Determining the k_a of an acidbase indicator

Indicator

HIn +
$$H_2O \leftrightarrow In^- + H_3O^+$$

Red Blue

$$Ka = [H_3O^+] [In^-]/[HIn]$$

$$[H_3O^+] = Ka [HIn]/[In^-]$$

$$(-log [H_3O^+]) = (-log Ka) + (log [In^-]/[HIn])$$

$$pH = pKa + log [In^-]/[HIn]$$

Quantitative Spectroscopy

Beer's Law

 $A_{\lambda 1} = e_{\lambda 1}bc$

 ϵ is molar absorptivity (unique for a given compound at $\lambda_{\text{1}})$

b is path length

c concentration

Standard Practice

- Prepare standards of known concentration
- Measure absorbance at λ_{MAX}
- Plot A vs. concentration
- Obtain slope
- Use slope (and intercept) to determine the concentration of the analyte in the unknown

Spectroscopy

 Indicators give fairly broad visible absorption spectra

Absorption measurement

Must make measurements at two wavelengths

$$A_{\lambda 1} = \epsilon_{\lambda 1 H In} b C_{H In} + \epsilon_{\lambda 1 In} b C_{In}$$

$$A_{\lambda 2} = \epsilon_{\lambda 2HIn} b_{C_{HIn}} + \epsilon_{\lambda 2In} b_{C_{In}}$$

$$C_T = C_{HIn} + C_{In}$$

Absorption measurement

At low pH:

$$A_{\lambda 1}^{low} = \epsilon_{\lambda 1 H l n} b C_T$$
 $A_{\lambda 2}^{low} = \epsilon_{\lambda 2 H l n} b C_T$

At high pH:

$$A_{\lambda 1}^{\text{high}} = \epsilon_{\lambda 1 \text{In}} b C_{\text{T}}$$
 $A_{\lambda 2}^{\text{high}} = \epsilon_{\lambda 2 \text{In}} b C_{\text{T}}$

Calculate ϵ for Hin and In- at both λ .

In the lab

- Prepare Indicator solution adjusted to the proper pH with HA/A⁻ buffer
- Measure UV-vis spectra and identify $\lambda 1$ and $\lambda 2$
- Calculate [In-]/[Hin] from UV-vis data
- Calculate pH for each buffer solution
- Report pH vs log [In-]/[Hin] and draw the straight line.
- Calculate pKa as intercept