Esercizi Analisi Matematica II Anno accademico 2017-2018

Foglio 4

- 1. \mathbf{P} Determinare il dominio A delle seguenti funzioni e calcolarne, dove esistono, le derivate parziali.
 - (a) $f: A \subset \mathbb{R}^2 \to \mathbb{R}$ dove f(x,y) = 2y + |x-y|
 - (b) $f: A \subset \mathbb{R}^3 \to \mathbb{R}$ dove $f(x, y, z) = \arcsin(xy) z^2$
 - (c) $f: A \subset \mathbb{R}^3 \to \mathbb{R}^2$ dove $f(x, y, z) = (\tan(\frac{\pi}{2}(x+z+y)), \cos(z^3+y))$
 - (d) $f: A \subset \mathbb{R}^4 \to \mathbb{R}$ dove $f(x_1, x_2, x_3, x_4) = e^{x_1/x_4} \log(x_3^2)$
- 2. **P** Calcolare, se esiste, la derivata direzionale $\frac{\partial f}{\partial v}(0)$ per le seguenti funzioni f e direzioni v
 - (a) $f(x,y) = x^2 \sin(x-y)$ e $v = (\sqrt{2}/2, -\sqrt{2}/2)$ e $v = (-1/2, \sqrt{3}/2)$
 - (b) $f(x,y) = 2y + e^{x^2y}$ e $v = (\sqrt{2}/2, \sqrt{2}/2)$ e $v = (-\sqrt{2}/2, -\sqrt{2}/2)$
 - (c) $f(x, y, z) = z^2 y \cos(z + x)$ e $v = (1/2, -\sqrt{3}/4, 3/4)$

(d)
$$f(x,y) = \begin{cases} \frac{xy\sin(x-y)}{x^2 + y^2} & \text{se } (x,y) \neq 0\\ 0 & \text{se } (x,y) = 0 \end{cases}$$

 $e\ v = (\sqrt{2}/2, \sqrt{2}/2), \ v = (\sqrt{2}/2, -\sqrt{2}/2) \ e\ v = (1/2, \sqrt{3}/2)$

- 3. **T** Siano $f,g:A\subset\mathbb{R}^N\to\mathbb{R}$, con A aperto, due funzioni a valori reali. Supponiamo che f e g siano differenziabili in $x^0\in A$. Siano $\lambda,\ \mu\in\mathbb{R}$. Stabilire se $\lambda f + \mu g$ è differenziabile in x^0 e in caso affermativo calcolarne il differenziale.
- 4. **T*** Siano $f, g : A \subset \mathbb{R}^N \to \mathbb{R}$, con A aperto, due funzioni a valori reali. Supponiamo che f e g siano differenziabili in $x^0 \in A$. Stabilire se fg è differenziabile in x^0 e in caso affermativo calcolarne il differenziale.
- 5. **T** Siano $f,g:A\subset\mathbb{R}^N\to\mathbb{R}^M,\,A$ aperto, due funzioni a valori vettoriali. Supponiamo che f e g siano differenziabili in $x^0\in A.$ Sia $\langle\cdot,\cdot\rangle$ l'usuale prodotto scalare su $\mathbb{R}^M.$ Dimostrare che $h:A\subset\mathbb{R}^N\to\mathbb{R}$ definita da

$$h(x) = \langle f(x), g(x) \rangle = \sum_{i=1}^{M} f_i(x)g_i(x)$$
 per ogni $x \in A$

è differenziabile in x^0 . Dimostrare infine che

$$\nabla h(x^{0}) = \sum_{i=1}^{M} (f_{i}(x^{0}) \nabla g_{i}(x^{0}) + g_{i}(x^{0}) \nabla f_{i}(x^{0})).$$

6. T* Siano $f,g\,:\,\mathbb{R}\,\to\,\mathbb{R}$ due funzioni reali di una variabile reale. Sia $h: \mathbb{R}^2 \to \mathbb{R}$ la funzione data da

$$h(x,y) = f(x)g(y)$$
 per ogni $(x,y) \in \mathbb{R}^2$.

