2 Programming & the Java Language

computer (such as Windows 95 or UNIX). This program organizes and manages the resources
of the computer system as instructed by the user. For example, we can, by typing in a sequence
of characters as a command to the operating system, or by clicking on an icon representing a
particular program, request that a word processing program be run. We can request that the
resultant file (a letter, a report) be passed to a suitable printer, and the operating system will
organize the queue of files waiting to be printed. Or we can store the resultant file in a filing
system so that we can retrieve it by name for use at a later time, and we can organize our various
files in a way that enables us to find them casily the next time we need them.

This book is about learning to write programs. That is, we must learn to specify how to carry
out a task in a clear step-by-step procedure, in sufficient detail, and in an appropriate formar so
that the computer can understand and carry out the task. We want to organize this program-
ming task in such a way that the task will be correctly carried our, and the program will make a
suitable response if the information supplied to it is invalid in some way (even if the response is
simply to display an error message for the user). And we want to organize the program so that
it is as straightforward as possible in the event that modifications become necessary because we
want to extend or revise how the task is to be carried out.

In order to write a program, or set of instructions, for a computer to carry out, we have to
write in a language the computer can understand, a programming language. Over the years, a
. vast number of programming languages have been designed for different types of programming
tasks. They have incorporated different ideas of how a programming language should be orga-
nized to make it as easy as possible to write a program with few errors (or “bugs”) in it.

In this book, we use Javaas the programming language. Java was released by Sun Microsystems
in 1995. There has been a Jot of interest in Java because of its ability to deliver programs across
the World Wide Web, but we use Java in this book because we think it is also a clear and elegant
programming language, suitable as a first language for teaching programming.

1.2 Algorithms

Gonsiola

o

If we are going to carry out any step-by-step procedure, we must have a clear and unambiguous
specification of the steps needed. This clear specification, called an algorithm, doesn't have to be
written in a programming language; it could be in some form of English or in some other more
formal tanguage. The problem with using English (or any other natural language) is its ambigu-
ity, so we may turn to more formal languages to be more precise.

Here is an example of part of an algorithm for calculating the date Easter falls on in a given
year. The algorithm is in the 17th-century language of the Church of England Book of Common
Prayer. Actually, it is an algorithm for working out the position of the sun in a 19-year period
called the “saros cycle,” because this information is needed by the Easter Day calculation:

To find the Golden Number, or Prime, add One to the Year of our Lord, and then
divide by 19; the Remainder, if any, is the Golden Number; but if nothing
remaineth, then 19 is the Golden Number.

—

Ah PUNSEN 4 .

“ s Ty "/‘ ¥ o ] 125
1 Gt x . K‘ﬂgf & \C\,\; @. > T, A~ iy wote (J/ Lot
I~ f B e

I7f

C.\:/»/

("




1.2 Algorithms 3

Here is the beginning of another algorithm, written in the formal language of knitting

patterns:

SLEEVES

Size 4 mm (8) needles.

Working in St. St.

Pick up 70 (76, 82, 88, 102, 108, 114, 118) Sts. around armhole edge.
Work 10 (10, 10, 10, 12, 2, 0, 0) rows in St. St.

Next Row K.2. K.2. Tog. T.B.L. K. to last 4 Sts. K.2 Tog. K.2

And Figure 1-1 is part of a third algorithm, expressed in an even more formal language.

| a1

imi T

Tt =
T :
1 T

i i
i 1

-

Figure 1-1: An algorithm expressed in the formal language of music.

What are the requirements for an algorithm which specifies how a programming task is to
be carried out?

The steps of the algorithm must be precise and unambiguous—we must know, at least in
principle, how we would specify each step in the programming language we-are using.

We also need to be precise about what type of input data is required by our algorithm. In the
Easter Day algorithm, a single piece of data is required, the year for which we want to find the
date of Easter, but the algorithm states that it is valid only for years from the present time
till the year 2199 inclusive.

The algorithm must be correcs—we must know that if we set the algorithm going with
suitable data, it will eventually finish its calculation and deliver a result which is appropriate for
the given input data.

The algorithm should be efficient. For programs that are run rarely or that do not require
much calculation, efficiency is not very important. But many programs become useful only if
they can deliver a result in 2 time short enough to be useful (tomorrow’s weather forecast is
useful only if we can calculate what it is before tomorrow) and in a space (amount of memory)
small enough to fit into the computer that is to carry out the task. So for most algorithms, we
will be interested in how much time and space are needed (for a particular amount of input
data). ‘

When we code the algorithm in a programming language, the preceding factors are still
important, and some further factors become relevant.

A new issue becomes important when we consider correctness. We need to have the pro-
gram check that the input data is valid for the task to be performed. If it is not valid, we need to
ensure that the program displays clear and unambiguous error messages explaining what is
wrong with the input data and exactly what the program has done about it—it could abandon
the task for this set of dara, or it could try to adjust the values in some way to obtain a valid set
of input data.




