The Ising model in the canonical ensemble

- Introduction to the Ising model
- The Ising model in the canonical ensemble: application of Metropolis Monte Carlo Method
 Implementation in a code

M. Peressi - UniTS - Laurea Magistrale in Physics Laboratory of Computational Physics - Unit IX stochastic simulations of an interacting spin ensemble

We need a model for:

- energy

- evolution

(to build the trajectory / the Markov chain)

stochastic simulations of an interacting spin ensemble

We need a model for:

- energy => lsing model
- evolution

(to build the trajectory / the Markov chain)

Ising model

the simplest model of interacting spin on a lattice

2 interacting spins

Consider two spins I/2, $\vec{s_1}$, $\vec{s_2}$ (e.g. electrons in He), their sum \vec{S} , the basis $|S, S_z > of$ the Hilbert space in the coupled representation, and a hamiltonian $\mathcal{H} = h_1 + h_2 + V_{12}$:

The Pauli principle => the energy is affected by spin even if ${\cal H}$ does not depend explicitly on it:

$$< S = 0|\mathcal{H}|S = 0 >= E_s$$
 singlet
 $< S = 1|\mathcal{H}|S = 1 >= E_t$ triplet

We have:

 $< S = 0|\mathcal{H}|S = 0 > - < S = 1|\mathcal{H}|S = 1 > = E_s - E_t$

2 interacting spins

Idea: write a model hamiltonian explicitly dependent on the spin giving the same energy difference between the eigenvalues of its eigenstates as the original one.

Consider the operator:

$$\sum_{12} = \vec{s_1} \cdot \vec{s_2} = \frac{1}{2}S^2 - \frac{3}{4}$$

which is diagonal on the coupled basis, with eigenvalues:

$$< S = 0 |\Sigma_{12}| S = 0 > = -\frac{3}{4}, \quad < S = 1 |\Sigma_{12}| S = 1 > = \frac{1}{4}$$

 $\mathcal{H}^{spin} = -(E_s - E_t)\Sigma_{12}$

Consider then:

 $< S = 0 |\mathcal{H}^{spin}|S = 0 > - < S = 1 |\mathcal{H}^{spin}|S = 1 > = E_s - E_t$

Heisemberg hamiltonian

$$\mathcal{H}^{spin} = -(E_s - E_t)\Sigma_{12}$$

is therefore OK! Defining: $J \equiv E_s - E_t$, we have:

$$\mathcal{H}^{spin}=-Jec{s_1}\cdotec{s_2}$$

J>0 (Es > Et) $\uparrow \uparrow$ spins favored => ferromagnetic case J<0 (Es < Et) $\uparrow \downarrow$ spins favored => antiferromagnetic case

Heisemberg hamiltonian

Extension to the case of several spins:

$$\mathcal{H}^{spin} = -\sum_{\substack{i,j=1\i\neq j}}^{N} J_{ij} \ \vec{s_i} \cdot \vec{s_j}$$

(see also: Ashcroft & Mermin, chap. 32, "Spin hamiltonian and Heisemberg model")

Ising model

Consider only the possibility : $s_i = \pm 1$ and nearest neighbor interaction only, with the same interaction constant J

$$\mathcal{H}^{spin} = -J\sum_{i,j=1}^N s_i s_j$$

(choosing the kind of interaction, we specify the energy model)

Ising model on a lattice

lattice containing N sites

lattice site *i* has associated with it a number s_i , where $s_i = +1$ for an "up" (\uparrow) spin and $s_i = -1$ for a "down" (\downarrow) spin. A particular configuration or microstate of the lattice is specified by the set of variables $\{s_1, s_2, \ldots, s_N\}$ for all lattice sites.

