7 1o1dey)) ut Kouarorye wiyiLoS[e ApnIs [[BYS M -passaxdxe oq 03 uaddey
So gorym ur seSensue| ay) AQ PAIOBNSIP SuIaq MNOYIM ‘SIA[ASWIAY] SWIILIOSTE 313 JO
sanrrenb oy} JO SUWLIA) UL SUONISAND YONS IamSUE Ued 21 K191BUn1I0,] ([AI0UWSW ISE] SPIdU
UOTYA (ISQISE] ST YOTUAN "SWIILIOS[e SATIBUISI[E YOns Surredwod Ul pRISAIAUL A[[BIMNEU
aIe oA\ We[qoid SWEs AU} JA[OS 1BY) SUIILIOS[R JUSISHIP [eIOAIS ISIXD 219} UAJ0
"passa1dxo
are £ay3 Yoty ur aSengue] Sy} 01 UONULNE YdNU 001 guiked noyim swpLos[e 259U
Spnis uBo am yerp st jutod Sy, ‘BPY 10 [BISEJ IO D UL PIPOS puk asouIy)) 10 YouaLy Ul
passaidxa [[om A[fenbs (Ue9q aaey A[payqnopun pue) aq p[nod swiyLioge oures A10A QUL
“BAE[UT SPOYIOUI SB WAL} 9POd PUE ‘YSI[SUF U suyyiIoSe ssa1dxa [[Im am J0oq STl U]
€] WPLOS[Y PIM way) sredwod ‘sagengdue| Surmwrerdoid
JUQIDJIP OM} U Papod ‘wiyiiiog[e s piong Jo suonjejuoure[dwt yoq a1e '] PuUB L'T
sweigoiq ‘opdurexs 104 WILOF[E SUIK[IopUN SUIes 3y} JO suoneuawe[duir are swrexgord
SunnseI oY1 [[B ‘SSO[OUMAAIN ‘seSengue] SurwiueSord jo 9010Yyd OpIM B ST 319}
pue wyHoS[e oY) Surpod Jo sAem Auew 3q Kew 2oy, “oSenSuer Sururweigord e Ut popod
5q 1511y 35 31 “zeyndwioo e £q powsograd 99 01 pApUSIUL ST wuoSe ue 3] “oSendue| Surt
-wresgoid awos ur passardxs 2q 1snw weidord ¥ UOHRIOU 10 oSen3ur[JUSTUSATOD AUE UL
passaidxa oq UBd WYILOZ[e UY -swreigoid UBY) 100.45GD 2404 16 SWYILIOSE ‘A[PU0daS
(opduwrexs 10j ‘ouTyorUl SUIABIM 10 10qOI B O} pasoddo se) ramnduiod asodmd-erouss
B 2q sAem[e [[I4 SUIYORW 3} 00q SIf UT "oulyoew (a7qenns) ® Aq paunojiad Sureq
70 o[qedeo oq ismuw wreidord v 'ioq £q 10 ‘ouryorw & £q 10 ‘wRWINY B Aq pauriograd aq
01 9[qRINS 2q ABW WILIOZ[e UY -surei3oxd uey) jp4oua8 2401 ore surqirose ‘ANsig
"WAY) U2aM}2(SIOUSISFIP
Jueyroduit os[e a1e 219y} Inq ‘sweido1d YIIM TOWIWOd Ul sgury Auet 9ABY SUWILOS[Y
‘ouryorWw Jo uewny ay1 Aq paumzogiad
aq 01 ySnoua odurns are 1ey} sdais 0JUT UMOP US¥0Iq 2q 1SN wyLIoS[e 2y ‘ased IS U]
-aUIYoRW © 10 uewny e £q patiograd oq 01 papusIul 2q Kewt uruiof(e uy ‘wafqoid pajeis
e Surafos 1oy ampaooid des-Ag-dais e se wnpuoS[e U JO NUIY) UBd aM ‘Suieq W Y
10 'z 11deyD) ut uontuyep astoaid e 1duene [eYs M JunquioSte ue sz Apoexa jeym oS

swipiboid pup swyuodly Z°L

‘uo os pue ‘yoed

e[® WOIJ SIMIINg Jo 9091d B 9JqUISSSe 03 ‘qnq 1317 & 25uRyD 0} T9YM Ied B 93UBYD

01 ‘sowir de[pr0dai 0 10 [RUSIS WLIE[E UB oA1S 01 ydieM [RISIP B 198 0) “QUIYorT Surysem

e 01e10d0 0] :AJATIORNIS SIOIAGP Y 3SN 0} ST 10F A1essaodu swItIoSe UTRIUOD S[ENUEB

