
M. Peressi - UniTS - Laurea Magistrale in Physics
Laboratory of Computational Physics - Unit X

  

- Lattice gas : diffusion
- Diffusion Limited Aggregates

- Surface growth models
- Percolation

...

Lattice gas models



Random Walks
Dependence of                on      :

• normal behavior:                                                                              
for the brownian motion

• superdiffusive behavior:                      with              
in models where self-intersections are unfavored              

• subdiffusive behavior                           with               
in models where self-intersections are favored

〈R2(t)〉 t

〈R2(t)〉 ∼ t

〈R2(t)〉 ∼ t
2ν

ν > 1/2

ν < 1/2

〈R2(t)〉 ∼ t
2ν

 t (time)       N (number of steps);  t = N Δt



RW and diffusion
• consider the normal behaviour: 〈R2(t)〉 ∼ t

We define the autodiffusion coefficient: 

D(t) =
1

2dt
〈∆R(t)2〉

where d  is the dimensionality of the system; 
for large t, D should go asymptotically to a constant value

For d=1: 〈R2
N
〉 = N!2

D = 1

2dt
〈∆R(t)2〉 = N!

2

2t
= 1

2∆t
!2

(constant, in this case)

for large t,



RW and diffusion in 1D
The probability that a RW of N steps (N large) ends at position x is given by:

PN (x) =

r
2

⇡N

exp

✓
� x

2

2N

◆

Considering that t = N�t, defining D =

`

2

2�t

, and measuring x in units of `, we get:

P (x, t) =

r
1

⇡Dt

exp

✓
� x

2

4Dt

◆

which is the fundamental solution of the di↵usion equation, a part from a factor of 2 in the

normalization due to the spatial discretization. The continuum solution is:

P (x, t) =

r
1

4⇡Dt

exp

✓
� x

2

4Dt

◆

i.e., a Gaussian distribution with �

2
= 2Dt which describes a pulse gradually decreasing in

height and broadening in width in such a manner that its area is conserved.

=

1

2

�

2

=

1

8�

2

@⇢

@t

= r
8
><

>:

X, Y uniformly distributed in [�1,1];

take (X,Y ) only within the unitary circle;

) R

2
= X

2
+ Y

2
is

uniformly distributed in [0,1]

x =

p
�2 lnR

2
X

R

= X

p
�2 lnR

2
/R

2

1



RW and diffusion on a 3D lattice
Discretized model:
if 1 step = move by 1 bond lenght, 
we expect:

RMS =

√

〈R2

N
〉 =

√
N dNN

fcc : dNN = a0

√

2

2
= 0.71a0

bcc : dNN = a0

√

3

2
= 0.87a0

sc : dNN = a0

fcc bcc sc

(A
ng

st
ro

m
)

(number of steps)

(=> D depends on the structure of the lattice)



Example of diffusion in solids

saddle-point plane
(a)

diha0

(b)

saddle-point plane

Direct exchange:

Vacancy assisted diffusion:

SUBSTITUTIONAL 
IMPURITIES

INTERSTITIAL 
IMPURITIES



Vacancies diffusion in solids

vacancies themselves can diffuse!



... but typically:
more than one single interstitial, 
more than one single impurity,

or more than one single vacancy....

A SIMPLE RW MODEL
IS NOT ENOUGH!



Lattice Gas model

7.4. Lattice gas

Consider a finite lattice with some density � of Np particles. The particles can move on the lattice
by jumps to the nearest sites, but two particles can not occupy the same site. This is a simple
example of a restricted random walk (see above). The physical interpretation is e.g. vacancies
moving in a lattice.

To simulate this kind of system, we need a bit more of an advanced approach than before. First of
all, we need to simulate the motion of all the particles at the same time, not taking the average
over many independent single-particle motions as was done before.

To be able to meet the criterion that two particles should not occupy the same site, we can do
two things. One is to make an array which contains all possible lattice sites. The other is to, at
each move, find the distance to all other particles and check that no one occupies the site to be
moved to. In case the lattice is small enough to fit the available computer memory using the former
solution is much easier and faster.

