}^{T} \frac{I_{t}}{(1+r)^{t}} =$$

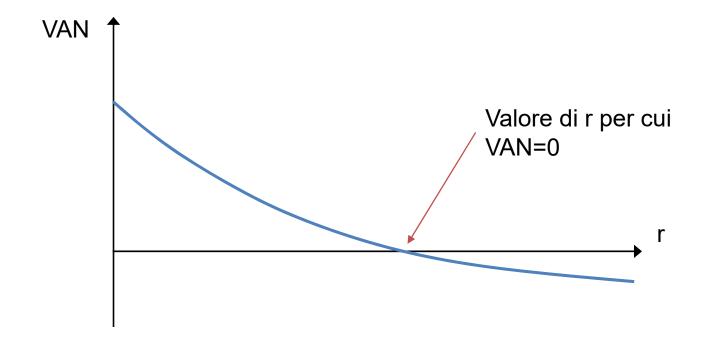
$$= \sum_{t=0}^{T} \frac{(R_{t} - C_{t})}{(1+r)^{t}} - \sum_{t=0}^{T} \frac{I_{t}}{(1+r)^{t}} =$$

$$= \sum_{t=0}^{T} \frac{F_{t}}{(1+r)^{t}} - \sum_{t=0}^{T} \frac{I_{t}}{(1+r)^{t}}$$

(questo mantenendo espliciti gli investimenti).

- Il VAN sarà maggiore di 0 quando il valore attuale delle entrate di cassa è maggiore del valore attuale delle uscite.
- La condizione minima di accettabilità di un investimento, secondo il criterio del VAN, è che VAN > 0.
- Se VAN = 0 c'è incertezza sulla decisione.
- Se VAN < 0 l'investimento non risulta appetibile.

- Il valore del VAN dipende
 - dal profilo dei flussi di cassa
 - dal valore del tasso di attualizzazione.
- A parità di r, gli investimenti con flussi di cassa positivi elevati nei primi anni sono avvantaggiati.
- Valori bassi di r (2-6%) favoriscono i progetti con benefici nel medio lungo periodo.
- Valori elevati di r favoriscono i progetti con tempi di rientro brevi.


• Si consideri il valore di 1€ generato in t, per diversi r si ha:

	5 anni	10 anni	20 anni	50 anni	100 anni
1%	0,95	0,91	0,82	0,61	0,37
5%	0,78	0,61	0,38	0,088	0,0076
10%	0,62	0,038	0,15	0,0085	0,000072
20%	0,40	0,16	0,026	0,00011	0,0000001

		Progetto A			Progetto B	
Anno	Ft k€	Ft (4%) k€	Ft (10%) k€	Ft k€	Ft (4%) k€	Ft (10%) k€
0	-2.500	-2.500	-2500	-2.500	-2.500	-2500
1	300	288	273	500	481	455
2	400	370	331	600	555	496
3	400	356	301	900	800	676
4	600	513	410	600	513	410
5	700	575	435	400	329	248
6	600	474	339	300	237	169
7	500	380	257	200	152	103
8	300	219	140	200	146	93
9	200	141	85	100	70	42
10	100	68	39	100	68	39
VAN		884	107		850	231

PB di A = 6 anni; al tasso $4\% \text{ VAN}_A > \text{VAN}_B$ PB di B = 4 anni; al tasso $10\% \text{ VAN}_B > \text{VAN}_A$

- Più in generale, per uno stesso flusso di cassa, il valore del VAN diminuisce al crescere di r.
- Nel caso di profili in cui si passa una sola volta da flussi negativi a flussi positivi, si identifica un solo valore di r in cui VAN=0:

Osservazione: IR e VAN

- Abbiamo visto che nel confronto tra più alternative si dovrebbe scegliere quella con IR maggiore (purché sia IR > 1).
- È però possibile che, se sia IR sia VAN sono presi in considerazione, essi diano risultati opposti.