Supponiamo che f(0) e g(0) siano diversi da zero. Determinare condizioni necessarie e sufficienti su f e g affinché h sia differenziabile in (0,0), e calcolare in tal caso il differenziale.

7. P Studiare la continuità e la differenziabilità delle seguenti funzioni

(a)
$$f(x,y) = \begin{cases} \frac{\sin(xy)}{\sqrt[3]{x^2 + y^2}} & \text{se } (x,y) \neq (0,0) \\ 0 & \text{se } (x,y) = (0,0) \end{cases}$$

(a)
$$f(x,y) = \begin{cases} \frac{\sin(xy)}{\sqrt[3]{x^2 + y^2}} & \text{se } (x,y) \neq (0,0) \\ 0 & \text{se } (x,y) = (0,0) \end{cases}$$

(b) $f(x,y) = \begin{cases} \frac{\sin^3(x+y)}{x^2 + y^2} & \text{se } (x,y) \neq (0,0) \\ 0 & \text{se } (x,y) = (0,0) \end{cases}$

(c)
$$f(x,y) = \begin{cases} \frac{\arctan^2(x-y)}{\sqrt{x^2+y^2}} & \text{se } (x,y) \neq (0,0) \\ 0 & \text{se } (x,y) = (0,0) \end{cases}$$

(d)
$$f(x,y) = \begin{cases} \frac{e^{x^2y} - 1}{(x^2 + y^2)^{1/4}} & \text{se } (x,y) \neq (0,0) \\ 0 & \text{se } (x,y) = (0,0) \end{cases}$$

(e)
$$f(x,y) = \begin{cases} \frac{\sin(x^3 - y^3)}{\sqrt{x^2 + y^2}} & \text{se } (x,y) \neq (0,0) \\ 0 & \text{se } (x,y) = (0,0) \end{cases}$$

(f)
$$f(x,y) = \begin{cases} \frac{\log(1+xy)}{|x|+|y|} & \text{se } (x,y) \in B_1((0,0)), \ (x,y) \neq (0,0) \\ 0 & \text{se } (x,y) = (0,0) \end{cases}$$

8. P Determinare il dominio A delle seguenti funzioni e stabilire in quali punti del dominio sono differenziabili. In tali punti calcolare il gradiente e l'approssimante lineare.

(a)
$$f: A \subset \mathbb{R}^2 \to \mathbb{R}$$
 dove $f(x, y) = 2x^2 \log(xy) + 3$

(b)
$$f: A \subset \mathbb{R}^2 \to \mathbb{R}$$
 dove $f(x, y) = \cos(\arctan(x - y))$

(c)
$$f: A \subset \mathbb{R}^2 \to \mathbb{R}$$
 dove $f(x,y) = x^4 + 3y \log(1+x)$

(d)
$$f: A \subset \mathbb{R}^3 \to \mathbb{R}$$
 dove $f(x, y, z) = \frac{z(e^{x+y})}{x+y^2}$

9. P Determinare il dominio A delle seguenti funzioni e stabilire in quali punti del dominio sono differenziabili. In tali punti calcolare la matrice Jacobiana e l'approssimante lineare.

(a)
$$f: A \subset \mathbb{R}^3 \to \mathbb{R}^2$$
 dove $f(x, y, z) = \left(\cos(x + y^2), e^{x^2 + z}\right)$

(b)
$$f: A \subset \mathbb{R}^2 \to \mathbb{R}^3$$
 dove $f(x,y) = \left(x^2/y, 2\cos(x+y), \frac{\arctan(x^3)}{x-y}\right)$

- (c) $f: A \subset \mathbb{R} \to \mathbb{R}^5$ dove $f(t) = (t+1, 3\sin(t), e^{2t}, 1-t, \log(t+1))$
- (d) $f: A \subset \mathbb{R}^3 \to \mathbb{R}^2$ dove $f(x, y, z) = (z^2 x y z / y, \log(1 + x + y^2))$
- (e) $f: A \subset \mathbb{R}^4 \to \mathbb{R}$ dove $f(x_1, x_2, x_3, x_4) = x_1 x_2 \sin(x_3^2 x_4)$

