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Abstract
Chromosomal double strand breaks provoke an extensive reaction in neighboring chromatin,
characterized by phosphorylation of histone H2AX on serine 139 of its C-terminal tail (to form
“γH2AX”). The γH2AX response contributes to the repair of double strand breaks encountered in
a variety of different contexts, including those induced by ionizing radiation, physiologically
programmed breaks that characterize normal immune cell development and the pathological
exposure of DNA ends triggered by telomere dysfunction. γH2AX also participates in the
evolutionarily conserved process of sister chromatid recombination, a homologous recombination
pathway involved in the suppression of genomic instability during DNA replication and directly
implicated in tumor suppression. At a biochemical level, the γH2AX response provides a
compelling example of how the “histone code” is adapted to the regulation of double strand break
repair. Here, we review progress in research aimed at understanding how γH2AX contributes to
double strand break repair in mammalian cells.

1. Introduction
DNA double strand breaks (DSBs) pose a threat to the stability of the genome, since their
misrepair may lead to chromosome rearrangements, chromosomal deletions or other
potentially damaging mutations. Defects in DSB repair are strongly associated with cancer
predisposition, aging, neurodegeneration and immune deficiency [1–7]. DSBs may arise
directly through the action of exogenous agents such as ionizing radiation, chemical
exposure or from scheduled chromosome breakage induced during development of the
adaptive immune system, such as V(D)J recombination and immunoglobulin gene class
switch recombination (CSR) [8, 9]. Alternatively, the indirect action of numerous different
DNA damaging agents can also lead to DSB formation, especially in replicating cells. The
reason for this is that DNA lesions that are relatively benign when encountered by a repair-
competent cell during G1 or G2, (i.e., when DNA is duplex) may degenerate into a DSB
when encountered in the context of DNA replication [10, 11]. Breaks arising during the S
phase may be preferentially repaired by sister chromatid recombination (SCR), a potentially
error-free repair pathway of homologous recombination (HR), in which the broken
chromosome invades the neighboring, intact sister chromatid and copies the missing
information into the broken chromatid [12] (Figure 1). In contrast, a DSB generated in a
non-replicating cell is a candidate for repair by non-homologous end joining (NHEJ)—a
process by which the two DNA ends are religated without extensive reference to the DNA
sequences at the site of breakage [13] (Figure 1). HR and NHEJ each have the potential to
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be error-free but are also potential sources of mutation. In certain contexts, HR can be
mutagenic [14–18], while “clean” (i.e., chemically unmodified) DNA ends may be
efficiently religated in an error-free manner by canonical NHEJ (C-NHEJ; end-joining
mediated by the classical NHEJ factors including Ku, XRCC4 and DNA ligase IV) [13]. In
the absence of key C-NHEJ genes, rejoining of DNA ends is surprisingly efficient [19–23].
This “alternative end joining” (A-EJ) mechanism entails greater degrees of DNA end
resection than C-NHEJ and characteristically involves limited homology (microhomology)
between the two DNA ends at the break point [24, 25]. During A-EJ, a mutagenic pathway,
the ligation product is likely stabilized by limited base pairing between the two single
stranded (ss)DNA tails (Figure 2).

Successful execution of HR requires the sequential action of a number of distinct enzymes
on the DSB [26, 27]. In somatic cells, the major HR pathway, termed “synthesis dependent
strand annealing” (SDSA), entails the following steps: processing of the DNA end to a 3′
ssDNA overhang; loading of Rad51 onto the resected ssDNA tail; the Rad51 nucleoprotein
filament-mediated homology search (for example, sampling the neighboring sister
chromatid); repair synthesis; and finally termination by homologous pairing (annealing)
with the second end of the DSB [12] (Figure 2). Each of these steps is potentially prone to
error. The stage in this multi-step pathway at which an error occurs can often be deduced by
analysis of DSB repair products. Thus, a failure to undertake resection will cause a global
reduction in flux through repair pathways that require the initial resection step. These
pathways include HR as well an error-prone outcome termed single strand annealing (SSA)
[12]. Single strand annealing requires the exposure of tracts of ssDNA at homologous
repeats to produce its characteristic repair product, the formation of a homologous deletion
(Figures 1 and 2) [12]. SSA does not require Rad51 and does not engage the homology
search of a neighboring DNA molecule that defines HR. Inactivation of the protein complex
responsible for loading of Rad51 onto ssDNA, in which the BRCA2 gene product plays a
critical role, causes a characteristic reduction in HR and skewing of repair in favor of SSA
[28, 29]. DNA ends that have undergone resection but do not engage HR may instead be
repaired by “microhomology-mediated end joining” (MMEJ), which is characterized by the
presence of short stretches of microhomology at the site of rejoining [30] (Figures 1 and 2).
Although there is a close association between A-EJ and MMEJ, the two are not necessarily
synonymous [24]. A-EJ is defined genetically (rejoining in the absence of C-NHEJ genes),
whereas MMEJ is strictly a descriptive account of the DNA sequence at the site of break
rejoining.

