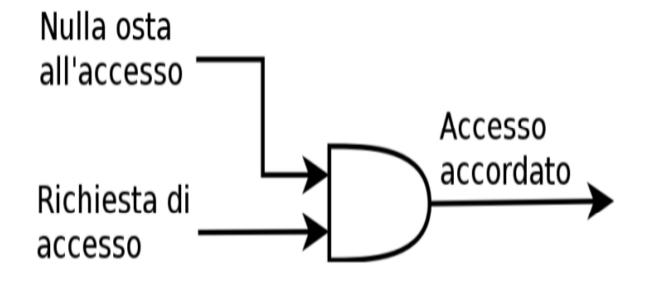
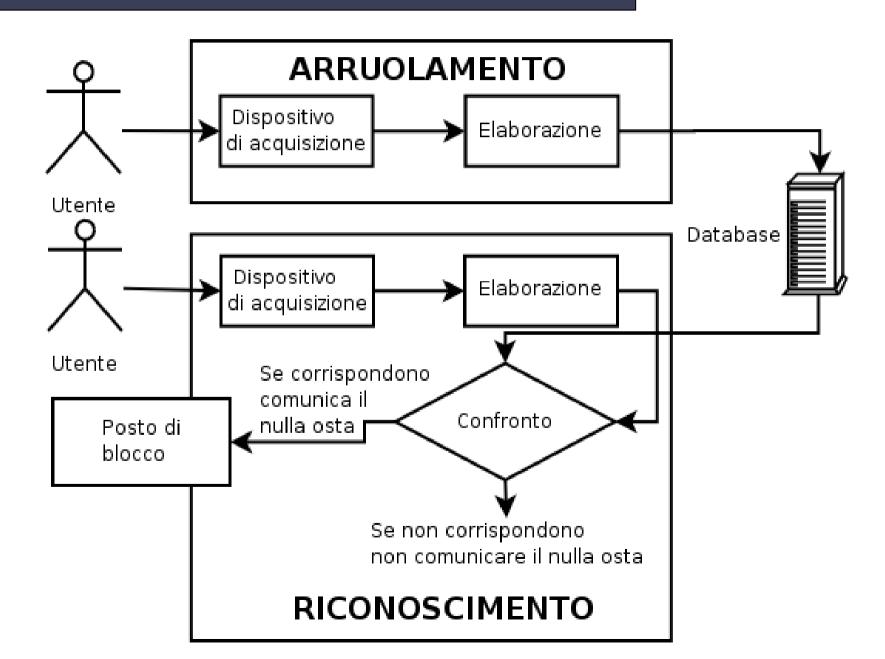
Università degli Studi di Trieste

Corso di Laurea Magistrale in INGEGNERIA CLINICA

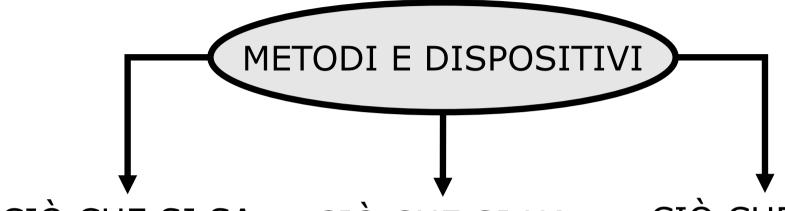
METODI E DISPOSITIVI DI RISERVATEZZA E SICUREZZA


Corso di Informatica Medica Docente Sara Renata Francesca MARCEGLIA

IL POSTO DI BLOCCO INFORMATICO


Architettura Logica di Base: porta AND

Se entrambi i segnali in ingresso Esistono → ACCESSO CONSENTITO



ARRUOLAMENTO E RICONOSCIMENTO

TASSONOMIA

CIÒ CHE SI SA (informazione)

Informazioni che solo il soggetto puo` conoscere

Password, passphrase, PIN, codice di accesso

Facilita` di individuazione/difficolta di memorizzazione

CIÒ CHE SI HA (oggetti)