4 Programming & the Java Language

We need to consider the maintainability of the program. Inevitably, errors (bugs) will be
found in the program and will need to be corrected; changes will occur in the outside world
which require corresponding changes to the program; and there may be a desire to extend the
tasks carried out by the program. It is difficult enough making changes to a program that we
last worked on several months or years ago, but the changes may have to be made by a different
programmer (the original programmer may have moved to another job, or at least to a different
programming task). All this requires us to organize the structure of our program as clearly as
possible. It needs to be obvious what parts of the program need to be modified for any particu-
lar change in the task. And we need to be assured that, as far as possible, changes to one part of
a program do not affect other parts. A major issue of programming language design has been
how to split up a program into its constituent parts so that a modification to one part affects all
other parts as little as possible.

1.3 High-level Languages & Programs

High-level programming languages have been in use since the early 1950s. Most computer
languages, from early examples like Fortran and Algol to more recent languages like C and Ada,
have been imperative or procedural. A computer program in a language of this type consists of:

® A collection of variables (of named areas or “pigeon-holes” in the computer), each of
which at any stage contains a certain value (a number, a character, a string of characters,
and so on).

® A collection of statements which change the values of these variables. The new value
(which will replace the previous value of this variable) could be a fixed value specified in
the program. Or it could be a value computed from values held in other variables. These
statements will be interspersed with tests on values held in variables to decide in what
order the statements of the program are to be executed (and consequently what the final
result of the program will be).

A programming language of this style is called an imperative language, since the basic opera-
tion is an order to change the value in a variable to a suitable new value. This style of program-
ming is based on the style of the underlying hardware of the computer or “machine code” (see
Section 1.5), but with a clearer syntax for specifying how new values are to be calculated and
how tests are to affect the ordering of statements.

Early experience in the difficulties of writing programs revealed that it was important to be
able to divide up a program into a number of practically independent pieces, so that the pro-
grammer could concentrate on writing one piece at a time. A typical piece would be a program




1.3 High-level Languages & Programs 5

in miniature, consisting of a sequence of statements to assign values to variables, with tests
applied to the values of variables already read in or calculated. Such a subdivision of a program
is usually called a procedure. Since imperative languages generally rely on some form of proce-
dure as the basic building block of a program, they are often also called procedural languages.

Consider the following problem. Someone has given us a list of all the salaries at the place we
work, and we want to know the largest salary (actually we probably would also like to know
who receives it, but let us keep the problem simple). There are several hundred employees so we
need some sort of systematic way of going about it (that is, we need an algorithm). Written in
an imperative style, we could have a procedure, called, let’s say, maxList, which, given a list of
numbers stored in a variable called 1ist, proceeds as follows:

1 We assume that the number of salaries in list is stored in a
variable called count.

Copy the first salary in 1ist to a variable called max

Set a variable i to the number 2

Copy the ith salary in Tist to a variable called current

if the number in current is greater than that in max
copy the number in current into max

add 1 to the number in i

if the number in i is not greater than the number in count, repeat
from step 4

g print the number in max

00~ Oy O BN

In this imperative programming example, we have several variables—pigeonholes—that each
have a name and hold a value. Some, such as count and current, can hold only a single value
(here it is a whole number or integer, but in another program it might be a number with a
decimal part, or a character). The value in count does not change (i.e., it is a constan?) in this
piece of code, while the value in current probably changes several times. The variable 1ist
holds a whole collection of items, all of the same type (i.e., whole numbers)—when we look at
Java programs, we will see variables referring to collections of simpler items, where they are not
" necessarily all the same type. In some of the statements we specify an actual value—2 in state-
ment 3, and 1 in statement 7—these are called lizerals.
Each of the statements either calculates a new value to be stored in a variable based on other
values already available or (as with statement number 8) specifies a test to decide which of two
actions is to occur (proceed to step 9, or repeat from step 4).
We assume in the preceding program that, if we have a variable i containing a number, we
can easily extract (or change) the ith element of 1ist. This is a common operation in impera-
tive languages and uses a mechanism called an array, which we discuss in Chaprer 9.




6 Programming & the Java Language

fist
count 6 i 10000
2 8000
m 15000

I o 3 15000

4 13000 ;

| 5 .

5 22000
current 13000 6 25000

Figure 1-2: Variables in the maxlist procedure.

Figure 1-2 shows the situation just after the computer has checked the fourth salary in the
list and is about to return to step 4 with the variable 1 set to 5.

Note that we have to be careful with this program. It assumes that there are at least fwo

~salaries in the list. We could easily revise the algorithm so that it still works correctly with a list
consisting of a single salary. But if there are no salaries in the list, the correct action for the
program to take is not clear. Perhaps the program should check for this situation and stop after
printing an error message.

We have here a program written in a high-levellanguage. A computer cannot directly under-
stand a program written in this form. As we shall see, a computer executes a much more basic
type of language called machine code. But the computer can come to the rescue and translate the
program written in the high-level language into an equivalent program in machine code. Such
a translation program is called a compiler, and we would need one for the particular high-level
language in which our program is written and for the particular computer and machine code
on which we want our program to run (as shown in Figure 1-3).

r compiler
ram rogr
"wien fo Fntien
in high-level language XY in machine
language X to computer code for computer Y
executes
on
Y

data ——»@—» result

Figure 1-3: Compiling and executing a program.