The context in which the DSB arises critically influences how it is repaired. For example,
DSBs encountered in heterochromatin exhibit different repair properties to those arising in
euchromatin [31]. In addition, the cell cycle phase during which the break is generated or
encountered will decide whether a sister chromatid is available to support SCR and whether
the DNA end is likely to undergo extensive resection. In yeast as well as in vertebrate cells,
high levels of cdk activity, such as occur in cycling cells during the S/G2 phases of the cell
cycle, target and activate certain mediators of DNA end resection [32–34]. Consistent with
this, HR in mammalian cells is largely restricted to the S/G2 phases of the cell cycle [35,
36]. The regulated activity of DNA end resection enzymes provides an additional
opportunity for dysfunction. Under certain aberrant conditions, DNA end resection might be
activated inappropriately in G0/G1 cells, when an efficient error-free HR/SCR pathway is
not available due to the absence of a sister chromatid. Under these circumstances, a DSB
that might normally be religated efficiently and with minimal error by C-NHEJ might
instead engage a more error-prone rejoining pathway.

DSB repair pathway “choice” and the completion of DSB repair occur in the context of
chromatin, the basic unit of which is the nucleosome [37]. The idea that chromatin structure
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might respond to DNA damage and, in turn, influence subsequent DNA repair was
suggested several decades ago from work on nucleotide excision repair of UV-induced DNA
lesions [38]. This concept acquired dramatic support from the discovery by Rogakou et al.
that histone H2AX, a variant form of histone H2A, undergoes phosphorylation on serine 139
of its C terminal tail in response to ionizing radiation (IR) [39, 40]. Serine 139
phosphorylated H2AX (γH2AX) was shown to accumulate in foci in response to IR and
careful quantitation suggested that each IR-induced DSB triggers a local γH2AX response,
visualized initially as an IR-induced focus [41]. The Bonner lab estimated that IR-induced
DSBs elicit a γH2AX response extending up to a megabase of chromatin flanking the break
[41]. The H2AX S139 phosphorylation site is a canonical target of the nuclear DNA damage
PI3 kinase-like signaling kinases, Atm, Atr and DNA-PKcs [42–47]. Interestingly, H2AX
appears to be the primordial form of histone H2A. Although it accounts for <10% of all
histone H2A species in mammalian cells, the two histone H2A genes in Saccharomyces
cerevisiae each encode proteins with an H2AX-like C-terminal tail and these H2A species,
like H2AX, are also subject to C terminal phosphorylation during the DNA damage
response [48, 49].

2. The γH2AX chromatin domain
The original calculations of the Bonner lab have held up well with the development of
chromatin immunoprecipitation (ChIP) methods to visualize the γH2AX chromatin domain
in mammalian cells. ChIP analysis of S. cerevisiae γH2A was reported in a strain in which
an HO endonuclease-induced DSB could not be repaired [47]. This provoked a strong
γH2AX response, with a marked depletion of γH2AX signal in the ~1 kb proximal to the
DSB. Work in mammalian cells studied the extent of the γH2AX domain in primary
thymocytes and in immortalized bcr-abl expressing pre-B cells induced to undergo V(D)J
recombination in G1 in response to abl kinase inhibition [44]. By examining the response in
Artemis null cells, in which a hairpin intermediate of V(D)J recombination cannot be
cleaved (i.e., an “unrepairable DSB”), the authors were able to map the γH2AX domain over
several hundred kilobases. Deletion of a major DSB signaling kinase, Atm, reduced the
extent of the γH2AX domain, but did not abolish the γH2AX response in close proximity to
the DSB. This implicates at least one DSB response kinase other than Atm (likely, DNA-
PKcs and/or Atr) in the γH2AX response closer to the DNA end. A second approach
entailed the controlled induction of a restriction endonuclease, AsiSI, to induce DSBs at
discrete chromosomal loci in a human osteosarcoma cancer cell line, U2OS and in a human
glioblastoma cell line, T98G [50]. Mapping of the γH2AX domain revealed
characteristically locus-specific, asymmetric distributions of γH2AX flanking the defined
break sites, with a broadly similar pattern observed in each cell line. Exceptions to the
similar distributions between the two cell lines were observed in cases of actively
transcribed genes, which correlated with regions of low staining intensity (“holes”) located
within a γH2AX domain. One defined molecular modifier of γH2AX distribution is the
cohesion complex, which restricts the spread of γH2AX [51]. Cohesin may play a role in
isolating actively transcribed genes from the impact of a nearby γH2AX response.