Lowest energy state of the 2D Ising model on a square lattice with ferromagnetic (J>0) and antiferromagnetic (J<0) interactions. Solid and open circles correspond to +1 and -1 spins, respectively.

lsing model: interesting quantities

Ising model: energy

lattice containing N sites No external magnetic field:

$$E = -J \sum_{i,j=nn(i)}^{N} s_i s_j$$

(nn=nearest neighbor)

Energy in presence of an external magnetic field:

$$E = -J \sum_{i,j=nn(i)}^{N} s_i s_j - H \sum_{i=1}^{N} s_i,$$

or, better, define an average energy per spin: E/N

Ising model: magnetization

$$M = \sum_{i=1}^{N} s_i$$

"Order parameter": total magnetization, or -betteraverage magnetization per spin:

$$m = \frac{M}{N} = \frac{1}{N} \sum_{i=1}^{N} s_i$$

 $-1 \le m \le +1$

Ising model: configurations and energy

 2^n different configurations for *n* spins.

(microstates)

e.g. $2^4 = 16$ spin configurations for 2x2 lattice

++ --+ - - + + -

+ + + + + + - - - - - + + + + + + + - - -

For J > 0 the state of lowest energy is when all the spins are aligned. The state has macroscopic magnetization (ferromagnetic).

The ground state energy per spin

(ferromagnetic case, thermodynamic limit (N large), no ext. field) is: $E_0/N = -2J$

Ising model: dynamics?

Beside an energy model, we must define a dynamics in order to simulate the evolution of the system (i.e. to generate the trajectory in the phase space, to generate the configurations of the Markov chain)

Ising model: spin flip dynamics

Consider *nn* interactions, choose a random spin and flip it: it's **a new configuration**

(a microstate)

Apply **Metropolis Monte Carlo** method for evolution in the **canonical ensemble** (fix T). Evolution is driven by the **energy change** between the old and the new configuration, ΔE . Remark: Is it sufficient to calculate only ΔE , not E at each new configuration!

The five possible transitions of the Ising model on the square lattice with spin flip

Ising model: boundary conditions

Of course we cannot simulate an infinite system (the thermodynamic limit). We have two choices for the simulation cell:

- free (open) boundary conditions
- periodic boundary conditions (PBC)

Ising model: free boundary conditions

in a N=LxL spin lattice there are 2L(L-1) nn interactions; for the ferromagnetic g.s. configuration, for instance, the energy is:

| | | + + + + | | | |
|------------|--------------------|---------------------|-----|---------------------------|----------------|
| | + + + | + + + + | | | |
| + + | + + + | + + + + | | | |
| + + | + + + | + + + + | | | |
| $E_0/N=-J$ | $E_0/N = -(12/9)J$ | $E_0/N = -(24/16)J$ | ••• | $E_0/N = -J \times 2L(1)$ | $L-1)/L^2$ |
| | | | | $= -2J \times (1 - 2J)$ | 1/L) |
| | | | | × 1 | |
| | | | | (volume term) | (surface term) |

Energy per spin in the ground state converges to the value $E_0/N = -2J$ in the thermodynamic limit (with deviations ~1/L)

Ising model: PBC

The energy is a 2N-term sum: each spin interacts with its NN within the simulation cell or with the NN images

One of the 2^N possible configurations of a system of N = 16 Ising spins on a square lattice. with periodic boundary conditions.

Ising model: PBC

We have always:

 $2^4 = 16$ spin configurations for 2x2 lattice_N

but the energy for each configuration in case of free boundary conditions and PBC is different:

| ♯ of spins UP | Degeneracy | Energy | Magnetisation |
|---------------|------------|--------|---------------|
| 4 | 1 | -8J | 4 |
| 3 | 4 | 0 | 2 |
| 2 | 4 | 0 | 0 |
| 2 | 2 | 8 J | 0 |
| 1 | 4 | 0 | -2 |
| 0 | 1 | -8J | -4 |

Energy and magnetization of 16 configurations of the 2×2 Ising model with PBC

Energy per spin in the ground state is always equal to the value $E_0/N = -2J$ in the thermodynamic limit

Ising model: phase transition

Low T: spin configuration minimizes energy (if J>0: spins tend to align => high (absolute) magnetization)

High T: spin configuration maximizes entropy (=disorder) (spins tend to disalign => low magnetization)

T_c

Т

<|M|>

existence of a Critical temperature Tc in 2D the model has an analytical solution:

Tc = 2.269 J/k_B

Apply **Metropolis Monte Carlo** method for evolution in the **canonical ensemble** (fix T):

Fluctuations! do, as usual, temporal averages: <M>/N, <E>/N

Magnetisation as a function of the temperature for the 2D Ising model.