In case a particle jumps on average after every time �t, then if we have Np particles we should

7.27 Monte Carlo simulations, Kai Nordlund 2002, 2004

interaction  !



2D Lattice Gas model
1⇥ Choose number of particles Np, number of steps Nsteps, side length L. Set �t and

lattice size a.
2⇥ Set all positions in the L � L grid to be empty

3 a⇥ Generate Np particle coordinates randomly on the grid, checking that no two particles
end up on the same points.

3 b⇥ Mark the points with the particles in the L � L grid as filled.

4⇥ Loop over MC steps of time �t

5⇥ Loop from 1 to Np

6⇥ Pick one particle i at random

7⇥ Find which positions it can jump to. If none, return to step 6⇥

8⇥ Let the particle jump to one of the allowed directions j by a displacement
xi = xi + �xj, yi = yi + �yj, enforce periodic boundaries on x and y

9⇥ Set dxi = dxi + �x, dyi = dyi + �x (where periodic boundaries do not play
a role!)

10⇥ End loop from 1 to Np

11⇥ Update time t = t + �t

12⇥ End loop over MC steps

13⇥ Output ⇤�R2⌅ = ⇤dx2
i + dy2

i ⌅ and calculate di�usion coe⇤cient.
7.30 Monte Carlo simulations, Kai Nordlund 2002, 2004

D(t) =
1

2dt
〈∆R(t)2〉

(our old !)

(*)

average over the particles



Lattice Gas model

• find which nearest neighbor sites are free 
and jump in one of them randomly chosen 
(if any) (this is actually mentioned in the 
previous slide and implemented in the code 
we are going to discuss)     OR

• choose randomly one nearest neighbor site 
and jump only if it is free

Different dynamics can be implemented, for instance:

Different dynamics => different behavior with concentration

(*)



Lattice Gas model

The crucial di�erence here to the previous random walk algorithms is that the outer loop goes
over MC steps, the inner one over particles. When the walkers are independent of each other
(“non-interacting”) we can deal with one walker at a time, saving memory since storage of all
particles is not needed.

How to do this in practice is illustrated in the Fortran90 code below. It gives out the di�usion
constant D as the final answer, having reasonable values of 1 ns for the average jump time and 2
Å for the jump distance.

Note that this program fails for large numbers of particles using the Park-Miller “minimal
standard” random number generator. In that case, the di�usion coe⇤cient will keep growing
instead of stabilizing at large times. The code below used the Mersenne twister, the Fortran version
available from the course home page. (Yes, I did find this out the hard way, spending almost an
entire Sunday debugging my code before I realized the random number generator was the culprit!)

! To compile use e.g.
! for Linux/Absoft Fortran:
! f90 -O -o randomwalk_latticegas randomwalk_latticegas.f90 -lU77 -lfio
! For Alphas with Compaq Fortran:
! f90 -O -o randomwalk_latticegas randomwalk_latticegas.f90
!

7.31 Monte Carlo simulations, Kai Nordlund 2002, 2004

But here the walkers (the particles) are “interacting”



on 
$/home/peressi/comp-phys/X-latticegas-fract/  
[do: $cp /home/peressi/.../X-latticegas-fract/* .]
or on moodle2

latticegas.f90
dla2d.f90
eden.f90

Programs: 



  ...
  logical,allocatable::lattice(:,:) ! (occ./non occ.=.true./.false.)
  integer,allocatable::x(:),y(:)    ! istantaneous positions
  double precision, allocatable :: dx(:),dy(:) !displ. from beginning
  integer :: free(4),nfree          ! occupation of nearest neighbors
  integer :: dxtrial(4),dytrial(4)  ! trial move on the square latt.
  integer :: xnew(4),ynew(4)        ! 4 new possible pos. in SQ latt.
  