These observations make a number of important points. First, the extent of spread of the
γH2AX domain is not defined simply by the “distance” in base pairs from the break site, but
appears to conform to a pre-existing locus-specific chromatin architecture that is to a certain
extent common to different cell types. Second, the γH2AX signal is dynamic, being
suppressed by the presence of actively transcribed genes. At present, it is not clear what
defines the outer boundary of an individual γH2AX domain. Work in yeast suggests that the
presence of heterochromatin suppresses γH2A locally but is not an absolute block to the
spread of the γH2A signal [47]. The significance of the γH2A(X)-free zone near the break,
which has also been observed in other ChIP analyses of γH2AX in mammalian cells,
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remains unclear [52]. The temporal element is important in the DNA damage response, and
the use of “unrepairable” DSBs or recurrent endonuclease-induced breaks at a single site
likely produces a “steady state” DSB signal. The regulation and chromatin distribution of
γH2AX signals in this steady state may differ from the dynamic, perhaps more transient
γH2AX response to a normal, repairable DSB, such as might occur during replication.

2.1 γH2AX nucleates a specialized, multistep chromatin structure at sites of chromosome
breakage

The biochemical and functional consequences of H2AX S139 phosphorylation near
mammalian chromosomal DSBs has been the subject of intense research for more than a
decade. The biochemical picture that has emerged is of a specialized chromatin domain that
may affect chromatin compaction and that recruits a specific set of DNA damage response
factors to chromatin flanking the DSB [53]. A large nuclear protein, MDC1, binds directly
to γH2AX via a tandem C-terminal BRCT repeat of MDC1 [54–58]. MDC1 is a multi-
domain scaffolding protein that appears to orchestrate most, if not all γH2AX functions.
MDC1 recruits the heterotrimeric Mre11/Nbs1/Rad50 (MRN) complex by direct interaction
of casein kinase-phosphorylated MDC1 target sites with the FHA domain of Nbs1 [59]. The
MRN complex has critical roles in early responses to the DSB, contributing to both HR and
NHEJ; Mre11 endonuclease activity has been implicated in DNA end resection [60–63].
MRN bound to DNA ends also recruits and activates the Atm signaling kinase [64, 65], and
this Atm association is retained when MRN interacts with MDC1 within the γH2AX
chromatin domain at a distance from the break site [66]. This suggests that MDC1 amplifies
the Atm response to the DSB. Indeed, the deliberate tethering of MDC1 to a chromosomal
array in the absence of a DSB triggers a γH2AX response—presumably mediated in part by
this Atm-dependent amplification mechanism [67]. This is supported by the finding, in pre-
B cells undergoing arrested V(D)J recombination, that the γH2AX signal intensity is
reduced in MDC1 null cells, although the extent of spread of the γH2AX (measured by
ChIP) appears not to be reduced by deletion of MDC1 in the way that it is by loss of Atm
[44]. The γH2AX domain is a dynamic chromatin structure. Work in Drosophila
melanogaster has provided evidence of histone replacement of the H2AX homolog, H2Av
[68]. In mammalian cells, histone H2AZ has been detected on chromatin at DSB sites,
suggesting that some histone replacement occurs within γH2AX chromatin [69].

A number of proteins implicated in HR or NHEJ, in addition to the MRN complex, assemble
on γH2AX/MDC1 chromatin [70]. These include BRCA1, the product of the hereditary
breast/ovarian cancer predisposition gene, together with its heterodimeric partner BARD1,
and the DNA damage response protein 53BP1 [71]. The formation of extensive IR-induced
nuclear foci (a cytological reflection of the chromatin response) by these proteins is
dependent upon both H2AX and MDC1, suggesting that BRCA1 and 53BP1 serve functions
in chromatin downstream of the initial γH2AX/MDC1 response. The mechanism of 53BP1
recruitment requires its interaction with a constitutive chromatin mark, histone H4
dimethylated on lysine 20 (H4K20me2) [72, 73]. This is mediated by direct physical
interaction between the tandem Tudor repeat of 53BP1 and the H4K20me2 mark. Affinity
measurements in vitro suggested that 53BP1 can equally well bind H4K20me1 and this is
supported by in vivo analysis [74, 75]. This also presented a paradox: if the H4K20me2
mark is ubiquitous in chromatin, how is the specific recruitment of 53BP1 to γH2AX/MDC1
chromatin achieved?