(data collected during time evolution, at equilibrium)

Ising model: phase transition

and also the energy fluctuates during time evolution...

Ising model: fluctuations

Fluctuations are intrinsic to the system evolution and are important! Linear response functions are related to equilibrium fluctuations:

(already proved):
$$C = \frac{\partial \langle E \rangle}{\partial T}$$
, $C = \frac{1}{kT^2} \left(\langle E^2 \rangle - \langle E \rangle^2 \right)$

but also:
$$\chi = \lim_{H \to 0} \frac{\partial \langle M \rangle}{\partial H}$$
, $\chi = \frac{1}{kT} (\langle M^2 \rangle - \langle M \rangle^2)$

where $\langle M \rangle$ and $\langle M^2 \rangle$ are evaluated in zero magnetic fields.

Ising model: fluctuations and phase transition

Rapid change in <E> and <M> => singularities in C and χ

(Large fluctuations near the phase transition: Second Order phase transition)

specific heat:

$$C = \frac{\partial \langle E \rangle}{\partial T}$$

magnetic susceptibility:

Implementing the Ising model in the code

Implementing the Ising model

on a 2D square lattice in the canonical ensemble

zero-field, nearest neighbor interactions only

$$\mathcal{H}^{spin} = -J \sum_{i,j=1}^{N} s_i s_j \qquad s_i = \pm 1$$

Input parameters are:

- L (linear lattice dimension, which gives the number of spins: N=L*L)
- *nmcs* (number of total MC steps per spin)
- *nequil* (number of equilibration MC steps per spin)
- T (temperature of the thermal bath).

Implementing the Ising model

program ising

! metropolis algorithm for the ising model on a square lattice use common

```
integer :: imcs,ispin,jspin
```

```
real (kind = double), dimension(5) :: cum
```

```
call initial(nequil,cum)
```

```
! equilibrate system
```

```
do imcs = 1,nequil
```

```
call metropolis()
```

```
end do
```

```
! accumulate data while updating spins
```

```
do imcs = 1,nmcs
```

```
call metropolis()
```

```
call data(cum)
```

```
end do
```

```
call output(cum)
```

••••

```
• • • • •
```

```
end program ising
```

Ising model on a lattice

- L : linear lattice dimension
- N = LxL : number of spins
- **a configuration** (a microstate) is the whole sequence of spins, i.e. the LxL array spin(x,y)

```
module common
```

```
••••
```

integer, public, dimension(:,:), allocatable :: spin

```
subroutine initial(nequil,cum)
```

```
allocate(spin(L,L))
```

```
spin(x,y) = 1
else
spin(x,y) = -1
```

$$s_i = \pm 1$$

Ising model: magnetization

Total magnetization, or define an average magnetization per spin:

(Instead of the loop over x,y: M=sum(spin))

Ising model: energy

$$E = -J \sum_{i,j=nn(i)}^{N} s_i s_j + \cdots + + +$$

$$! \text{ compute initial energy}$$

$$E = 0.0_double$$

$$do y = 1,L$$

$$.....$$

$$do x = 1,L$$

$$.....$$

$$sums = spin(x,up) + spin(right,y)$$

$$! \text{ calculate the initial energy summing all over pairs}$$

$$! (for a given spin, consider only the up NN and the right NN$$

$$! - NOT the down and the left NN - : each interaction is counted once$$

$$E = E - spin(x,y) * sums$$
end do
end do

Ising model: energy with PBC

```
do y = 1, L
         periodic boundary conditions
       if (y == L) then
         up = 1
       else
         up = y + 1
      end if
       do x = 1, L
          if (x == L) then
             right = 1
          else
             right = x + 1
          end if
          sums = spin(x,up) + spin(right,y)
! calculate the initial energy summing all over pairs
 (gor a given spin, consider only the up NN and the right NN
! - NOT the down and the left NN - : each interaction is counted once
         E = E - spin(x,y) * sums
      end do
   end do
```

