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| part

from Lect. VI

- Metropolis Monte Carlo method (ex. 1,2)
- correlations (ex. 3)

- Metropolis and canonical ensemble (ex. 4)



P(X})

probability
distribution

move with probability X @ Xy
p(x)/p(xi) < 1, < > GO!since p(x;)/p(xi) > |
otherwise keep X; T .

initial position



example of a sequence of points randomly (Gaussian) distributed
generated according Metropolis
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by its nature, Metropolis method introduces (at least short-range) correlations



ex.Vll.3 - Correlations

[a very simple calculation 1f the array points(n) 1is stored]

do j = 0, jmax 5
(TitjTi) — (T3)

si=@._dp ; si2=0._dp ; sij=0._dp C(]) —
(z7) — (2i)?
: : ) v
do 1 =1,n-]
s1 = si1 + points(i)
s12 = s12 + points(1)**2
s1j = si1] + points(i)*points(i+])

end do
si = si/(n-3)
si2 = si12/(n-3)
sij = s13/(n-73)

write(2,%), j, (sij-si**2)/(si2-si**2)

end do



Correlations - Box-Muller algorithm
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Correlations - Metropolls algorlthm
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Correlations - Metropolls algorlthm
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Correlations - Metropolls algorlthm
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ex Vll. 4

application of the Metropolis algorithm
to the canonical ensemble

canonical ensemble :
fix N,V, T (system in equilibrium with a thermal bath)



The canonical ensemble

(N,V,T) fixed. The probability P for a system to be in the
microstate s depends only on the energy E; of the microstate and
the temperature 7' (common to the system and the thermal bath):

1
P, = —e % (canonical distribution)

Z

where 3 = 1/kT, and Z is a normalization constant.

(in the canonical ensemble the energy is a characteristic of the microstate, not of the macrostate)
The higher is the energy of the state, the lower is the probability of finding the system in that state.

Because ) P =1,

M
7 — Z o—Es/kT  (canonical partition function)

s=1 (M: all accessible microstates of the system,
having the same N, V, T)



Averages in the canonical ensemble

The ensemble average of a physical quantity A can be
calculated using the canonical distribution function:

M | M o
<A> — Z AsPs — E Z Ase_BES total number of
s=1 s=1

possible microstates)

In practice, approximating the sums over a finite number
m of the total number M of accessible microstates:

Z AS e_ﬁEs
(A) » Ay = 2=
Z e_BEs

s=1 (Note: m, not M !)



Averages in the canonical ensemble

Due to the functional form of e_ﬁES, this formulation is

highly inefficient (many microstates have very small
probability):

Y Age BEs
(A) ~ A, = =
Z e—BEs
s=1

=> much better to use the importance sampling, i.e.
simple averages of the desired physical quantity over
microstates s generated according to the proper

distribution: 1
A, = — A,



Averages in the canonical ensemble

How to generate microstates properly distributed ?
=> generate a Markov chain with the transition matrix:

e_BEtrial
6_5Es

= min [1, ] = Mmin [1, e_BAE}

Ts,trial = man [17

where AFE = Eipijq—FEs

Peculiarities w.r.t. the application of the Metropolis
algorithm already discussed:

e PEsis a monotonic decreasing function of Ej.
therefore we accept all the moves decreasing the energy.



Metropolis algorithm in the
canonical ensemble

© © N o ok W

10.

. Establish an initial microstate.

Make a random trial change in the microstate. For example, choose a spin at random and
flip it. Or choose a particle at random and displace it a random distance.

Compute AE = Fiia1 — Eolq, the change in the energy of the system due to the trial change.
If AFE is less than or equal to zero, accept the new microstate and go to step 8.

If AFE is positive, compute the quantity w = e #~F.

Generate a random number r in the unit interval.

If r < w, accept the new microstate; otherwise retain the previous microstate.

Determine the value of the desired physical quantities.

Repeat steps (2) through (8) to obtain a sufficient number of microstates.

Periodically compute averages over microstates.




Metropolis algorithm in the
canonical ensemble

A few remarks:

| ) Because it is necessary to evaluate only the ratio P; /P; = e PAE

it 1s not necessary to normalize the probability.
(P;/ P = mj/m;)
2) ERGODICITY implicitly assumed!