2.2 Ubiquitin-dependent elements of the γH2AX chromatin response
A major breakthrough in understanding 53BP1 and BRCA1/BARD1 recruitment to γH2AX/
MDC1 chromatin came from the discovery that a set of E3 ubiquitin ligases, RNF8 and
RNF168, are required for efficient recruitment of these proteins to γH2AX/MDC1
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chromatin [76–80]. RNF8 directly binds MDC1 and ubiquitylates chromatin components,
including histone H2A species in chromatin at the break site by generating K63-linked
ubiquitin chains. The RNF8-associated E3 ubiquitin ligase, RNF168 (the loss of which has
been identified as a cause of the human RIDDLE syndrome of radiosensitivity,
immunodeficiency, dysmorphic features and learning difficulties [81]), is recruited by RNF8
to γH2AX/MDC1 chromatin but acts biochemically upstream of RNF8 by
monoubiquitylating histone H2A on K13/K15 residues—a motif distinct from the known
polycomb RING1B/Bmi1 complex target site on histone H2A or H2AX K118/119 [82].
Monoubiquitylation of H2A or H2AX K13/K15 by RNF168 and its E2, UbcH5, acts as a
priming mark for the action of RNF8 and its E2, Ubc13, in the formation of major K63-
linked polyubiquitin species on histone H2A/H2AX [83]. H2AX is formally dispensable for
53BP1 recruitment provided the appropriate H2A ubiquitin marks can be established on
chromatin, as is the case for spontaneous 53BP1 focus formation on incompletely replicated
DNA structures transmitted through mitosis to the subsequent G1 cell cycle phase [84–86].
Thus, the MDC1/RNF8/RNF168 response generates a specific set of ubiquitylated
chromatin marks that lay a foundation for specific recognition of DNA damage response
complexes by ubiquitin-binding domains.

The mechanism by which these ubiquitin marks recruit 53BP1 remained unclear for some
time and a number of additional factors influence 53BP1 recruitment [87], some possibly in
a cell type-specific fashion [75, 88]. Mapping of the domains of 53BP1 that are required for
its recruitment to γH2AX/MDC1 chromatin has implicated regions close to the tandem
Tudor repeat in dimerization; indeed, homodimerization is required for efficient recruitment
of 53BP1 to γH2AX/MDC1 chromatin [89]. This is consistent with the finding that the
binding affinity of H4K20me2 for the tandem Tudor repeat is in the micromolar range [72].
Recently, it was shown that 53BP1 recognizes mono-nucleosomes containing H4K20me2
and H2A ubiquitylated on K15 (H2AK15Ub) [90]. A region C-terminal of the 53BP1
tandem Tudor repeat, termed the ubiquitylation-dependent recruitment (UDR) motif,
interacts with H2AK15Ub and this dual interaction of dimerized 53BP1 with H4K20me2
and H2AK15Ub is required for its stable interaction with nucleosomes. Thus, 53BP1 is
secured on chromatin by a low affinity, high avidity mechanism entailing multiple binding
sites with regulated histone marks, which include RNF168-mediated H2AK15Ub. This
conforms to the canonical mechanism for regulating chromatin-associated proteins through
alterations in the “histone code”, whereby combinatorial binding via individually low
affinity interactions with histone marks allows for complex regulation of chromatin
association and for the rapid accumulation or release of the chromatin-associated protein in
response to the appropriate cue [91].

The mechanism of BRCA1/BARD1 recruitment to γH2AX/MDC1 chromatin has also been
unequivocally linked to a physical interaction with ubiquitylated chromatin components,
mediated by an interaction of BRCA1/BARD1 with the ubiquitin-binding protein Rap80
[92–94]. The BRCA1-Rap80 complex, which entails direct binding of the BRCA1 tandem
BRCT repeat to Abraxas/CCDC98, contains a number of ubiquitin modifying enzymes,
including the deubiquitinating enzyme BRCC36 [95] and the BRCA1/BARD1 dimer, itself
an E3 ubiquitin ligase [96]. This suggests a likely role for the BRCA1-Rap80 complex in
ubiquitin editing on γH2AX/MDC1 chromatin [97–99]. The Rap80-bridged interaction of
BRCA1 with ubiquitylated chromatin components appears to be significant in breast cancer
risk, since a missense allele of Abraxas that mislocalizes the protein has been implicated in
hereditary breast cancer risk [100].

2.3 Competition between BRCA1 and 53BP1 on γH2AX/MDC1 chromatin
BRCA1/BARD1 contributes to early steps of HR by promoting DNA end resection—a
process that involves its interaction with CtIP, the mammalian homolog of the S. cerevisiae
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Sae2 endonuclease [101]. A remarkable functional antagonism exists between BRCA1 and
53BP1, whereby depletion of 53BP1 restores viability to Brca1 null cells in vitro [102].
Deletion of 53BP1 in the mouse germ line reverses some of the HR defects in Brca1 exon
11-deleted hypomorphic mice [103, 104]. This functional antagonism, which is discussed in
more detail below, is reflected in mutual antagonism between BRCA1 and 53BP1 in the
γH2AX/MDC1 chromatin response. Although these functional antagonists are co-recruited
to γH2AX/MDC1 chromatin, responding to overlapping histone ubiquitylation marks, recent
work using three-dimensional structured illumination microscopy suggests that BRCA1 and
53BP1 occupy mutually exclusive domains within a single γH2AX/MDC1 chromatin
domain [105]. The N-terminal tail of histone H4 is subject to acetylation by the Tip60
histone acetyl transferase complex, and H4K16 acetylation inhibits binding of H4K20me2 to
the 53BP1 tandem Tudor repeat [106]. Tip60 may therefore help to disrupt 53BP1
chromatin association so as to allow BRCA1/BARD1 and other resection enzymes access to
chromatin flanking the DSB.

