I PROVETTA DI GEOMETRIA 2 – A.A. 2017/18 CORSO DI LAUREA IN MATEMATICA

Trieste, 24 aprile 2018.

Tutte le risposte vanno adeguatamente motivate.

- 1. Sia E uno spazio affine euclideo di dimensione 3, in cui è fissato un sistema di riferimento cartesiano. Sia r la retta passante per $P_0(1,0,0)$ e avente il vettore (1,-1,2) come vettore di direzione.
 - (1) Scrivere equazioni parametriche e cartesiane di r;
 - (2) scrivere l'equazione cartesiana del piano α ortogonale a r e passante per P_0 ;
 - (3) scrivere equazioni della retta s passante per l'origine, incidente e ortogonale a r;
 - (4) calcolare la distanza $d(s, \alpha)$.
- 2. Nello spazio affine reale $\mathbb{A}^3_{\mathbb{R}},$ con sistema di riferimento canonico, sono date le rette

$$r_1 \begin{cases} y = 0 \\ x - z = 0 \end{cases}, \quad r_2 \begin{cases} x = 0 \\ 2y - z = 1 \end{cases},$$

- e i piani π_1 di equazione x + y + z = 0 e π_2 di equazione 3x + 4y 2z 2 = 0.
 - (1) Determinare la posizione reciproca di r_1 e r_2 fra loro, con π_1 e con π_2 ;
 - (2) determinare le rette contenute in π_1 incidenti r_1 e r_2 ;
 - (3) determinare le rette contenute in π_2 incidenti r_1 e r_2 .
- 3. Sia $f:\mathbb{A}\to\mathbb{A}$ un'affinità di \mathbb{A} , spazio affine sul K-spazio vettoriale V. Sia φ l'applicazione lineare soggiacente. f è detta dilatazione se $\varphi=\lambda \mathrm{id}_V,$ con $\lambda\neq 0$ uno scalare.
 - (1) Provare che una dilatazione f con $\lambda \neq 1$ ha un punto fisso (suggerimento: seguire la via analitica);
 - (2) che cosa si può dire se $\lambda = 1$?
 - (3) Provare che se f è una dilatazione e $L \subset \mathbb{A}$ è una retta, allora f(L) è parallela a L.
 - (4) (Facoltativo) Provare che se f è un'affinità tale che f(L) è parallela a L, per ogni retta L, allora f è una dilatazione.