   .....
  allocate(lattice(0:L-1,0:L-1))   
  allocate(x(Np),y(Np)) !  
  allocate(dx(Np),dy(Np)) 

   ...
  lattice = .false.         ! Mark all positions as empty 

   ...
 ! Enumerate directions: 1=right; 2=left; 3=up; 4=down 
  dxtrial(1)=+1; dytrial(1)= 0;   
  dxtrial(2)=-1; dytrial(2)= 0;   
  dxtrial(3)= 0; dytrial(3)=+1; 
  dxtrial(4)= 0; dytrial(4)=-1;

Implementation of the model (latticegas.f90)



! INIZIALIZE THE LATTICE : Generate Np particles on LxL lattice 
  do i=1,Np 

     do ! Loop until empty position found,  UNBOUNDED LOOP!
        call random_number(rnd)    !which has dimension(2)
        x(i)=int(rnd(1)*L)
        y(i)=int(rnd(2)*L)
        if (lattice(x(i),y(i))) then
           ! Position already filled, loop to find new trial 
           cycle   !REMEMBER: JUMP AT THE END OF THIS LOOP (NOT EXIT)
        else
           lattice(x(i),y(i))=.true. 
           !  Successful, place next particle  
           exit
        endif
     enddo
     dx(i)=0.0d0; dy(i)=0.0d0; 
  
  enddo



! MONTE CARLO LOOP

 do istep=0,Nsteps-1 ! Loop over MC steps
     do isubstep=1,Np ! Move all particles on ave. once every MC step
        ! Pick one particle at random 
        call random_number(rnd1)
        i=int(rnd1*Np)+1  ! 1 =< i =<  Np;

   ! Find possible directions (j=1,...,4) for moving, store them                   
in free() ... (NOTE: different possible recipes !!!)

     ! If no free positions, get a new particle ; otherwise choose     
     ! one possible direction (j) and update (x,y) with (xnew,ynew):
         ......
        !Empty  old  position  and  fill  new
        lattice(x(i),y(i))=.false. 
        lattice(xnew(j),ynew(j))=.true.

     enddo
     t=t+deltat  
 enddo



Another fundamental part (look at it!):
calculation of distance from initial pos. for each particle

(do not use PBC for that, remember!),
accumulation of data...

! Get total displacement from dx,dy 
dxsum=0.0d0; dysum=0.0d0; 
dxsqsum=0.0d0; dysqsum=0.0d0; 
do i=1,Np
dxsum=dxsum+dx(i);!  dysum=dysum+dy(i);
dxsqsum=dxsqsum+dx(i)*dx(i);           
dysqsum=dysqsum+dy(i)*dy(i); 
enddo
print *,’dxsum’,dxsum,’ dysum’,dysum 
print *,’dxsqsum’,dxsqsum,’ dysqsum’,dysqsum



print *,’At’,t,’ drsqave’,drsqave*a*a,’ D’,D,’ cm^2/s’

end program randomwalk_latticegas

((After this the Mersenne twister source code should follow.
In that code, you have to change the comment character from
‘‘*’’ to the Fortran90 ‘‘!’’.))

This will be animated during the lecture.

[[Lecturers own reminder on animation, reader can ignore:

cd opetus/mc/tests/randomwalk
f90 randomwalk_latticegas_output.f90 -lU77
a.out 100 2 20 12278 | grep "^ P" | dpc msleep 100 x -1 21 y -1 21 m 1 d 21 sd 440 440 erase 2 3 4 5 _

and then increase second argument.]]