3. The “concentration of repair factors” hypothesis: the chromatin domain
vs. the DNA domain

Chromatin structure plays a major role in the regulation of chromosomal processes such as
transcription and DNA replication. In keeping with the multifunctional characteristics of
chromatin, an Atm-dependent process, acting in cis with respect to a chromosomal DSB, has
been implicated in localized repression of transcription during the acute response to a DSB
[107]. H2AX also has DNA damage signaling functions [66, 84]. Indeed, the number of
post-translational modifications of chromatin and enzymatic activities associated with
γH2AX/MDC1 chromatin is diverse pointing to additional functions of this domain; these
have been the subject of recent review [108]. However, the fact that the specialized γH2AX/
MDC1 chromatin domain recruits known DNA repair proteins to chromatin flanking the
DSB led to the proposal that γH2AX/MDC1 supports DSB repair by concentrating repair
factors near the break site. In this section we will review to what extent this hypothesis has
survived the test of time.

3.1 Homologous recombination functions of H2AX
Mice lacking any one of Brca1, Mre11, Rad50 or Nbs1 show early embryonic lethality [109,
110], with spontaneous chromosome structural abnormalities due to an underlying severe
HR defect. In contrast, H2AX null mice are viable, exhibiting male sterility and a modest
impairment in class switch recombination (CSR) at the IgH locus in developing B cells
[111]. Thus, the genetic data suggest that BRCA1 and the MRN complex execute their
major HR functions independently of H2AX. Consistent with this, minor fractions of
BRCA1, 53BP1 and the MRN complex are detectable at DSB sites in H2AX null cells
[112]. Thus, the response to a chromosomal DSB could be considered to entail two (or
more) compartments: a DNA domain, in which major DSB repair enzymes act to negotiate
effective DSB repair, and the γH2AX/MDC1 chromatin domain, in which some of the same
DSB repair factors appear, separated from the break by some hundreds of kilobases of
chromatin (Figure 3).

The mild phenotype of H2AX null mice prompted a search for DSB repair functions that are
specific to H2AX. Examination of DSB-induced HR in S. cerevisiae and in mammalian cells
revealed a ~4-fold defect in HR/SCR in H2A(X) null cells [113, 114]. The H2AX null HR
defect was reversed by expression of wild type H2AX but not by H2AX S139 mutants,
which cannot form γH2AX species. Similar observations were made in chicken DT40
lymphoblastoid cells [115]. Collectively, these observations suggest that the HR/SCR
function of H2A(X) is evolutionarily conserved. Consistent with a role in HR/SCR, many
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DNA damaging agents provoke predominantly S-phase γH2AX responses in cycling cells.
Interestingly, several groups reported alterations in (but not the abolition of) Rad51 focus
formation in H2AX null cells [115, 116]. In addition to the observed HR defect, H2AX null
mouse ES cells reveal a skewing of DSB repair in favor of single strand annealing [114].
This pattern (reduced HR, skewing in favor of SSA) is reminiscent of the DSB repair defect
observed in cells lacking Rad51 or its loading enzyme, BRCA2. However, a number of
distinct mechanisms could account for the characteristic imbalance between HR and SSA
seen in H2AX null cells. Although γH2AX might conceivably act upon the Rad51 filament,
a number of points favor an indirect mechanism. First, γH2A chromatin in S. cerevisiae
colocalizes with cohesin complexes, suggesting a possible mechanism of action of H2AX in
DSB repair that operates in parallel to enzymes acting at the DSB [113, 117]. Second,
inactivation of mammalian complexes that mediate Rad51 filament formation or stability
(BRCA2, the Rad51 paralogs) causes strong skewing of HR in favor of long gene
conversion tracts, whereas this skewing is not seen in H2AX mutants [63, 118–121].