Progetto	I (k€)	ΣFCA (k€)	IR	VAN (k€)
Α	5.000	7.582	1,52	2.582
В	20.000	24.072	1,20	4.072

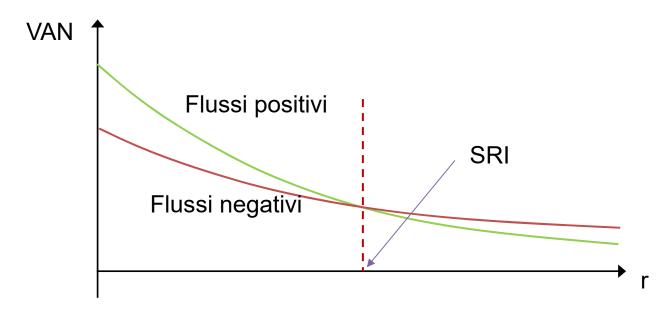
- Nell'esempio di tabella entrambi i progetti sono redditizi, ma i due indici danno risultati contrastanti.
- Si ricorda che:
- IR dà una misura relativa della redditività di un progetto
- VAN esprime i vantaggi (o svantaggi) economici in termini assoluti.

Progetto	I (k€)	ΣFCA (k€)	IR	VAN (k€)
Α	5.000	7.582	1,52	2.582
В	20.000	24.072	1,20	4.072

 Si può quindi valutare con IR se l'investimento più elevato di B (rispetto ad A) consente benefici incrementali vantaggiosi:

$$IR = \frac{24.072 - 7.582}{20.000 - 5.000} = \frac{16.490}{15.000} = 1,10$$

• IR > 1 indica che l'investimento aggiuntivo produce benefici economici positivi per ogni € in più investito.


Equivalente annuo

- L'equivalente annuo (annual equivalent AE)
 rappresenta il rendimento (assoluto) medio del
 capitale impegnato al tasso r.
- Si ottiene dalla formula delle annualità costanti equivalenti a un capitale attuale; dato il VAN(r):

$$AE(r) = VAN(r) \frac{r(1+r)^n}{(1+r)^n - 1}$$

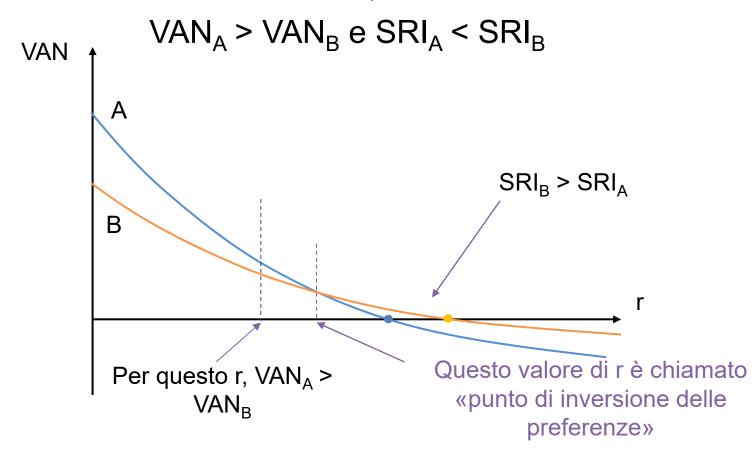
Saggio di rendimento interno (SRI)

- Il valore di r per cui VAN si annulla può essere utilizzato per valutare l'investimento.
- Esso prende il nome di saggio di rendimento interno (internal rate of return)..
- Nel caso di un investimento in cui nei primi anni si hanno flussi negativi e da un certo anno in poi solo flussi positivi, SRI corrisponde al saggio in cui il valore attuale dei flussi positivi (VA+) eguaglia quello dei flussi negativi (VA-):
 - per r < SRI, VA+ > VA-
 - per r > SRI, VA+ < VA-

• Formalmente, nel caso di investimenti nei primi anni e quindi di flussi F_t positivi, si ha:

$$\sum_{t=0}^{T} \frac{F_{t}}{(1+SRI)^{t}} - \sum_{t=0}^{T} \frac{I_{t}}{(1+SRI)^{t}} = 0$$

$$\sum_{t=0}^{T} \frac{F_{t}}{(1 + SRI)^{t}} = \sum_{t=0}^{T} \frac{I_{t}}{(1 + SRI)^{t}}$$


- Il valore del SRI deve essere confrontato con un saggio «soglia» (SS), fissato dall'investitore.
- Esso è spesso pari al costo opportunità del capitale, cioè al tasso di rendimento dato dal più conveniente investimento cui si rinuncia.
- Ad esempio, si può utilizzare il tasso dato da un investimento a basso rischio (titoli di stato).
- Se SRI > SS il progetto di investimento è conveniente
- Se SRI < SS l'investimento non è sufficientemente remunerativo.