And here is a series of results:

Np L Np/L^2 D (cm^2/s) nfail njumps
--- ---- ------ ------------- -------- --------
10 100 0.001 9.769973881166823E-008 0 10000000
10 100 0.001 1.127346430730184E-007 0 10000000
100 100 0.01 1.028685543050629E-007 0 10000000
100 100 0.01 9.469519884885580E-008 0 10000000

7.38 Monte Carlo simulations, Kai Nordlund 2002, 2004

10000 1000 0.01 9.899003879678247E-008 0 10000000
1000 100 0.1 9.111043889255736E-008 292 9999708
1000 100 0.1 9.427090885414200E-008 279 9999721
100000 1000 0.1 9.403952985695557E-008 3127 99996873
3000 100 0.3 8.284148565973272E-008 109626 29890374
3000 100 0.3 7.915751903784448E-008 110196 29889804
6000 100 0.6 5.895798261670045E-008 1152902 10847098
6000 100 0.6 5.913229928124830E-008 1154808 10845192
9000 100 0.9 1.771291645136659E-008 11574471 6425529
9000 100 0.9 1.786338311620434E-008 11571431 6428569
900000 100 0.9 1.824779088931029E-008 57886778 32113222
9900 100 0.99 1.831247452488705E-009 19013835 786165
9900 100 0.99 1.860272704661156E-009 19015892 784108

What does this mean? At small concentrations, the system behaves essentially as an unconstrained
random walk. For that one, we know that ⇤�R2⌅ should be equal to a2N , where N is the number
of steps, and a is the jump distance, and the result for the di�usion coe⇥cient should be

D =
⇤�R2⌅

4t
=

(2 Å)2N

4N�t
=

(2 Å)2

4⇥ 1 ns
= 10�7 cm2

s

which is exactly what we get, within the uncertainty. But for larger concentrations, the number
of failed jumps starts to grow, which reduces the di�usion coe⇥cient. It is interesting to note,

7.39 Monte Carlo simulations, Kai Nordlund 2002, 2004

10000 1000 0.01 9.899003879678247E-008 0 10000000
1000 100 0.1 9.111043889255736E-008 292 9999708
1000 100 0.1 9.427090885414200E-008 279 9999721
100000 1000 0.1 9.403952985695557E-008 3127 99996873
3000 100 0.3 8.284148565973272E-008 109626 29890374
3000 100 0.3 7.915751903784448E-008 110196 29889804
6000 100 0.6 5.895798261670045E-008 1152902 10847098
6000 100 0.6 5.913229928124830E-008 1154808 10845192
9000 100 0.9 1.771291645136659E-008 11574471 6425529
9000 100 0.9 1.786338311620434E-008 11571431 6428569
900000 100 0.9 1.824779088931029E-008 57886778 32113222
9900 100 0.99 1.831247452488705E-009 19013835 786165
9900 100 0.99 1.860272704661156E-009 19015892 784108

What does this mean? At small concentrations, the system behaves essentially as an unconstrained
random walk. For that one, we know that ⇤�R2⌅ should be equal to a2N , where N is the number
of steps, and a is the jump distance, and the result for the di�usion coe⇥cient should be

D =
⇤�R2⌅

4t
=

(2 Å)2N

4N�t
=

(2 Å)2

4⇥ 1 ns
= 10�7 cm2

s

which is exactly what we get, within the uncertainty. But for larger concentrations, the number
of failed jumps starts to grow, which reduces the di�usion coe⇥cient. It is interesting to note,

7.39 Monte Carlo simulations, Kai Nordlund 2002, 2004

1 MC step = 1 ns

unit step length = 2 Å

Here:  2d example

concentration

0

Concentration dependent diffusion coefficient



3.2 Studio del valore medio di D a densità fissa

Figura 2: Dipendenza temporale di D(t) per N = 2000 ed L = 100. Si vede che dopo circa 100 unità
di tempo il sistema diventa stabile e D(t) assume un comportamento oscillatorio attorno al suo valore
medio (qui D = 0.22032815). Analoghe oscillazioni, sebbene di ampiezza variabile, si riscontrano per
tutti gli altri valori di N presi in considerazione.

Ho arbitrariamente fissato il valore t = 100 come punto in cui calcolare D per diversi valori della
larghezza del reticolo (L = 20, 30, 40, 50, 60). Per ciascun valore di L ho eseguito la simulazione 1000
volte. Il risultato di queste prove è un insieme di 1000 valori di D(t = 100) per ogni L, la cui
distribuzione è riportata nel seguente istogramma.