Further genetic analysis of H2AX revealed a tight connection between the HR function of
H2AX and its ability to bind MDC1 [122, 123]. MDC1 null cells also reveal an HR defect
and domain analysis suggest that the RNF8-binding region of MDC1 is dispensable for its
HR function; in contrast, the Forkhead-associated (FHA) and PST repeat domains are
required for this function. Thus, the RNF8/RNF168-dependent recruitment of BRCA1 or
53BP1 does not appear to participate in the core HR function of H2AX [122]. This
apparently paradoxical result is in fact consistent with the idea of an evolutionarily
conserved HR/SCR function to H2AX, since the S. cerevisiae genome does not contain a
BRCA1 homolog. This result is also consistent with recent data on the role of the Rap80/
BRCA1 complex in HR (discussed below). One clue as to how γH2AX/MDC1 might enact
its HR function is suggested by the finding that the FHA domain of MDC1 can bind Rad51,
suggesting a possible role for MDC1 as an accessory mediator of Rad51 loading [124].
However, this model does not explain the contribution of the MDC1 PST repeats to HR. The
MDC1 FHA domain has a major role in DNA damage-induced homodimerization, which is
required for efficient activation of MDC1 [125, 126]. To what extent MDC1 dimerization
affects its ability to interact with Rad51 is currently unclear.

A study of the relationship between H2AX and Atm in HR revealed further insight into the
HR function of H2AX [127]. As noted above, Atm is responsible for the formation of an
extensive γH2AX domain; in its absence the spread of γH2AX signal is significantly
reduced, the remaining phosphorylation of H2AX S139 likely being mediated by DNA-
PKcs and/or Atr in close proximity to the DSB. Surprisingly, Atm deletion has no effect on
DSB-induced HR, at least in euchromatin, and H2AX-dependent HR is strictly Atm-
independent in this context [127]. Thus, it appears that the limited formation of γH2AX
chromatin that occurs in Atm null cells is fully sufficient to support γH2AX/MDC1-
mediated HR—at least, in the repair of a “clean” enzyme-induced euchromatic DSB.

In summary, analysis of the HR function of H2AX/MDC1 appears to provide little evidence
in support of the “concentration of repair factors” hypothesis, as originally proposed. The
core HR functions of BRCA1, Mre11, Rad50 and Nbs1—each of which is required for
organismal viability in mammals—are independent of H2AX. The domains of MDC1 that
mediate its HR function do not include the RNF8 binding domain and therefore the HR
function of H2AX/MDC1 is genetically separable from its ability to recruit BRCA1 to
chromatin. This conclusion is underscored by the specific contribution of the BRCA1-Rap80
complex (i.e., the major γH2AX/MDC1-associated, RNF8-dependent fraction of BRCA1) to
HR. Inhibition of Rap80 has a stimulatory effect on HR in some cell types, likely reflecting
perturbed control of DNA end resection [128, 129]. Thus, the BRCA1 fraction that is
associated with RNF8/RNF168/Rap80 appears to have HR regulatory functions quite
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different from the “core” HR functions of BRCA1, which act at the DSB independently of
H2AX to promote DNA end resection and to mediate recruitment of BRCA2/Rad51 to the
resected DSB (Figure 1). However, the full set of DSB response functions associated with
the Rap80-BRCA1 complex is not yet defined and there may be crosstalk between Rap80-
BRCA1 and other “core” HR functions of BRCA1 in normal physiology.

3.2 H2AX in non-homologous end joining
Class switch recombination (CSR) is a specialized example of programmed DNA breakage
and rejoining that occurs in developing B cells as they undergo conversion of
immunoglobulin heavy chain (IgH) isotypes from IgM to the mature isotypes IgG, IgA or
IgE. This process entails localized chromosome breakage and rejoining of highly repetitive
switch (S) regions in proximity to the constant region alternative exons Cμ, Cγ, Cα and Cε.
Cytokine activity targets the Activation-Induced (DNA-cytosine) deaminase (AID) to Sμ
and one of Sγ, Sα or Sε [8, 9]. The action of AID, assisted by uracil DNA glycosylase and
the apyrimidic/apurinic-endonuclease, results in break formation localized to the targeted S
regions, followed by rejoining of the two distantly located broken switch regions [130, 131].
This places the variable region of the Ig heavy chain in proximity to the new constant region
Cγ, Cα or Cε and results in IgH isotype switching. AID-initiated breakage can occur at
multiple sites within Sμ, and rejoining of these intra-switch breaks can result in internal Sμ
deletions. CSR is accompanied by an extensive γH2AX response, focused on switch regions
undergoing AID-induced breakage. Analysis of H2AX null mice revealed a modest
reduction in CSR but no alteration in somatic hypermutation, a second AID-mediated
process that targets the hypervariable region of the Ig gene for affinity maturation [111,
132]. H2AX null cells similarly reveal no reduction in internal Sμ deletions, consistent with
the idea that the induction of DSBs in Sμ is not perturbed by deletion of H2AX.