Basati su qualcosa che l'individuo possiede

Smart card, badge,

Custodia del dispositivo/facilita` di smarrimento

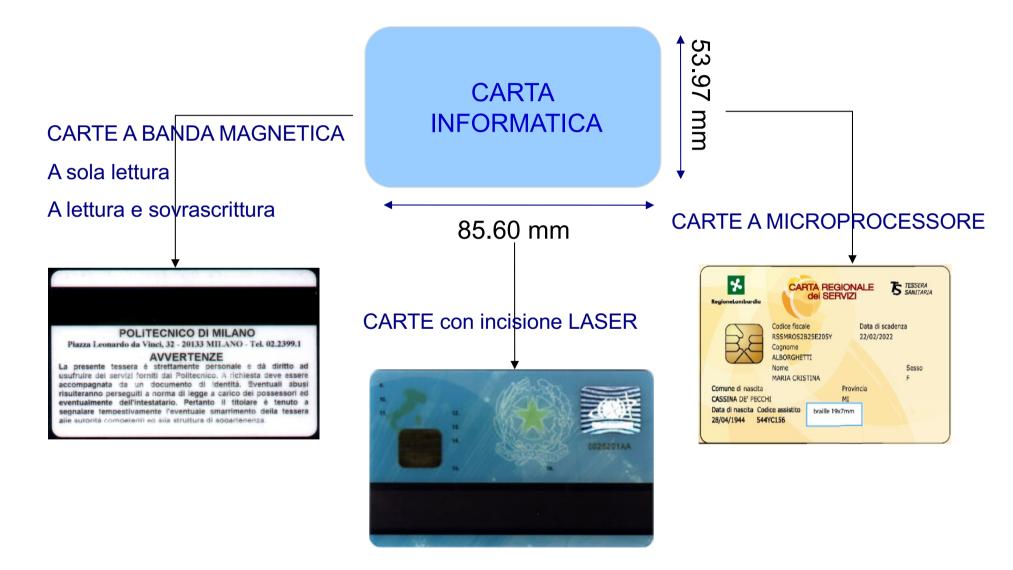
Necessita` di punti lettori

CIÒ CHE SI È (caratteristiche personali)

Riconoscimento biometrico=valutazione delle caratteristiche fisiche o comportamentali del soggetto

Impronta digitale, impronta retinica

Alto costo


SMART CARD: CIO' CHE SI HA

- •Smart card: carta che memorizza dei dati e/o abilita l'accesso a risorse riservate
- •Esempi: al denaro contante, al credito, ad un'area riservata o ad un perimetro delimitato, a sconti e politiche promozionali,...
- •Caratteristiche comuni:
 - •necessari pochi dati di base per identificare l'utente
 - portabilità dell'oggetto
- •Standardizzazione di:
 - Caratteristiche fisiche ed elettriche
 - Comportamenti

DIMENSIONI E TIPI

•Fisicamente ben standardizzate: 85.60 x 53.97 x 0.76 mm

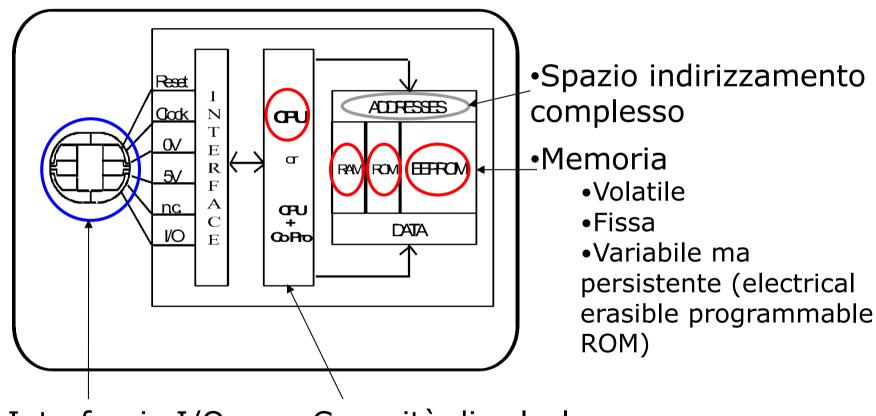
DIMENSIONI E TIPI

A banda magnetica

- A sola lettura
- A lettura e riscrittura
- + semplice e diffusa, poco costosa
- pochi dati (circa 400 caratteri)

