
Higher-order Stokes theory 
 
Linear (Airy) theory is adequate to describe the primary motions 
produced by deep-water waves.  However, most real waves are 
not sinusoidal, but complex periodic features (see photo below 
from Van Dyke’s Album of Fluid Motion).   
 

 
 
Therefore, we will add the next term in the general expansion 
described in Equations (4,7-9) of the last lecture.   
 
Doing so, we find – 
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where the celerity C is defined by  
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Examining the deep-water case (i.e., where 1<<hH ) allows us 
to see what the equations are doing. 
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where ∞L  is defined in the first lecture – 
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Stokes drift 
 
One of the most important effects from the addition of second-
order terms is the incomplete closure of particle paths (unlike 
the photograph from the first lecture).  That is, there is a net 
velocity in the direction of wave propagation.   This velocity is 
called Stokes drift and is formulated from the second-order 
equations to be – 
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Remember, this result is for inviscid, irrotational flow only.   
Most natural situations where this will be important, at least one 
of these effects will be important.  
 
 
Longuet-Higgins (1953) investigated the viscous case in a finite 
domain.  Their results can be summarized in the figure – 
 

 
 
Where the function represented in the figure has the form 
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where hz=µ . 
 
 



Near the bed, the shoreward velocity can be expressed more 
simply 
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Longuet-Higgins simplified transport of momentum in the 
interior of the flow dramatically to arrive at (6) and the plots in 
the figure.  Both theory and experiment have struggled to 
capture the quantitative aspects of true “Stokes drift”.   
  
Most experiments and theory capture in a qualitative sense of 
the vertical distribution of the Stokes drift velocity (see below – 
Fig. 5, Liu and Davies, 1977).  Other theories and experimental 
data sets have been put forth (Craik, 1982; Liu and Davies, 
1977; Mei et al., 1972).  None of them can match the laboratory 
data that is considered most realistic (Russell and Osorio, 1957).  
As Craik (1982) states, “a truly definitive experiment on drift 
profiles is still lacking, so long after Stokes’s pioneering paper.”  
In the future, Lagrangian attempts may hold some promise 
(Phillips, 2001).  
 



  
However, for our purposes, all of these theories reflect the same 
diffusion from the boundaries seen in the original work of 
Longuet-Higgins (1953).   
 
 
Solitary waves and the KdV equation 
 
Solitary waves were first noted by Russell (1834).  As a result, 
he set out to perform simple experiments to obtain their celerity.  
His result – 
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was discovered in 1844 – and is still used today for waves that 
are essentially non-periodic.  
 
Following Russell’s work, both Boussinesq (1871) and Rayleigh 
(1876) derived Russell’s work from first principles.  In doing so, 
they also found 
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where C is defined above and  
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Unfortunately, this result is only true in the limit of 0→hH . 
 
 
A few studies have postulated a slight correction, which 
accounts for the slight variation in the celerity with 
dimensionless depth.  That correction is 
 


















−






+=

2

30
3

2
11

h
H

h
HghC      (10) 

 
 
KdV theory 
 
Korteweg and de Vries (1895), in a truly classic work, 
developed the equation from which (6) and (7) result.  Their 
equation permits periodic solutions and is relevant to 
innumerable physical applications.   
 
In fact, it is simplest equation that encompasses both 
nonlinearity and dispersion.  Korteweg and de Vries called the 



waves described by their equation cnoidal.  They are also called 
long waves. 
 
Their equation has the general form 
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A good reference describing KdV mathematical development 
and its numerous potential applications is Solitons by Drazin and 
Johnson.  
 
For our purposes, we are interested only in the solutions that 
(11) permit – most specifically, the dispersion relations.  It turns 
out that the dispersion relations have to have the form 
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where ( )2kC  is the celerity, which must be a function of 2k .  
 
 
Summary 
 
The parameter regions that are relevant to each type of wave are 
summarized nicely in Figure 5-29 of Komar (shown below).   
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