Confronto VAN-SRI

Caratteristica	VAN	SRI
Tipo di indicatore	rendimento assoluto	efficienza
Saggio di sconto (r)	esogeno	implicito* saggio soglia
Criterio di ammissibilità	$VAN_A > VAN_B > 0$	$SRI_A > SRI_B > SS$
Impiego	valutazioni rispetto all'ammontare degli utili	valutazioni rispetto all'efficienza d'uso del capitale

^{*} Non è richiesta la fissazione di r per il calcolo di SRI.

- I due criteri economici possono dare indicazioni contrastanti.
- È cioè possibile che, dati due investimenti A e
 B e un tasso di sconto r, risulti:

- Condizioni tipiche in cui si può manifestare un contrasto tra le indicazioni date da VAN e SRI:
 - alternative con investimenti iniziali diversi
 - alternative con investimenti iniziali simili, ma flussi con tempistiche opposte.
- Il secondo caso dipende da come VAN e SRI sono costruiti a partire dai flussi di cassa.
- Mentre il VAN ipotizza che i flussi positivi siano reinvestiti al tasso r, il SRI ipotizza che essi siano reinvestiti al tasso SRI.
- Esaminiamo due esempi.

• Si considerino le due alternative con i seguenti profili:

		0	1	2	3	4	5
Prog A	-	10.000	3.000	3.000	3.000	3.000	3.000
Prog B	-	13.500	4.000	4.000	4.000	4.000	4.000

Si ottiene:

	VAN	SRI
Prog A	1.372	15,2%
Prog B	1.663	14,7%

- Se il SS=10%, A e B sono appetibili.
- SRI «ignora» la dimensione dell'investimento iniziale.

- Un modo per far fronte a questa miopia del SRI è operare un'analisi incrementale.
- Il progetto B richiede un investimento maggiore, ma genera flussi maggiori.
- Calcoliamo il SRI per il flusso incrementale:

 Si ottiene un SRI pari a 13,2%: se SS=10% l'investimento incrementale è appetibile, quindi dovrebbe essere scelto il progetto B (concordemente con l'indicazione data dal VAN).

• Si considerino i due progetti con i seguenti profili:

		0	1	2	3
Prog A	-	2.000	1.500	1.000	500
Prog B	-	2.000	500	1.000	2.000

• Si ottiene:

	VAN	SRI
Prog A	566	28,9%
Prog B	784	26,7%

 Dato che l'investimento iniziale ha lo stesso valore, si può utilizzare l'IR:

	VAN	IR
Prog A	566	1,28
Prog B	784	1,39

- Il progetto B garantisce una maggiore redditività per € investito.
- L'indicazione fornita da IR è coerente con quella fornita dal VAN.

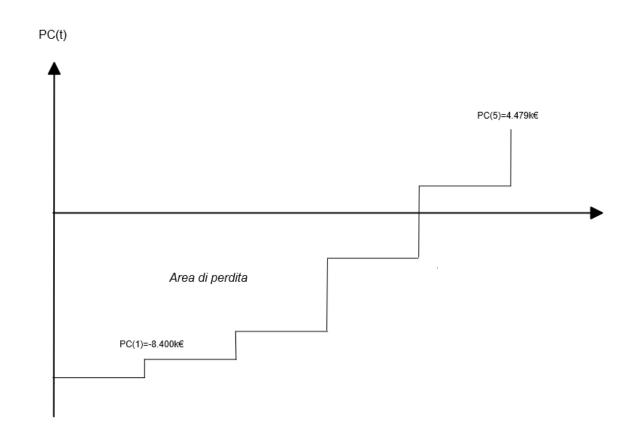
Profilo di cassa di un progetto

- Si tratta del profilo temporale del progetto di investimento.
- Si ottiene misurando il valore futuro delle somme impegnate nel progetto in ogni periodo per tutta la durata n dell'investimento.
- Se il progetto termina alla fine del periodo t*, il profilo di cassa identifica la perdita o il profitto equivalente associato al flusso di cassa in t*.