Con incisione laser

- + molto stabile e abbastanza sicura (circa 4 Mb)
- - molto rigida e abb. costosa in produzione


A microprocessore

- + molto flessibile, maggiore capacità di memoria e capacità di elaborazione
- - necessita standardizzazione e configurazione ad hoc

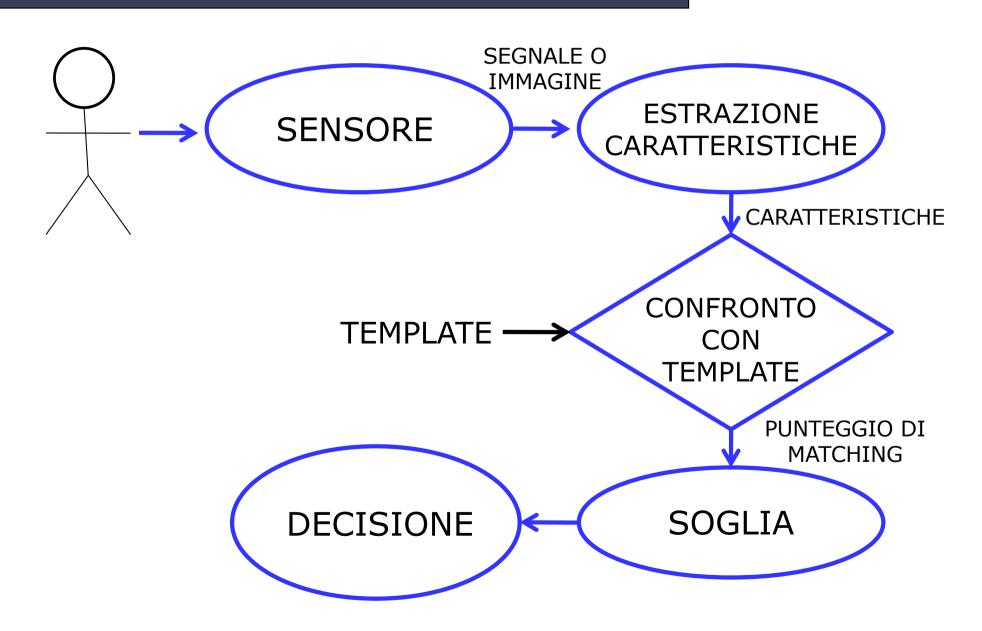
CARTE A MICROPROCESSORE

Similitudini con un PC

- •Interfaccia I/O
 - Alimentazione
 - Controllo
 - Segnali

- •Capacità di calcolo
 - Central Processing Unit
 - (eventualmente potenziato da coprocessore matematico FPU)

Biometria: AUTENTICAZIONE E IDENTIFICAZIONE


AUTENTICAZIONE

IDENTIFICAZIONE

- Confronto uno a uno
- •I dati biometrici acquisiti sul momento vengono comparati con il dato biometrico depositato e associato a quel preciso utente nella fase di arruolamento
- •L'utente dichiara la propria identità e il sistema confronta i dati biometrici con quelli associati all'identità dichiarata
- Confronto uno a molti
- •I dati biometrici acquisiti sul momento vengono comparati con ciascun esemplare di dato biometrico contenuto in un archivio
- •il dato acquisito è strettamente associato all'effettivo utente che richiede l'accesso ed è univoco

STRUTTURA DEI SISTEMI BIOMETRICI

TIPOLOGIE DI SISTEMI BIOMETRICI

Un metodo di classificazione dei sistemi biometrici è basato sul livello di cooperazione e di coinvolgimento richiesto al soggetto per fornire il campione biometrico

SISTEMI PASSIVI

- •Non è detto che il soggetto sappia che si sta effettuando il rilevamento.
- •È utilizzato nei sistemi di identificazione (es: riconoscimento dei ricercati nelle immagini video sorveglianza).
- •I sistemi non sono in grado di controllare l'ambiente di acquisizione.

SISTEMI ATTIVI

- •Al soggetto è richiesto di fornire un campione biometrico.
- •È utilizzato nei sistemi di autenticazione.
- •I sistemi sono in grado di controllare l'ambiente di acquisizione.
- •Scansione dell'iride, impronte digitali, geometria della mano.