The mechanism of H2AX action in CSR was suggested by the finding that H2AX null mice
reveal increased frequencies of unrepaired breaks at IgH and associated chromosomal
translocations involving IgH [133]. This suggested that H2AX (and also Atm, MDC1 and
53BP1) contributes to the timely rejoining of AID-induced DSBs at IgH. Whether this
specialized case of NHEJ reflects a more general function for H2AX in NHEJ is not yet
clear. In this regard, the modest reduction of CSR efficiency and grossly normal V(D)J
recombination in H2AX null mice argues against a “core” role for H2AX in NHEJ.
Consistent with this, the simple rejoining of two proximate chromosomal DSBs induced by
a restriction endonuclease is not disrupted by H2AX deletion [63]. The mechanisms by
which H2AX supports NHEJ during CSR are currently unclear. In yeast, an association
between γH2A and cohesion has been noted, suggesting a possible role for γH2AX in
“tethering” DNA ends during DSB repair [113]. Limited support for this model is suggested
by live cell imaging of the stability of DNA ends following DSB induction in mammalian
cells [134]; depletion of H2AX modestly disrupted DNA end stability over time.

Although V(D)J recombination is grossly normal in H2AX null mice, the elevated frequency
of IgH JH-translocations in H2AX/Trp53-deficient mice hints at possible abnormalities in
the execution of V(D)J recombination [135, 136]. Compelling evidence of a role for H2AX
in V(D)J recombination came from two studies. First, aberrant processing of hairpin
intermediates of V(D)J recombination induced was noted in B-lymphocytes of mice lacking
both Artemis and H2AX [137]. Artemis is the major endonuclease responsible for cleaving
hairpin intermediates of V(D)J recombination. In Artemis null cells, the hairpin is
maintained intact, but in Artemis/H2AX null cells, hairpin opening occurs, accompanied by
extensive CtIP-mediated resection of the opened DNA end, which is rejoined with an
increased frequency of MMEJ breakpoints. Second, combined deletion of H2AX and the C-
NHEJ factor XLF causes defective V(D)J recombination, which is associated with marked
degradation of unjoined V(D)J ends [138]. These observations implicate H2AX in V(D)J
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recombination fidelity—a function which is normally masked by functional redundancy in
wild type cells.

Telomere integrity is maintained by an interaction of nucleoprotein complexes on telomeric
DNA, a central role being played by the shelterin complex [139]. Disruption of shelterin
components can provoke a DNA damage response, due to exposure of DNA structures at the
end of the disrupted telomere. Inhibition of the shelterin component TRF2 releases telomere
ends and promotes interchromosomal fusion of telomere ends—a process that is mediated
by C-NHEJ [140, 141]. Consistent with a role for H2AX/MDC1 in NHEJ, depletion of
MDC1 disrupts the fusion of dysfunctional telomeres caused by loss of TRF2 [142].

3.3 Relationships between 53BP1 and H2AX in DSB repair: 53BP1 goes freelance
The observation that 53BP1 recruitment to DSB-induced nuclear foci is controlled by
H2AX/MDC1 and by the RNF8/RNF168 ubiquitin response suggested that γH2AX/MDC1
might control 53BP1 DSB response functions. However, work in recent years has argued
against this simple model. As noted above, spontaneous 53BP1 focus formation in G1 cells
is not abolished by deletion of H2AX [84]. In contrast to H2AX null mice, 53BP1 null mice
reveal a profound defect in CSR—indeed, more severe than that of RNF8 null or RNF168
null mice [143, 144]—suggesting that the contribution of 53BP1 to this end-joining process
is at least in part independent of H2AX [145, 146]. Second, analysis of H2AX- and MDC1-
dependent HR/SCR led to the finding that 53BP1 inhibition stimulates HR, suggesting that
53BP1 normally antagonizes HR in this setting. This function is independent of H2AX but is
abolished in XRCC4 null cells, suggesting a primary role for 53BP1 in C-NHEJ [122]. A
primary function for 53BP1 in NHEJ was further supported by the finding that the fusion of
dysfunctional telomeres is virtually abolished by removal of 53BP1—a pattern strongly
reminiscent of the impact of 53BP1 loss on CSR [147].

Some phenotypes of BRCA1 hypomorphic mutant mice are suppressed by co-deletion of
53BP1, and 53BP1 suppression restores viability to Brca1 null embryonic stem cells, as well
as resistance to poly(ADP-ribose) polymerase inhibitors and other DNA damaging agents
[102, 103]. 53BP1 inhibition did not restore viability to BRCA2 mutant cells [102].
Crucially, deletion of H2AX or Atm does not rescue the growth of BRCA1 mutant cells,
indicating that 53BP1 is acting independently of the prime mediators of the γH2AX/MDC1
chromatin response in its adversarial relationship with BRCA1. The likely point in DSB
repair at which 53BP1 and BRCA1 enact this antagonism is in the regulation of DNA end
resection, BRCA1 playing a positive role in this process and 53BP1 suppressing resection
[104]. 53BP1 makes phosphorylation-dependent interactions with Rif1, which recent work
has shown to be an important mediator of 53BP1’s anti-resection/NHEJ functions [148–
151].