(f)
$$f: A \subset \mathbb{R}^2 \to \mathbb{R}^2$$
 dove $f(x,y) = \left(x^3y, \frac{x+y}{x+4y}\right)$

- 10. P Scrivere l'equazione del piano tangente al grafico di f nel punto $P_0 = (x_0, y_0, z_0)$, passante per il punto P_0 , dove f e P_0 sono dati da:
 - (a) $f: A \subset \mathbb{R}^2 \to \mathbb{R}$ dove $f(x, y) = x^4 + 3y \log(1 + x)$ e $P_0 = (0, 1, 0)$
 - (b) $f: A \subset \mathbb{R}^2 \to \mathbb{R}$ dove $f(x,y) = xy \frac{x+y}{x+4y}$ e $P_0 = (1,2,5/3)$

Determinare infine l'equazione e una base di $TG(P_0)$, il piano (vettoriale) tangente al grafico di f nel punto P_0 .

- 11. **P** Scrivere l'equazione del sottospazio tangente al grafico di f nel punto $P_0 = (x^0, f(x^0))$, passante per il punto P_0 , dove
 - (a) $f: A \subset \mathbb{R}^3 \to \mathbb{R}$ dove $f(x_1, x_2, x_3) = \sin(x_2 x_3) + x_1 \cos(x_2)$ e $P_0 = (1, \pi, \pi, -1)$
 - (b) $f: A \subset \mathbb{R}^4 \to \mathbb{R}^2$ dove

$$f(x_1, x_2, x_3, x_4) = \left(\frac{x_1^2 + x_3}{x_4^3}, x_2 - \frac{x_1}{x_3}\right)$$

$$e P_0 = (4, 3, 2, 1, 18, 1)$$

(c) $f: A \subset \mathbb{R}^2 \to \mathbb{R}^3$ dove

$$f(x_1, x_2) = (\sin(x_1 x_2), x_2 - x_1 x_2^3, x_2 / x_1^2)$$

e
$$P_0 = (1, \pi, 0, \pi - \pi^3, \pi)$$

Determinare infine l'equazione e una base di $TG(P_0)$, il sottospazio (vettoriale) tangente al grafico di f nel punto P_0 .

12. T
 Siano $N,M\geq 1$ interi. Sia $A\subset \mathbb{R}^N$ aperto. Dimostrare che

$$\begin{split} C(A,\mathbb{R}^M) &= C^0(A,\mathbb{R}^M) = \{f: A \subset \mathbb{R}^N \to \mathbb{R}^M: \ f \ \text{\`e} \ \text{continua in} \ A\}, \\ V &= \{f: A \subset \mathbb{R}^N \to \mathbb{R}^M: \ f \ \text{\`e} \ \text{differenziabile in} \ A\}, \\ C^1(A,\mathbb{R}^M) &= \{f: A \subset \mathbb{R}^N \to \mathbb{R}^M: \ f \ \text{\'e} \ \text{di classe} \ C^1 \ \text{in} \ A\} \end{split}$$

sono spazi vettoriali e vale

$$C^1(A, \mathbb{R}^M) \subset V \subset C^0(A, \mathbb{R}^M).$$

Suggerimento: usare il Teorema del Differenziale Totale.

13. **TF*** Dimostrare il Teorema del Differenziale Totale per $f:A\subset\mathbb{R}^N\to\mathbb{R}$ con N>2.

Suggerimento: l'esercizio laborioso. Un possibile rimedio è procedere per induzione sul numero di variabili N, utilizzando il caso N=2 come base d'induzione.

Legenda:

 \mathbf{T} esercizio teorico; \mathbf{P} esercizio pratico; \mathbf{F} esercizio facoltativo; * esercizio difficile