VALUTAZIONE DEL SISTEMA

 La performance di un sistema è basata, in generale, sulla accuratezza che garantisce → misure di accuratezza

$$FALSIPOSITIVI = \frac{num \quad falsi \quad accettati}{totale \quad campioni}$$

$$FALSINE GATIVI = \frac{num \ veri \ rifiutati}{totale \ campioni}$$

•Nei sistemi biometrici si valuta anche quante volte il sistema non riesce ad acquisire il campione con qualità sufficiente per poter procedere all'identificazione.

$$FAILURE to ENROLL = \frac{num \quad arruolamenti \quad rifiutati}{totale \quad campioni}$$

ELEMENTI DI PROGETTO

- COSTO DEL SISTEMA
- FACILITÀ DI UTILIZZO
- LIVELLO DI ACCETTAZIONE DA PARTE DELL'UTENTE
- LIVELLO DI PROTEZIONE DEL DATO BIOMETRICO FORNITO

 → protezione dall'utilizzo indebito del dato biometrico fornito
- LIVELLO DI INVASIVITÀ DELLA MISURA
- STABLITÀ DELLA TECNOLOGIA DI BASE → quanto la tecnologia adottata è rimasta sul mercato, quanto velocemente evolve la tecnologia stessa.
- SPOOFING DEL SISTEMA → capacità del sistema di resistere ad attacchi (ad esempio discriminare una voce registrata da una voce vera)

SVANTAGGI

- I dati raccolti sono usati per comporre chiavi biometriche ("template")
- I dati biometrici non possono essere segreti
- Problema della protezione del database che raccoglie le chiavi biometriche
- Sensore di rilevazione (costi e prestazioni)
- Possibili differenze, dovute a fattori tecnologici o esterni, tra i dati registrati durante la fase di arruolamento e quelli acquisiti nelle successive fasi di riconoscimento (classificazione per soglia di accettazione o rifiuto)

VITALITÀ DELLA MISURA

VITALITÀ (LIVENESS) → Riconoscimento del fatto che il dato biometrico registrato proviene da un soggetto vivo e vitale

Può essere garantita mediante diversi metodi:

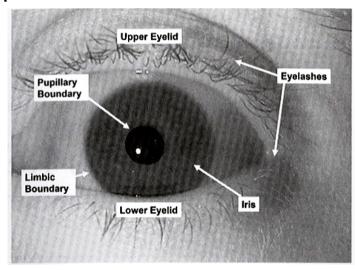
- •Utilizzo di hardware aggiuntivo → sensore di temperatura per le dita, misure di impedenza della pelle della mano, ECG, ossimetro
- Processamento aggiuntivo della misura biometrica per ottenere informazioni sulla vitalità → quantificazione dei movimenti saccadici durante la scansione dell'iride, lettura delle labbra, traspirazione delle dita.
- •La misura biometrica è intrinsecamente vitale → ECG, spettroscopia, indice di riflessione di onde visive