Uong ‘[enuewl S oS B UM SSUI0d A1qeqoid 31 91 opisut Jamdwod B sBY 0IAdP € 10U 10
Ty AL “SuBwINY Aq SourwIOfIed 107 PIpUSIUT supuioSTe Aq papunoLIMs OS[e 318 9M

‘sunpuodTe wioyied 01 pousisep AUIYORW € Si s1odwod 959t JO

ouo A10A9 puy -yeIdIre pue ‘sooueridde ueymnNmy ‘sdydrem [2SIp SB OSISAID SB SDTAJD

ur peppequia syusuodwod se 10 srondwos ssodmd-Terousd se 1apeym ‘snojmbiqn

mou are sromndwo)) usy dours siemndwod jo A101s oY I JeT[IE] Ajqeqoxd are nox
“urelg 1821 pue YS[) Yl UT 1IN d1am s1onduros einsip asodind-Terouss 181y YL

"SUBWINY 2I0W UBY} J9ISEJ SAWM JO spaipuny sspod)

JeaIq PINOD JEY ‘SNSSO[0)) ‘SUIYIEL B 35N PUE Ping 0 papasooid ured] Ay 0§ “Kep AI9A9

suonial|oD) eAg|

1 ’ i

| YA ‘ B
Todrgdsytham To Al ad” dose TTypts Nate §
O AALA /\’wa A 3"':-:‘;&1 S'i (A QQ({'

A Ao O N NNA T\ y (PP ' ' A
DA K Brown, D.F 2004, Tove Gllechans. /ine

Algorithms

In this chapter we shall study:

¢ fundamental principles of algorithms: problems that can or cannot be solved by algo-
rithms, properties of algorithms themselves, and notation for algorithms (Section 2.1)

e analysis of algorithms to determine their time and space efficiency (Section 2.2)

e the notion of complexity of algorithms (Section 2.3)

e recursive algorithms and their complexity (Section 2.4).

2.1 Principles of algorithms

In Section 1.1 we encountered a variety of algorithms. In this section we briefly discuss
some fundamental issues concerned with problems, algorithms. and notation.

Problems
Concerning problems, we can state the following principles:

o An algorithm must be designed to solve a stated problem, which is a well-defined task

that has to be performed.
e The problem must be solvable by an algorithm.

We have already (in Section 1.1) encountered a number of problems that can be solved
by algorithms. We can also pose some problems that are not solvable by algorithms. To
say that a problem is unsolvable does not just mean that an algorithm has not yet been
found to solve it. It means that such an algorithm can never be found. A human might
eventually solve the problem, but only by applying insight and creativity, not by follow-
ing a step-by-step procedure; moreover, there can be no guarantee that a solution will be
found. Here is an example of a problem that is unsolvable by an algorithm.

12

java Ccllections

EXAMPLE 2.1 The halfing probiem

The problem is to predict whether a given computer program, with given input data, will
eventually halt.

This is a very practical problem for us programmers: we all occasionally write a
program that gets into a never-ending loop. One of the most famous results in computer
science is that this problem cannot be solved by any algorithm. It turns out that any
‘algorithm’ that purports to solve this problem will itself get into a never-ending loop. for
at least some programs that might be given to it. As we shall see later in this section, we
insist that every algorithm must eventually terminate.

If we can never find an algorithm to predict whether a given program halts with given
input data, we clearly can never find an algorithm to prove whether a given program
behaves correctly for all possible input data.

It may still be possible for a human to prove that a particular program is correct.
Indeed, this has been done for some important small programs and subprograms. But we
can never automate such proofs of correctness.

In fact, many problems in mathematics and computer science are unsolvable by algo-
rithms. In a way. this is rather reassuring: we can be sure that mathematicians and
computer scientists will never be made redundant by machines!

From now on, we shall consider only problems that are solvable by algorithms.

Algorithms

Concerning algorithms themselves, we can state the following principles:

o The algorithm will be performed by some processor, which may be a machine or a
human.

o The algorithm must be expressed in steps that the processor is capable of performing.

o The algorithm must eventually terminate, producing the required answer.

Some algorithms, as we have already seen. are intended to be performed by humans
rather than machines. But no algorithm is allowed to rely on qualities, such as insight and
creativity. that distinguish humans from machines. This suggests a definition:

An algorithm is an automatic procedure for solving a stated problem, a procedure that
could (at least in principle) be performed by a machine.

The principle that the algorithm must be expressed in steps that can be performed by
the processor should now be clear. If the processor has to work out for itself what steps to
follow, then what we have is not an algorithm.

The principle that every algorithm must eventually terminate should also be clear. If it
never terminates, it never produces an answer, therefore it is not an algorithm! So an
algorithm must avoid getting into a never-ending loop.

Algorithris

Notation
Concerning notation, we have one fundamental principle:

e The algorithm must be expressed in a language or notation that the processor ‘under-
stands’.