Esempio (r=10%, k€)

Nel periodo t=1 si ha:

$$PC(1) = -9000 (1+0,1) + 1500 = -8400$$


- Se il progetto dovesse concludersi in un t compreso tra l'anno 1 e l'anno 2 (1 ≤ t < 2), si avrà una perdita pari a 8.400 k€.
- Nel periodo t=2 si ha:

$$PC(2) = -8400 (1+0,1) + 2500 = -6740$$

 Se il progetto dovesse concludersi in un t compreso tra l'anno 2 e l'anno 3 (1 ≤ t < 3), si avrà una perdita pari a 6.740 k€.

• Si ottiene quindi:

		0	1	2	3	4	5
F(t)	-	9.000	1.500	2.500	5.000	4.000	3.000
PC(t)	-	9.000 -	8.400 -	6.740 -	2.414	1.345	4.479

Scelta tra investimenti alternativi

- I metodi di valutazione visti sono spesso applicati per confrontare due o più progetti di investimento.
- Si potrebbe procedere come segue:
 - scelta del progetto «base» (se lo scenario do-min non è contemplato, si può scegliere quello che presenta il costo iniziale più basso);
 - confronto tra il progetto base e il progetto che presenta il costo iniziale più basso tra i progetti rimasti: differenza tra i flussi di cassa (F_t-F_{base.t});
 - se il VAN differenziale è > 0 il nuovo progetto è preferibile, e si ripete il confronto con gli altri, altrimenti si mantiene il progetto originario come progetto base;
 - la procedura è ripetuta finché i progetti candidati sono finiti.

- Vale rilevare, però, che, per la proprietà di additività del VAN, è sufficiente scegliere il progetto che offre il VAN maggiore.
- Richiamando un esempio visto in precedenza, si ha:

Anno	FA	FB	FB-FA	(4%)	(10%)
0	-2.500	-2.500	0,00	0	0
1	300	500	200,00	192	182
2	400	600	200,00	185	165
3	400	900	500,00	444	376
4	600	600	0,00	0	0
5	700	400	-300,00	-247	-186
6	600	300	-300,00	-237	-169
7	500	200	-300,00	-228	-154
8	300	200	-100,00	-73	-47
9	200	100	-100,00	-70	-42
10	100	100	0,00	0	0
VAN				-33	124

il segno negativo indica che B è meno appetibile di A

Aspetti problematici dei metodi

- Con riferimento ai metodi visti, osserviamo alcuni aspetti.
- Negli investimenti produttivi, è spesso necessario confrontare soluzioni che non comportano variazioni di ricavi ma solo di costi.
- A fronte di «ricavi indifferenti» (stessi valori ottenibili dalle diverse soluzioni), si hanno configurazioni di costo differenti.

- Se si devono valutare profili di costo diversi, può essere conveniente considerare la situazione «differenziale» ottenibile confrontando coppie di soluzioni.
- Nei casi in cui i flussi si differenzino solo per le componenti di costo, si preferirà la condizione che implica il costo minore.

- Ricordiamo che il soggetto investitore valuterà le diverse ipotesi di investimento:
 - attraverso il VAN attualizzando i flussi di cassa a un saggio r
 - attraverso il SRI che sarà confrontato con un saggio soglia.
- Nella prassi si considera spesso un parametro di confronto che rappresenta il rendimento atteso minimo del capitale.
- Il minimum attractive rate of return (MARR) è allora usato:
 - nel primo caso come tasso di attualizzazione
 - nel secondo come saggio soglia di confronto.

Esempio

- Un'azienda di produzione di cateteri sta considerando l'acquisto di una macchina per l'imballaggio del prodotto. Le soluzioni identificate presentano le stesse caratteristiche prestazionali e i ricavi non saranno influenzati dalla scelta.
- I loro costi (investimento I e esercizio annuo Ct) sono:

Altern		Ct
Α	- 650.000	- 91.800
В	- 780.000	- 52.600
С	- 600.000	- 105.000
D	- 750.000	- 68.400
E	- 720.000	- 74.900

- La durata operativa di ogni macchina è stata stimata in 5 anni e il tasso di attualizzazione (pari al MARR) scelto è del 15%.
- Si ipotizza che il valore residuo delle cinque soluzioni possa essere trascurato.
- In questo caso di tratta quindi di valutare i flussi delle soluzioni in termini di costi: l'obiettivo sarà minimizzare il valore attualizzato (VA) dei costi.