VITALITÀ DELLA MISURA

METODI BIOMETRICI

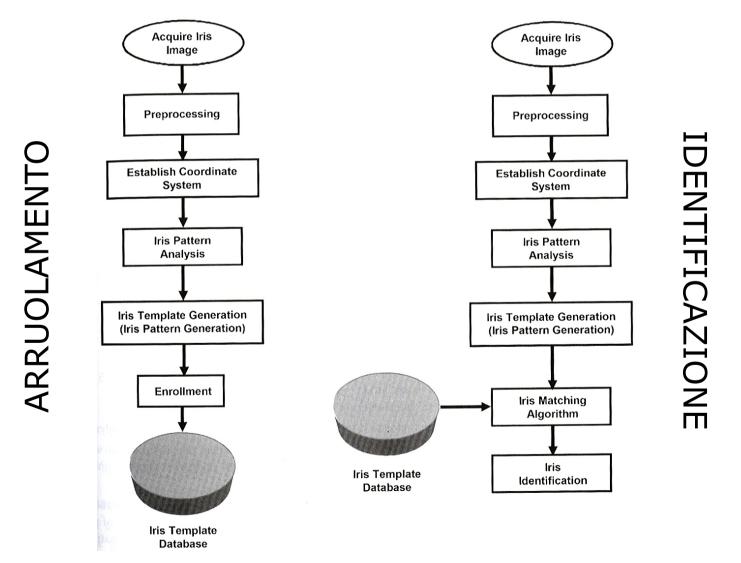
RICONOSCIMENTO DI IMPRONTE DIGITALI

RICONOSCIMENTO DELL'IRIDE

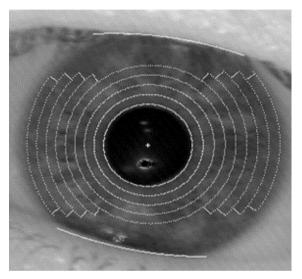

RICONOSCIMENTO
DELLA
GEOMETRIA
DELLA MANO

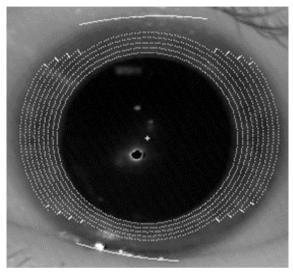
METODI BIOMETRICI RICONOSCIMENTO DELLA TOPOGRAFIA FACCIALE

RICONOSCIMENTO DELLA RETINA RICONOSCIMENTO DI PATTERN VOCALI



- •L'iride umana possiede una particolare struttura anatomica che le conferisce unicità e diversificazione da soggetto a soggetto.
- •Questa struttura è estremamente stabile nel tempo rimanendo pressoché invariata, dai 10 mesi d'età, per tutta la vita.
- •Il riconoscimento dell'iride consiste nell'analisi della porzione colorata anulare dell'occhio che circonda la pupilla.
- •Questa struttura comprende caratteristiche morfologiche molto complesse (solchi di contrazione, fibre e filamenti di collagene, cripte, corone, striature, fosse, anelli, creste ed altre stimate in almeno 240) che sono disposte secondo posizioni diverse (schemi) da individuo a individuo, e diverse tra un occhio e l'altro anche per lo stesso individuo.





La scansione avviene mediante una NIR (near-infrared) → riduce la riflessione ed è in grado di penetrare lenti a contatto e lenti di vetro

Due immagini dello stesso occhio in condizioni di illuminazione differente e diversa dilatazione della pupilla. L'algoritmo di localizzazione delle zone di interesse è in grado di adattarsi e identificare le zone nei due casi.

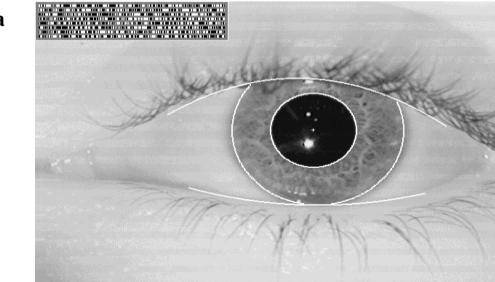
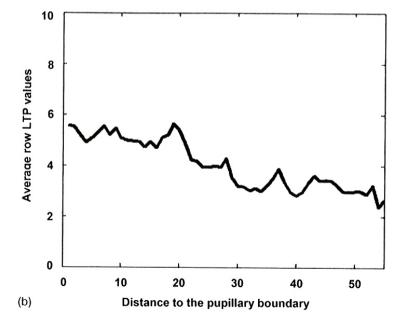
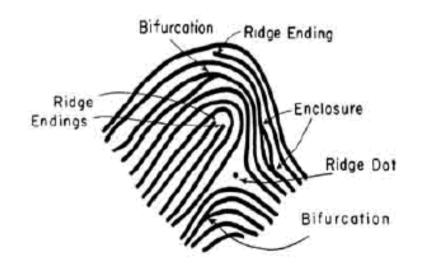


Immagine comunemente acquisita, la definizione della zona d'interesse, e il template di 2048 bit associato all'iride