3) TEMPERATURE:

If Ep > FE4, accept the new (higher energy) configuration with probability p =
e~ (F=F4)/T This means that when the temperature is high, we don’t mind taking
steps in the “wrong” direction, but as the temperature is lowered, we are forced to
settle into the lowest configuration we can find in our neighborhood.



Metropolis algorithm in the
4) canonical ensemble

Don’t confuse Ps with P(Es), since €2 (Es) microstates with the same
energy Es can exist, in general (unless in particular cases where Egsuniquely
identifies the microstate). Therefore:

Q(ES) _BE, Q(E;) is a density

of states

where the degeneracy of the energy level is accounted for, whereas:

1
PS — _/BES
Z€



Boltzmann distribution
in the canonical ensemble

The Metropolis algorithm really produces microstates
with the Boltzmann distribution:
application to ideal classical ID gas (ex.n.4 Lect.Vll)

1
1 free particle: Energy: E = §mv2

in this case, velocity or energy labels a microstate

(the energy with a factor of 2, due to +/- sign of v);

we generate different microstates by random variations of the velocity and
we accept/reject with Metropolis

Important quantities are the probabilities:
P(v)dv that the system has a velocity between v and v+dv
or P(E)dE that the system has an energy between E and E+dE



ideal classical 1D gas

A particle moving randomly has in each direction a distribution of the compo-
nent of the velocity:

m 1/2
_ —mv? [2kpT
oo kT
2\ 2 __ B
(vg) = /_oo vy f(vg)dv, = e (2)
In 1D:
f(v)2dv = P(E)dE
that gives: P(E) = ! ! e E/kBT
' (kpT) 2 VE

In 3D:

P(FE) = - L __VE exp (—£> (3D)




Note:

- recognize the density of states (analogy with the
electronic DOS in the Sommerfeld model...)

- in the proposed |ID problem, ()(E;) is not just =2
because +/- v labels the 2 microstates corresponding

to the same energy E.
The problem has a continuum energy spectrum.



Boltzmann distribution
in the canonical ensemble

#t T : 1.00000

# <EO> : .000000

# <v0> : .000000

# d : 2.00000 - - N

# dZI;:ZE : 5.000000E-02 T T 1 — <E> <€xp66t€d) T 0'5 (m T 1)
# nbin . 79

==> boltzmann.1lK <==
# nMCsteps: 1000

# <E> : .501263

# <> . 7.456664E-02

# accept. : .692000

# sigma : .713780 0'/\/% — 0022

—=> boltzmann.10K <== (0 is the variance of the energy)
# nMCsteps: 10000

# <E> :  .507580

# <> :  3.366172E-02

# accept. : .707700 —

# sigma : .726145 O-/\/ﬁ 0007

==> boltzmann. 1M <==
# nMCsteps: 1000000

# <E> ¢ .500138

# <v> :  1.833840E-04

# accept. : .693837

# sigma : .707472 0'/\/ﬁ = 0.0007
NOTE:

- Accuracy of ~ 1% on <E> and 10% on <v> : NMCS=1000 is enough

- NOT ENOUGH to well reproduce the BOLTZMANN DISTRIBUTION! (1M needed!)
- ACCEPTANCE RATIO: constant, depends only on dvmax

- SIGMA also



Boltzmann distribution
in the canonical ensemble

many particles: Energy: E =Y., Lmv?

in this case, the energy is NOT a label of a microstate
(there are several microstates with the same total energy)

Note: the energy histogram is NOT the distribution of microstates!

1
P(E)= Y P with Py=_c "

Z
states s
with Eg=F
—(B—(E)? ,
P(E) x=e¢~ 202  with (E) average over all the microstates

What is P(E)! (exercise n.4 Lec.VIl - many particles)
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T=1, N=18, dvmax=1, nHCsteps=18",..

T=2, N=18, dvmax=1, nHCsteps=18",..
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ex.Vll.4 introduces to another important issue

in stochastic simulations...