4. Summary and future prospects: the resection connection
The data discussed above suggest that the action of γH2AX in DSB repair conforms only
partly to a mechanism based upon the concentration of repair factors. Those DSB repair
factors that are recruited to γH2AX/MDC1 nuclear foci (MRN, BRCA1 and 53BP1) all
demonstrate critical DSB repair functions that are quantitatively more significant than those
of H2AX and that persist in H2AX null cells. Nonetheless, it is provocative that the
functional antagonism between BRCA1 and 53BP1 (enacted at the DNA end without the
need for H2AX) is “re-enacted” on γH2AX/MDC1 chromatin in the mutually exclusive
distributions of these proteins within a single DNA damage response focus [105, 106].

Each system used to analyze mammalian DSB repair has potential limitations and one
wonders how many connections we are missing because of the incomplete nature of assay

Scully and Xie Page 9

Mutat Res. Author manuscript; available in PMC 2014 October 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



systems. For example, the use of endonucleases such as I-SceI to induce DSBs in
euchromatin, although an excellent and highly quantitative system, fails to synchronize the
timing of DSB induction with common physiological triggers to chromosome breakage,
such as replication fork arrest and presents less of a challenge than a DSB formed in
heterochromatin. Similarly, the DNA ends generated by I-SceI-induced DSBs are not
chemically modified in the way that DSBs induced by ionizing radiation or radiomimetic
chemicals are. In this regard, it is interesting to note that the major DSB repair factors that
have been reported to accumulate on γH2AX/MDC1 chromatin—MRN, BRCA1 and 53BP1
—all have roles in regulating DNA end resection. This raises the possibility that the mature
γH2AX/MDC1 chromatin domain serves primarily as a “toolkit” for regulating DNA end
resection—a concentration of repair factors that might not be required to fix a clean
euchromatic DSB, but whose utility might be revealed in the repair of more challenging,
chemically modified or spatially separated DSBs.

H2AX clearly plays important roles in regulating the function and fidelity of the two major
pathways of DSB repair, HR and NHEJ. The further molecular and genetic dissection of
these H2AX-dependent DSB repair functions is important, since they represent some of the
clearest examples of the impact of the chromatin response on the fundamental process of
DNA break repair and provide compelling illustrations of how the “histone code” is adapted
to this process. Throughout the analysis of H2AX and its associated proteins, the connection
to human disease is evident. Thus, H2AX deletion in mice promotes genomic instability and
collaborates with other oncogenic mutations to promote cancer. Indeed, H2AX
haploinsufficiency may be a driver of human tumorigenesis [152], as it is in mice [135,
136].
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Figure 1. Hierarchy of DSB repair pathways
The engagement of DNA end resection plays a critical role in specifying DSB repair
pathway selection. Unresected DSBs are candidates for canonical non-homologous end
joining (C-NHEJ). The resected DSB can be repaired in an error-free manner by
homologous recombination (HR). If this process fails, mutagenic repair via single strand
annealing (SSA) or microhomology-mediated end joining (MMEJ) may be engaged. The
H2AX-independent roles of BRCA1, 53BP1 and the Mre11/Rad50/Nbs1 (MRN) complex
are depicted.
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Figure 2. Distinct repair pathways operate on resected DNA ends. A. Homologous
recombination/synthesis-dependent strand annealing (SDSA)
Rad51-mediated homologous invasion of the neighboring sister chromatid has potential for
error-free repair. B. Single strand annealing (SSA). If two regions of homology (orange
boxes) are in close proximity to the DSB, the resected ends may anneal (homologous base
pairs marked orange), generating a homologous deletion at the site of breakage. SSA is
Rad51-independent. C. Microhomology-mediated end joining (MMEJ). The two resected
ends may be stabilized by limited base-pairing (microhomology, base pairs marked red)
between the two exposed ssDNA tails of the resected DSB. MMEJ is Rad51-independent.
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Figure 3. Double strand break repair functions within the γH2AX chromatin domain
Atm kinase activity propagates the γH2AX signal over hundreds of kilobases of chromatin.
In its absence, a more localized γH2AX response is mediated by the related DNA damage
response signaling kinases DNA-PKcs and Atr. This Atm-independent γH2AX response can
support the function of H2AX in HR/sister chromatid recombination. The Mre11/Rad50/
Nbs1 (MRN) complex, BRCA1 and 53BP1 execute DSB repair functions independently of
H2AX within the “DNA domain” (see also Figure 1), but their recruitment to extensive
chromatin domains flanking the DSB is controlled by γH2AX/MDC1. Non-HR DSB repair
functions of γH2AX/MDC1 chromatin include long range rejoining (class switch
recombination and fusion of dysfunctional telomeres) and the regulation of DNA end
resection.
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