This principle should be self-evident. We cannot expect a weaving machine, or even a
computer, to perform an algorithm expressed in natural Janguage. A machine must be
programmed in its own language.

On the other hand, an algorithm intended for humans need not necessarily be expressed
in natural Janguage. Special-purpose notations are commonly used for certain classes of
algorithm. A musical score is an algorithm to be performed by a group of musicians, and
is expressed in the standard musical notation. A knitting pattern is an algorithm for either
a human or a knitting machine, and is generally expressed in a concise notation invented
for the purpose.

Here we restrict our attention to computational algorithms. Even so, we have a variety
of possible notations including natural language, programming language, mathematical
notation, and combinations of these. In this book we shall express all algorithms in
English, occasionally (and where appropriate) augmented by mathematical notation.
The choice of a natural language gives us the greatest possible freedom of expression;
both programming Janguages and mathematical notation are sometimes restrictive or
inconvenient.

We should remember, however. that expressing an algorithm in a natural language
always carries a risk of vagueness or even ambiguity. We must take great care to express
the individual steps of the algorithm, and the order in which these steps are to be
performed, as precisely as possible.

We have already seen several examples of algorithms, in Section 1.1, which you
should now re-examine. Note the use of layout and numbering to show the structure of
an algorithm. We number the steps consecutively. and arrange one below another in the
intended order, e.g.:

i]. Do this.
2. Do that.
3. Do the other.

We use indentation and the numbering system to show when one or more steps are (o
be performed only if some condition is satisfied:

1f the condition is satisfied:
1.1. Do this.
1.2. Do that.
Carry on.

Likewise. we use indentation and the numbering system to show when one or more
steps are to be performed repeatedly while (or until) some condition is satisfied:

14 Java Callections

While (or until) the condition is satisfied, repeat:
I.1. Do this.
1.2. Do that.
2. Carry on.

or when one or more steps are to be performed repeatedly as a variable v steps through a
sequence of values:

For v = sequence of values, repeal:
1.1. Do this.

1.2. Do that.

2. Carry on.

2.2 Efficiency of algorithms

Given an algorithm, we are naturally interested in discovering how efficient it is. Effi-
ciency has two distinct facets:

o Time efficiency is concerned with how much (processor) time the algorithm requires.
o Space efficiency is concerned with how much space (memory) the algorithm requires
for storing data.

Often we have a choice of different algorithms that solve the same problem. How
should we decide which of these algorithms to adopt? Naturally we tend to prefer the
most efficient algorithm.

Sometimes one algorithm is faster, while an alternative algorithm needs less space. z
This is a classic space-time tradeoff, which can only be resolved with knowledge of the
context in which the chosen algorithm will be used.

In this book we shall tend to pay more attention to time efficiency than to space
efficiency. This is simply because time efficiency tends to be the critical factor in choos-
ing between alternative algorithms.

Usually, the time taken by an algorithm depends on its input data. Figure 2.1 shows a
hypothetical profile of two alternative sorting algorithms, showing how the time they take
depends on n, the number of values to be sorted. Algorithm A is slightly faster for small n,
but algorithm B wins more and more gasily as n increases,

How should we measure an algorithm’s time efficiency? Perhaps the most obvious :
answer is to use real time, measured in seconds. Real time is certainly important in many ‘
practical situations. An interactive program that takes two minutes to respond to a user ;
input will quickly fall into disuse. An aircraft control system that takes 30 seconds to !
respond to an abnormal altimeter reading will be eliminated by natural selection, along
with the unfortunate crew and passengers.

Nevertheless, there are difficulties in using real time as a basis for comparing algo-
rithms. An algorithm’s real time requirement depends on the processor speed as well on
the algorithm itself. Any algorithm can be made to run faster by using a faster processor,

40

time A Key:
(ms) | Algorithm A
3 _: Algorithm B
2
-
0 10 20 30
Figure 2.1 Hypothetical protile of two sorting algorithms.

Algorithms

but this tells us nothing about the quality of the algorithm itself. And where the processor
is a modern computer, the difficulty is compounded by the presence of software and
hardware refinements — such as multiprogramming, pipelines, and caches — that increase
the average speed of processing. but make it harder to predict the time taken by an
individual algorithm.

We prefer to measure an algorithm’s time efficiency in terms of the algorithm itself.
One idea is simply to count the number of steps taken by the algorithm until it terminates.
The trouble with this idea is that it depends on the granularity of the algorithm steps.
Algorithms 2.2(a) and (b) solve the same problem in 3 and 7 steps, respectively. But they
are just different versions of the same algorithm, one having course-grained (big) steps.

while the other has fine-grained (small) steps.

(a)

To find the area of a triangle with sides a. b, c:

.
2.
3.

Lets={a+b+c)2.