Ising model: spin flip dynamics

Choose a random spin and flip it: it's **a new configuration** (a microstate)

do ispin = 1,N
! random x and y coordinates for trial spin
call random_number(rnd)
x = int(L*rnd) + 1
call random_number(rnd)
y = int(L*rnd) + 1
....
Flip is:
$$spin(x,y) = -spin(x,y)$$

but do it later, only if you decide to accept the flip (according to Metropolis)

Ising model: energy variations per spin flip

Evolution is driven by the **energy change** between the old and the new configuration (Metropolis MC)

dE = DeltaE(x,y) \leftarrow energy variation for spin(x,y) flip call random_number(rnd) if (rnd <= w(dE)) then \leftarrow w(dE) is $e^{-\Delta E/k_BT}$ spin(x,y) = -spin(x,y) accept = accept + 1

function DeltaE(x,y) result (DeltaE_result)
.....
DeltaE_result = 2*spin(x,y)*(left + right + up + down)
.....

Energy variations per spin flip with PBC

Ising model: storage of Boltzmann's coeff.

Convenient to store the Boltzmann's coefficient for these discrete values of energy variations

Ising model: updating energy and magnetization

```
subroutine metropolis()
     one Monte Carlo step per spin
  do ispin = 1, N
                                              DO NOT CALCULATE
  ....
                                             EVERYTHING FROM THE
     dE = DeltaE(x,y)
                                                    SCRATCH!!
     call random_number(rnd)
     if (rnd <= w(dE)) then
        spin(x,y) = -spin(x,y)
        accept = accept + 1
        M = M + 2*spin(x,y) ! factor 2 is to account for the variation:
E = E + dE ! (-(-)+(+))
     end if
                                 \Delta E is already a variation
  end do
end subroutine metropolis
```

Spin flip dynamics: how to choose spin to flip? Random ... do ispin = 1,N! random x and y coordinates for trial spin call random_number(rnd) \leftarrow 1 < x < L x = int(L*rnd) + 1call random_number(rnd) y = int(L*rnd) + 1- 1 < y < L

or ordered (sequential) ... do x = 1,Ldo y = 1,L

. . .

$$spin(x,y) = -spin(x,y)$$

Spin flip dynamics: how to choose spin to flip?

- ORDERED: in some cases, it could go more slowly towards equilibrium (see later: correlation time), but it depends...
- NO appreciable differences in the statistics at equilibrium

Measuring physical quantities: how to accumulate data?

subroutine data(cum)

! accumulate data after every Monte Carlo step per spin real (kind = double), dimension(5), intent (inout) :: cum cum(1) = cum(1) + E cum(2) = cum(2) + E*E cum(3) = cum(2) + M*E cum(4) = cum(4) + M*M cum(5) = cum(5) + abs(M) end subroutine data

After one MC step per spin for all spins:

```
do imcs = 1,nmcs
   call metropolis() contains the loop over all the spins
   call data(cum)
end do
```

Alternatively, do it after each MC step per individual spin...

Measuring physical quantities: how to accumulate data? Further remarks...

- Use statistically INDEPENDENT configurations
- Calculate therefore the CORRELATION TIME by considering the autocorrelation functions: $C_M(t) = \langle M(t)M(0) \rangle - \langle M \rangle^2, \quad C_E(t) = \langle E(t)E(0) \rangle - \langle E \rangle^2$ $(C_M(0) \propto \chi, \quad C_E(0) \propto C_V)$

 $C_M(t) \to 0$ and $C_E(t) \to 0$ exponentially for $t \to \infty$ with a certain decay time τ : consider intervals longer than τ for statistical averages

(NOTE: "critical slowling down" for $T \to T_C$)

Measuring physical quantities: how to accumulate data? Further remarks...

- see also CORRELATION LENGTH between magnetic domains, $\zeta(T)$
- close to T_c, also the correlation length increases (spin alignments are more correlated), up to divergence

Measuring physical quantities: which errors?

- necessary to give the ERROR ESTIMATE corresponding to the measured physical quantity !!!
- (see Tab. 1 of D.P. Landau, PRB 13, 2997 (1976), "Finite size behavior of the Ising square lattice")
- do also BLOCKING (called "coarse grained technique" in that paper)

How to do efficiently simulations as a function of T?