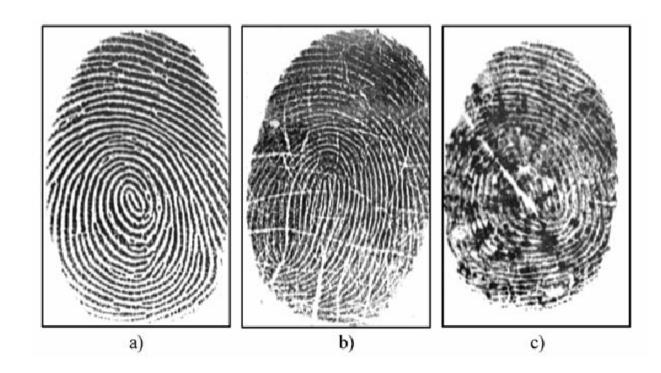


Phase code → ottenuto mediante l'applicazione di una wavelet con finestra di Gabor bidimensionale e utilizzando l'informazione di fase

Firma monodimensionale → ottenuta dal'elaborazione bidimensionale considerando singolarmente ciascuna linea


della matrice

IMPRONTE DIGITALI


- Caratterizzate da stabilità nel tempo e forte unicità
- •Quasi in tutti i paesi del mondo le impronte digitali hanno valore probatorio nei processi.
- •L'impronta digitale è la riproduzione dell'epidermide del polpastrello di ognuna delle dita della mano quando il dito è premuto contro una superficie levigata (area di acquisizione di un sensore biometrico)
- Ogni impronta digitale è caratterizzata da linee curve in rilievo,
 "creste", e dagli spazi tra queste linee, denominati "valli"

IMPRONTE DIGITALI

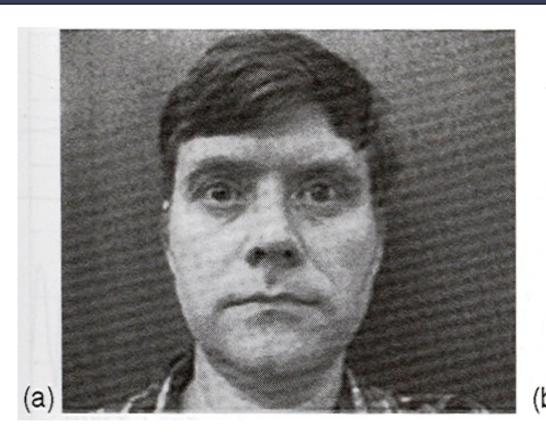
- •In fase di acquisizione la digitalizzazione avviene con scanner ottici, sensori allo stato solido, ultrasuoni.
- Sensori diversi e area di acquisizione sono fattori importanti per la qualità e ricchezza di dettagli delle impronte acquisite
- •Le impronte sono influenzate dall'ambiente esterno e possono risultare umide, secche, sporche e quant'altro

IMPRONTE DIGITALI

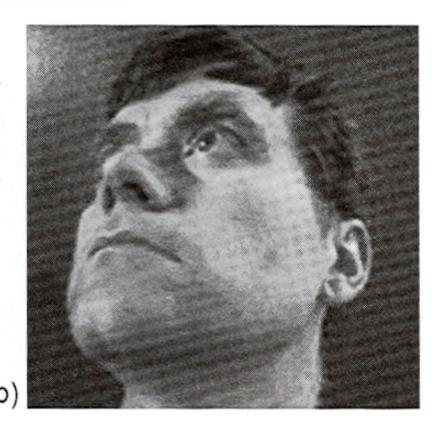
- •L'immagine digitale caratterizzata da un minimo di 8-bit di intensità per pixel ed una risoluzione minima di 500 dpi (200 pixel per centimetro),
- •immagine ricca di rumore disturbante →fase di pre-elaborazione dell'immagine in cui si applicano filtri di varia natura per ridurre il rumore ed accentuare il contrasto tra creste e valli epidermiche.
 - ✓ segmentazione della zona d'interesse
 - ✓ la trasformazione in immagine binaria
 - √assottigliamento delle creste
- •si estraggono le caratteristiche di interesse e si crea un template dell'impronta:
 - ✓ nella fase di arruolamento nel sistema, il template viene associato ad un preciso utente e archiviate
 - ✓ nelle fasi di riconoscimento, il template viene confrontato con quello generato nella fase di arruolamento, in modo da verificare la corrispondenza.