Let A = V(s (s—a) (s~ b) (s —).
Terminate with answer A.

Algorithm 2.2

(b)

To find the area of a triangle with sides a, b, ¢:

S MRS ERY SRR

Lets=(a+b+)2
Letp=s.

Multiply p by (s — a).
Multiply p by (s - b).
Multiply p by (s ~ ¢).

Let A be the square root of p.
Terminate with answer A.

Algorithms to find the area of a wiangle.

15

Java Collections

The most satisfactory way to measure an algorithm’s time efficiency is to count
characteristic operations. Which operations are characteristic depends on the problem
to be solved. For an arithmetic algorithm it is natural to count arithmetic operations. For
example, Algorithm 2.2(a) takes two additions, three subtractions, three multiplications,
one division. and one square root; Algorithm 2.2(b) takes exactly the same number of
arithmetic operations. In this book we shall see many examples of algorithms where
comparisons or copies or other characteristic operations are the natural choice.

EXAMPLE 2.2 Power aigorithms

Given a nonnegative integer #, the nth power of a number b, written 5", is defined by:
b'=bx-Xb

(where n copies of b are multiplied together). For example:

b*=bxbxhb
b>=bxb
b' = b
=1

Algorithm 2.3 (the ‘simple’ power algorithm) is based directly on definition (2.1). The
variable p successively takes the values 1, b, b, b’, and so on ~ in other words, the

successive powers of b. Program 2.4 is a Java implementation of Algorithm 2.3.

Let us now analyze Algorithm 2.3, The characteristic operations are obviously mulii-
plications. The algorithm performs one multiplication for each iteration of the loop. and
there will be n iterations, therefore:

No. of multiplications = » (2.2)

Algorithm 2.3 is fine if we want to compute small powers like 5% and 5°, but it is Very
time-consuming if we want to compute larger powers like 5% and 5'%,

Fortunately, there is a better algorithm. It is easy to see that b2° = 5'9 x 5'". So once
we know b'°, we can compute 5”° with only one more multiplication, rather than ten
more multiplications, This shortcut is even more effective for still larger powers: once we
know b*°, we can compute b'® with only one more multiplication, rather than fifty,

Likewise, it is easy to see that bt = b0 %x b x b, So once we know blo, we can
compute b*' with only two more multiplications, rather than eleven.

Algorithm 2.5 (the ‘smart’ power algorithm) takes advantage of these observations.
The variable ¢ successively takes the values b, bl, b, bg, and so on. At the same time, the
variable m successively takes the values n, #/2. n/4, and so on (neglecting any remain-
ders) down to |. Whenever m has an odd value, p is multiplied by the current value of ¢.
Program 2.6 is a Java implementation of Algorithm 2.5.

This algorithm is not easy to understand, but that is not the issue here. Instead, let us
focus on analyzing its efficiency.

First of all, note that steps 2.1 and 2.2 each performs a multiplication, but the multi-
plication in step 2.1 is conditional. Between them, these steps perform at most two
multiplications.

Aigorthms

Next, note that these steps are contained within a loop, which is iterated as often as we
can halve the value of n (neglecting any remainder) until we reach zero. It can be shown
(see Appendix A.2) that the number of iterations is floor(log,n) + 1, where floor(r) is the
function that converts a real number 7 to an integer by discarding its fractional part.

Putting these points together:

Maximum no. of multiplications = 2 (floor(logyn) + 1)
= 2 floor(logyn) + 2 (2.3)

The exact number of multiplications depends on the value of 7 in a rather complicated
way. For n = 15 the actual number of multiplications corresponds to (2.3), since halving
15 repeatedly gives a series of odd numbers; while for n = 16 the actual number of
multiplications is smaller, since halving 16 repeatedly gives a series of even numbers.
Equation (2.3) gives us the maximum number of multiplications for any given n, which is
a pessimistic estimate.

Figure 2.7 plots (2.2) and (2.3) for comparison. The message should be clear. For
small values of 7. there is little to choose between the two algorithms. For larger values of
n, the smart power algorithm is clearly better; indeed, its advantage grows as 71 grows.

2.3 Compilexity of algorithms

If we want to understand the efficiency of an algorithm, we first choose characteristic
operations, and then analyze the algorithm to determine the number of characteristic

To compute &7 (where n is a nonnegative integer):

—_—

Setp to |.

2. Fori=1, ..., n, repeat:
2.1. Multiply p by &.
Terminate with answer p.

Algorithm 2.3 Simple power algorithm.

static int power (int b, int n) {
// Return the value of b raised to the n’th power (where nis a nonnegative

// integer).

int p = 1;
for (int 1 = 1; i <= n; i++)
p *= b;

return p;

Program 2.4 Java implementation of the simple power algorithm.