Il part

Statistical averages and
stochastic fluctuations



Averages
T
1 <G>T
<G>T:thgth A

Thermally equilibrated averages: <G>

<G>=limr_ <G >7

But in practice T is finite, and < G > oscillates(varying T):
divide T into intervals A, B,C'... of length L and sum(block averages):

L
_ (I)
<G>T_—T E < G >

I=A,B,C,... (05/1/3) (on//10)
1/2
L

A <G >r= T Z << (G(I))Q > (< o) >2) — 1
I

NS ————

T — oo VT

Note: not always A < G > is a good indicator of the actual error!
(remind ”ergodicity”)




Stochastic fluctuations

Fluctuations are always present, due to the nature
of the system, also when evolving towards equilibrium.

A simple example: non-interacting classical particles in a box (gas diffusion)

1000 T T
‘box.out’
\
900 —\
\
800 | \
\
\
% 700 - \‘
z v\
(!
600 \\“
.
s
T . .. L ) A T MNW/ W]
A box is divided into two parts communicating through a %0 o i, w‘f I W A
small hole. One particle randomly can pass through the hole
per unit time, from the left to the right or viceversa. 400 ' ' ' ' ' ' ' ' '
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
- me ti - Approach to equilibrium
N,.«(t): number of particles present at time t in the left side PP C|

Given Ni(0), what is N (t) ? with fluctuations



Stochastic fluctuations

1000
900 -‘\

800

700 \

ol
" initial N(left)=1000
500 L M\memw Wy MMM\ MWW Mf”%_

Nleft(t)

400 Il Il Il Il Il Il Il Il Il
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

How to reduce fluctuations?
- more particles
- average over many simulation runs

What can we do with fluctuations?



Intrinsic energy fluctuations in
the canonical ensemble - |

0

Remind: ZE e PEs and Z = Z ° therefore: (F) = —% InZ
Consider the thermal capac1t
c, - NE) _ 1o
we have oT kT2 aﬁ
oF) 107 _ge, 1 2 —BB, _ 2
o5 =73 2 B P = g LBl P = (B () (0B
where O0F =FE — (E)
Result: o ((6F)?)
° kpT?

The thermal capacity (or specific heat if considered for each
particle) is related to the intrinsic stochastic energy fluctuations



Intrinsic energy fluctuations in

the canonical ensemble - ||

((6E)?)
kgT?

Since: ¢, —

if N 1s the number of particles, we have:

VIGEP] _ VEsT’C, VN 1

(E) E) N YN

1.e., the relative energy fluctuations reduce when N 1s large

(correct; in the thermodynamic limit: E' — const., macro ~ micro)



Macrostates, microstates and
entropy at equilibrium



Macroscopic systems
towards equilibrium

Again the simple example of non-interacting classical
particles in a box

(gas diffusion)

A box is divided into two parts communicating through a

small hole. One particle randomly can pass through the hole
per unit time, from the left to the right or viceversa.

N,.+.(t): number of particles present at time t in the left side
Given N,(0), what is N . (t) ?

microcanonical ensemble :
fix E, N,V (isolated closed system)



Microcanonical ensemble

-a fundamental postulate-

Given an isolated system in equilibrium, it will assume
with equal probability each of its accessible microstates

(i.e.,a system in equilibrium does not have any preference for any of its available microstates)

Example: suppose a macrostate defined by (N,V,E);
if AN,V E)is the # of microstates with energy £ + dF,

for the microstate s the probability of occurrence is:
(
1/, if s is accessible

P, = | .
0, otherwise.

\

Consequence: for a system at equilibrium, the thermodynamic state
(macrostate) which could result from the largest number of
microstates is also the most probable macrostate of the system.



Approach to equilibrium

A box divided into left/right; total number N of non-interacting particles.

macrostate: specified by the humber of particles 71 on the left side;
microstate: specified by the specific list of the 71 particles on the left side



Equilibrium and entropy

The macrostate is specified by the number of particles on the left side, n,
and the corresponding microstates are:

ber of microstat N N N
number of microstates = — —
nl(N —n)! n N —n

The total number of microstates for N=10 is 2!°=]024

n # of microstates |--log(# of micr)".

? llo g:gg n=>5 is the macrostate with the
) 45 38| largest number of microstates!
3 120 4.79

4 210 5.35 (n=5 is the most probable

5 252 5.53 « macrostate)

6 210 5.35

7 120 479 Equilibrium =

8 45 38| Maximum number of

9 10 2.30 possible microstates =

10 | 0.00 Maximum entropy




Equilibrium and entropy

The equilibrium corresponds to the most probable macrostate,

which is that with the larger number of corresponding microstates;
how to identify it?