- Sometimes EQUILIBRATION time is long...
- IDEA: for T' close to T, choose as starting point the equilibrated output of T

Ising model: size problems

We cannot simulate an INFINITE system!

The temperature dependence of the specific heat C (per spin) of the Ising model

Ising model: size problems

INTERFACE EFFECTS: example of energy for HALF UP/HALF DOWN configurations:

- L=2 E= 0
- L=4 E=-I
- L=8 E=-1.5
- L=16 E=-1.75
- L=20 E=-1.8

L=32 E=-1.875

for an infinite system: E=-2
 We have a ("interface") term proportional to I/L

Ising model: alternative dynamics

- in the SPIN FLIP dynamics the order parameter is not conserved (M changes during evolution)
- alternative: NN spin exchange (Kawasaki dyn.) (exchange two NN spins picked at random; M is conserved; this is equivalent to LATTICE GAS MODELS with fixed number of particles)

Ising model: Kawasaki dynamics

Fixed magnetization : change of thermodynamical ensemble

No modification of the equilibrium properties

except phase separation

T=10, starting from random configuration

By HeMath - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=37327967

Ising model: other generalizations

- SPINS: XY, Heisenberg, Potts...
- LATTICES: Square, Triangle, Cubic, Honeycomb, Kagome....
- INTERACTIONS: Magn. Field, Antiferrom., Next Nearest Neighbor (NNN)....

Universality and critical exponents Reduced temperature : $\Delta T = (T - T_c)/T_c$

$$C \sim |\Delta T|^{-\alpha}$$

 $\langle M \rangle \sim |\Delta T|^{\beta} \text{ for } \Delta T < 0$
 $\chi \sim |\Delta T|^{-\gamma}$
 $\xi \sim |\Delta T|^{-\nu}$

on **\$/home/peressi/comp-phys/IX-ising/** [do: \$cp /home/peressi/.../IX-ising/* .]

ising.f90

Exercise

(a) Choose L=30, T=2, and initially spin= ± 1 randomly. Calculating and plotting the energy < E >/N and the magnetization < M >/N per particle as a function of Metropolis-MC steps, how much time (i.e. how many *nequil* MC steps) is it necessary to equilibrate the system?

Hint:

- Since initially spin= ± 1 randomly, E/N and M/N initially will be far from the expected equilibrium average value.

First, set nequil=0 and plot instantaneous values of E/N and M/N.

Estimate *nequil* from that plot!!! Visualization is important!!!!

nequil of course depends on T and on the initial situation

Then, set *nequil* not zero and calculate the time average < E >/N and < M >/N; increasing the total *nmcs*, the two quantities should converge...

Exercise

(a) Choose L=30,T=2, and initially spin=±1 randomly....

Plot a snapshot of the spin pattern: does the system appear ordered or disordered?

it should appear **ordered...**

p 'ising-up.dat' ps 3 pt 7,'ising-down.dat' ps 3 pt 7

Plotting "ising-up.dat" and "ising-down.dat" which contain the coordinates of spin up and down respectively, one should get something like that:

Calculate also c and χ .

Exercise

- (a) Choose L=30,T=2, and initially spin=±1 randomly....
- Calculate also c and χ .
- (b) Choose T=I and repeat (a)...

Raw data: traces, covariance and autocorrelation time

Trace: magnetization for $T = 2.27 J/k_B \approx T_C$ (10⁵ sweeps)

Computer simulations in statistical physics - HW 4 → WS 2006/07 → Nils Blümer (Univ. Mainz)

 $\triangleleft \quad \longleftrightarrow \quad \bigtriangleup \quad \vartriangleright \quad 17$

Magnetization (10^5 sweeps)

Energy (10^5 sweeps)

Magnetic susceptibility (10^5 sweeps)

Magnetic susceptibility near T_c (10⁶ sweeps)

Specific heat (10^5 sweeps)

Specific heat near T_c (10⁶ sweeps)

Ising E 1925 Zeitschrift fur Physik 31 253–258

Bethe H 1931 Zeitschrift fur Physik 71 205

Heisenberg W 1928 Zeitschrift fur Physik 49 205