- Si può ad esempio calcolare il VA con r=15%.
- Poiché i Ct sono costanti (per ogni soluzione) nei 5 anni, si può calcolare il valore attuale delle annualità costanti:

$$VA(r) = A(r) \frac{(1+r)^{n} - 1}{r(1+r)^{n}}$$

Sommando poi l'investimento, si ottiene:

Altern		l l	Ct	VA(t=1,n)	VA
Α	-	650.000	- 91.800	- 307.728	- 957.728
В	-	780.000	- 52.600	- 176.323	- 956.323
С	-	600.000	- 105.000	- 351.976	- 951.976
D	-	750.000	- 68.400	- 229.287	- 979.287
Е	-	720.000	- 74.900	- 251.076	- 971.076

- L'alternativa C consente di ottenere il minor valore attuale dei costi totali.
- Come abbiamo già visto, si può applicare il metodo della valutazione dell'*investimento incrementale*, che adotta una logica differenziale.
- Con questo metodo, si valuta se, a partire da una soluzione buona, l'incremento di investimento necessario per adottarne una diversa si ripaga e aggiunge valore.
- Si noti che non è possibile calcolare il SRI delle singole soluzioni, dato che i flussi sono tutti negativi.

- La procedura prevede una serie di passi.
- le alternative sono ordinate secondo l'ordine crescente dell'investimento richiesto (I)
- 2. l'alternativa «migliore» di partenza (A₀) è quella con l minore
- 3. si confronta A0 con l'alternativa «più promettente» che è quella (tra le rimanenti) con I minore (A₁); si valuta il SRI dell'investimento incrementale, così definito:

$$F(A_1-A_0) = F(A_1) - F(A_0)$$

se $SRI[F(A_1-A_0)] > SS$ (o MARR)

si scarta A0 e si adotta come alternativa «migliore» A1; infatti, tale condizione significa che A1 somma al risultato (economico) di A0 (attualmente migliore) ulteriori benefici economici;

se $SRI[F(A_1-A_0)] \leq SS$ (o MARR)

si scarta A1 e si conserva A0 come alternativa «migliore».

- 4. si ripete il passo 3 fino ad esaurire tutte le alternative
- 5. l'alternativa complessivamente «migliore» è quella che rimane alla fine del processo.

Nell'Esempio 1 si ha il seguente ordinamento iniziale:

Altern	I	C1	C2	C3	C4	C 5
С	-600000	-105000	-105000	-105000	-105000	-105000
Α	-650000	-91800	-91800	-91800	-91800	-91800
E	-720000	-74900	-74900	-74900	-74900	-74900
D	-750000	-68400	-68400	-68400	-68400	-68400
В	-780000	-52600	-52600	-52600	-52600	-52600

Quindi:

		0	1	2	3	4	5	SRI
A-C	-	50.000	13.200	13.200	13.200	13.200	13.200	10,0% <marr< td=""></marr<>
E-C	-	120.000	30.100	30.100	30.100	30.100	30.100	8,1% <marr< td=""></marr<>
D-C	-	150.000	36.600	36.600	36.600	36.600	36.600	7,0% <marr< td=""></marr<>
B-C	-	180.000	52.400	52.400	52.400	52.400	52.400	14,0% <marr< td=""></marr<>

- Si noti che i flussi di cassa differenziali dal periodo 1 sono positivi.
- L'alternativa C risulta la preferibile (come per il VAN).

Articolazione dell'analisi costi-ricavi

- Le fasi in cui si articola l'analisi costi-ricavi sono:
 - 1. Valutazione dei costi e dei ricavi dell'investimento
 - 2. Costruzione del Cash Flow
 - 3. Assunzione del tasso di attualizzazione
 - 4. Elaborazione dei criteri di rendimento economico
 - 5. Formulazione della scelta finale
 - 6. Valutazione dell'incertezza.

- L'elaborazione del VAN richiede dunque la determinazione di alcuni parametri:
 - orizzonte temporale di analisi
 - valori dei flussi di cassa
 - tasso di attualizzazione

Definizione dell'orizzonte temporale

- L'orizzonte temporale di analisi è il periodo in cui si analizzano i flussi di cassa.
- Esso dovrebbe comprendere l'arco temporale in cui si esplica la redditività dell'investimento.
- La sua ampiezza è legata alla vita utile dell'investimento, quindi:
 - alla durata fisica
 - all'obsolescenza tecnica
 - all'obsolescenza commerciale.