We could simply generate microstates and count them...

but also use some smart algorithm (more suitable for computer
simulations)...



Entropy: Coincidence method

(S.K.Ma, . Stat. Phys. 26,221 (1981))
Equilibrium = Maximum entropy = Maximum number of possible microstates

Too much effort to enumerate all of them!

Alternative procedure (good for computing):

A system evolving in time will duplicate a microstate, before or later...

The longer it takes for duplication, the fewer are the microstates in the
corresponding macrostate. Hence, the lower is the entropy.

|dea: measure the ratio of the number of pairs of duplicated microstates to
the total number of possible pairs; entropy is the log of the inverse ratio.

E.g.: suppose as in the previous slide N=10, and the macrostate n=1;
consider 20 different microstates labelled with the “name” of the particle:

8. IO.24.2IO3439 2924

number of pairs of microstates: 20%(20-1)/2=190. Here: 6 pairs for particle
“2”; | pair with particle “10” etc etc... Sum all of them: get |5.

Ratio = 15/190 , Entropy: S«log(190/15)~2.5




Remind the definition of entropy:

S = —kn Z P.ln P, in the canonical ensemble

S = kplog{) in the microcanonical ensemble,
where all the microstates
corresponding to a macrostate have

the same energy
(€2 is the number of microstates)



Metropolis method in the
canonical ensemble and the

simulated annealing



Metropolis and
simulated annealing - |

®Stochastic search for global minimum (a big
problem!). Monte Carlo optimization.

® The concept is based on the manner in which
liquids freeze or metals recrystallize. Sufficiently
high starting temperature and slow cooling are
important to avoid freezing out in metastable
states.



Metropolis and
simulated annealing - ||

® Thermodynamic system at temperature T, energy E.
® Perturb configuration (generate a new one).

y :Sua' |' ® Compute change in energy dt. If dk is negative the new

etropolis , . . - P

Pmceﬁ’um configuration is accepted. If dE is positive it is accepted
in the with a probability given by the Boltzmann factor :

canonical

ensemble exp(—dE/kT)
® [he process is repeated many times for good sampling
of configuration space.
othen the temperature is slightly lowered and the entire

procedure repeated, and so on, until a frozen state is
achieved at T = 0.



Example

in simulated annealing.£f90:
minimization of

f(x)=(x+0.2)*x+cos(14.5*x-0.3)
considered as an energy function and
using a fictitious temperature

12

R, J—




Function to be minimized: £ (x) ; Starting point: x, fx=f(x)

initial (high) temperature: temp

Annealing schedule: annealing temperature reduction factor: tfactor (<1)
number of steps per block: nsteps
‘ad hoc’ parameter for trial move: scale

DO WHILE (temp > 1lE-5) ! anneal cycle

DO istep = 1, nsteps

CALL RANDOM NUMBER(rand) ! generate 2 random numbers; dimension(2) :: rand
X new = X + scale*SQRT(temp)*(rand(l) - 0.5) ! stochastic move
fx new = func(x_new) ! new object function wvalue
IF (EXP(-(fx new - fx)/temp) > rand(2)) THEN ! success, save
fx = fx new
X = X _new
END IF
IF (fx < fx min) THEN
fx min = fx

X min = X
PRINT '(3ES13.5)', temp, x min, fx min
END IF
END DO

temp = temp * tfactor ! decrease temperature
END DO



120

100 +

f(x)

f(x) ——

e

-20
-10

1000 trial steps @ initial T, from x=1

some relative minima during such steps

10

X or

final T: 2.50315E-01
-1.95067E-01

final x:
final £(x):-1.00088E+00

f(x)

initial T: 10 (Ks units)
initial x: 1.000000
initial f(x): 1.137208

relative minima with decreasi

0.5

ol




Some programs:

on
$/home/peressi/comp-phys/Vlll-canonical/
[do: $cp /home/peressil.../Vlll-canonical/* .]

boltzmann_metropolis.f90
(already given for Lect.VlI)

box.f90
entropy.f90
simulated_annealing.f90