IMPRONTE DIGITALI: VANTAGGI E SVANTAGGI

- Basso costo
- Tecnologia consolidata
- •Elevata accuratezza (0.001% falsi positivi)
- Piccole dimensioni dei dispositivi
- Non possono essere rilevate in alcuni soggetti in cui lo spessore delle creste e` ridotto
- Alterabili da agenti esterni
- •Non adatto alle situazioni in cui e` necessario l'uso di guanti



TOPOGRAFIA FACCIALE


- Immagini catturate tramite video o fotografie.
- Basata su modelli matematici che misurano le differenze di alcune caratteristiche sul volto.
- Metodi 2D \rightarrow
 - Comparazione di due immagini bidimensionali indipendente dall'espressione del viso, dalla posizione del viso rispetto alla telecamera/fotocamera.
 - Si valuta la posizione relativa di alcune caratteristiche (naso, occhi, labbra, ...)
- Metodi 3D →
 - Per superare i problemi di illuminazione e posa del viso tipici della acquisizione 2D.
 - Algoritmi di ricostruzione 3D usati per creare un "mesh" (ricostruzione a trama) del viso

TOPOGRAFIA FACCIALE 2D

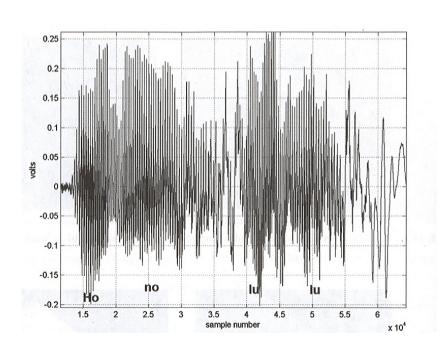
Situazione di riconoscimento ottimale

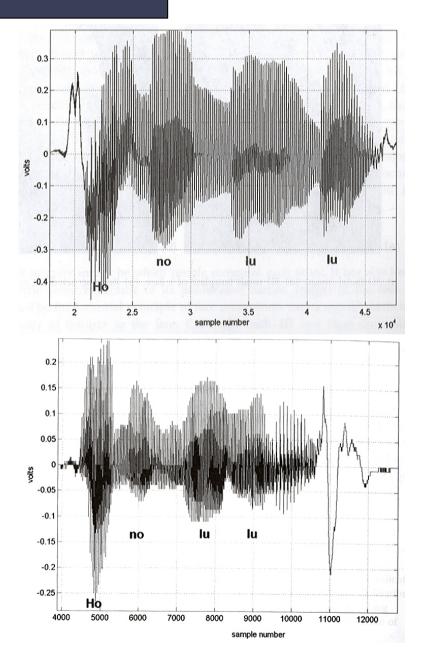
Difficoltà di riconoscimento

TOPOGRAFIA FACCIALE 3D

Ricostruzione mesh

Ricostruzione della superficie


RICONOSCIMENTO VOCALE


- Riproduzione della voce → unica.
- Dipende dalla vibrazione delle corde vocali, dalla loro posizione e dalla forma di elementi coadiuvanti quali la lingua e le labbra.
- La voce in generale non è stabile durante la vita di un individuo.
- La voce soffre di variazioni anche a breve termine (raffreddore, mal di gola, ...)
- Non deve essere confuso con gli algoritmi di "speech recognition" che servono per ricostruire quanto detto da un soggetto e non per riconoscere il soggetto stesso.

RICONOSCIMENTO VOCALE

Riproduzione della parola "Honolulu" in tre diversi soggetti

ALTRE TIPOLOGIE DI TECNICHE BIOMETRICHE

•RICONOSCIMENTO DELLA RETINA

→ si basa sulla analisi della struttura dei vasi sanguigni sul fondo dell'occhio acquisita mediante dispositivi che dirigono un fascio di luce a bassa intensità nella pupilla dell'individuo.

•RICONOSCIMENTO DELLA GEOMETRIA DELLA MANO

→sfrutta le caratteristiche tridimensionali della mano acquisite mediante l'utilizzo di scanner a infrarossi.