- L'orizzonte è limitato superiormente:
 - dall'obsolescenza tecnica
 - dalla vita fisica.
- La vita tecnica dipende da quella degli elementi costitutivi. Ad esempio:
 - per le opere civili, 30-40 anni
 - per gli impianti tecnici, 10-15 anni.
- Diventa quindi fondamentale la determinazione del valore residuo (o di recupero) dell'opera

- Si sottolinea che maggiore è l'orizzonte temporale, più incerte divengono le previsioni.
- La scelta di un orizzonte breve è prudenziale, infatti il peso delle uscite, che sono prevalenti nei primi anni, è così esaltato.
- Gli effetti economici più lontani nel tempo, e più incerti, sono invece, in questo modo, meno rilevanti.

Valore residuo

- La vita tecnico-economica di un'opera, impianto o attrezzatura è tipicamente maggiore dell'orizzonte temporale scelto per l'analisi.
- Il valore residuo dell'investimento ha lo scopo di stimare i benefici e i costi del progetto oltre l'orizzonte di valutazione scelto.

- Il valore residuo di un progetto può essere calcolato:
 - considerando il valore residuo di mercato dell'opera e di altre passività nette rimanenti;
 - calcolando il valore residuo di tutte le attività e passività, seguendo le opportune formule di deprezzamento di contabilità economica (caso degli investimenti produttivi);
 - calcolando il valore attuale netto dei flussi di cassa nei restanti anni di vita del progetto (ipotizzando un profilo futuro dell'investimento).

- In generale, il valore residuo può essere stimato, con buona approssimazione, moltiplicando i costi d'investimento totali del progetto per la percentuale della sua vita residua al termine dell'orizzonte di riferimento.
- Esempio
 Si è stimato che la vita utile di un attrezzatura per la sterilizzazione sia di 20 anni (costo d'investimento = 120k€), dopo i quali sarà tecnicamente obsoleta. Un ospedale intende utilizzarla per 15 anni.
- Il valore residuo può essere così approssimato:

$$R_T = 120 \times \frac{5}{20} = 30 \ (k \in)$$

Valorizzazione dei costi e ricavi

- Costi e ricavi sono espressi in base ai valori di mercato (in genere, depurati dalle imposte indirette).
- Possono inoltre essere valorizzati:
 - a valori costanti
 - a valori correnti.

- Il criterio dei valori costanti adotta un'unità monetaria di conto omogenea in tutto l'orizzonte temporale di analisi.
- Tale unità è spesso quella dell'anno iniziale dell'orizzonte, che molte volte coincide con la data di stima.
- Con questo criterio, si assume un tasso di inflazione nullo. Eventuali differenze di prezzo, in periodi diversi, relative alla stessa voce di input o output, saranno motivate da variazioni reali di valore.

- Il criterio dei valori correnti adotta un'unità monetaria di conto specifica in ogni anno.
- Essa dipende dall'aumento generalizzato dei prezzi.
- In questo caso si prenderanno come riferimento i prezzi nominali previsti nei diversi anni.
- I valori costanti possono comunque essere trasformati in valori correnti, applicando l'indice di variazione dei prezzi previsto nell'orizzonte.

 Esempio: si abbia il seguente investimento e sia stimata una variazione media dei prezzi annua del 2%

			(costanti)		(correnti	
Anno	numeri indice	costi	ricavi	flusso netto	costi	ricavi	flusso netto
0	100,00	4.000		4.000	4.000	-	4.000
1	102,00	110	720	610	112	734	622
2	104,04	110	720	610	114	749	635
3	106,12	110	720	610	117	764	647
4	108,24	110	720	610	119	779	660
5	110,41	110	720	610	121	795	673
6	112,62	110	720	610	124	811	687
7	114,87	110	720	610	126	827	701
8	117,17	110	720	610	129	844	715
9	119,51	110	720	610	131	860	729
10	121,90	110	720	610	134	878	744

 La scelta del criterio di valorizzazione comporta una scelta coerente del tasso di attualizzazione.