Polarization Transfer Through Bonds Mediated by Scalar Coupling

- Selective Population Transfer
- Insensitive Nuclei Enhanced by Polarization Transfer
- Distortionless Enhancement by Polarization Transfer

Selective Population Transfer

 2Δ the population difference for proton across the two levels connected by the transition , 2δ for¹³C

The signal intensities depend on the population differences:

 2Δ for H transitions and 2δ for C transitions

The populations of two levels connected by a proton transition are inverted, e.g the H_b , by means of a selective pulse for that transition

population difference for $C_a: 2\Delta + 2\delta$ for $C_b: -2\Delta + 2\delta$

¹³C Spectrum upon Proton Population Inversion across H_b

subtracting the pristine spectrum

Spin Echo for an AX Spin System

Homonulear AX Spin System with A Selective π pulse

analogously to the heteronuclear case:

refoccusing

Homonuclear AX System with a X Selective π Pulse

Homonulear AX Sytem with a Non Selective π Pulse

the defocussing of the vectors of nucleus A is going on

INEPT

the overall effect of the two π pulses on C and H is the same as that of a non selective π pulse for a homonuclear system

the defocussing is going on, however the ¹H chemical shifts are refocussed and therefore the sequence results non selective

In this way the inversion of only one component of the doublet has been accomplished for all protons, irrespectively of their chemical shift

Now the ¹³C spectrum is acquired and it displays a sensitivity increase due to the polarization transfer

In this case the signal increment is that for ¹³C corresponds to 4 and for ¹⁵N is as high as 10

H