Figura 3: Distribuzione di D per t = 100 per L = 20, 40, 60.

5

this is D(t) (averaged over particles); 
calculate it for t → ∞

(1.a) Study D(t) for a fixed value of ρ, for instance 0.2.  Although D is 
defined as the limit t → ∞, it is instructive to follow D(t) as a function of 
time: for this model, it fluctuates after a short equilibration time and no 
appreciable improvements in the statistics are achieved by increasing t.

Discussing Ex. 1



3.2 Studio del valore medio di D a densità fissa

Figura 2: Dipendenza temporale di D(t) per N = 2000 ed L = 100. Si vede che dopo circa 100 unità
di tempo il sistema diventa stabile e D(t) assume un comportamento oscillatorio attorno al suo valore
medio (qui D = 0.22032815). Analoghe oscillazioni, sebbene di ampiezza variabile, si riscontrano per
tutti gli altri valori di N presi in considerazione.

Ho arbitrariamente fissato il valore t = 100 come punto in cui calcolare D per diversi valori della
larghezza del reticolo (L = 20, 30, 40, 50, 60). Per ciascun valore di L ho eseguito la simulazione 1000
volte. Il risultato di queste prove è un insieme di 1000 valori di D(t = 100) per ogni L, la cui
distribuzione è riportata nel seguente istogramma.

Figura 3: Distribuzione di D per t = 100 per L = 20, 40, 60.

5

size effect in the determination of D (concentration ρ fixed)!
(more later)

A usually, we can estimate the statistical error 
associated to the estimate of D 

(here: histogram done collecting data in the time evolution of D(t))



D(t)
and 

<D(t)>

5 runs

ΔR2(t)
and 

expected 
behavior

Np=200, 80x80 Np=50, 40x40 Np=13, 20x20

(I.1) ... Better statistics for D can be obtained by averaging D over as many 
particles as possible (i.e., for a given ρ)...  Here ρ=0.03

(we expect the limit of the simple 2D RW on a square lattice, with D=0.25)

(<D(t)> is also
time averaged) 



σ2D  proportional to 1/Np

Ex. 1 (...) Verify that deviations of D(t) from its mean value are proportional to the 
inverse square root of the total number of particles.



Concentration dependent 
diffusion coefficient

however, that the di�usion coe⇥cient and number of failed jumps do not follow an obvious linear
dependence, so doing the MC simulation really is worthwhile.

Here is still a plot of D(�), where � is the particle concentration.

7.40 Monte Carlo simulations, Kai Nordlund 2002, 2004



Addition of further interactions
Attractive (J>0) nearest-neighbor (NN) interaction only: 
total energy of the system:

you can limit the number of Monte Carlo steps so that ⇧�R(t)2⌃ is less
than (L/2)2.
⇤(Check whether D(t) ⇥ constant for t ⇥⇤)
Verify that deviations of D(t) from its mean value are proportional to the
inverse square root of the total number of particles.

3. Consider now the case in which an attractive nearest-neighbor (NN) bet-
ween impurities interaction exists, giving a total energy of the system:

E = �J

2

X

hiji

ninj

where ⇧ij⌃ are NN pairs; 1/2 avoid double counting; you can set J=1
considering to measure the energy is units of J and temperature in units
of J/kb. First, set T=0. For the same value of � fixed above, calculate
again D. It is interesting to make a snapshot (after the equilibration) of
the particle distribution on the lattice in this case and compare with the
non-interacting case (J=0).

4. A possible improvement is to include also next-nearest neighbor (NNN)
interactions, that are typically repulsive:

E = �1
2

X

hiji

Jijninj

where now Jij is di⇥erent for NN and NNN. It is useful to use R =
JNNN/JNN , < 0 to express the NNN interaction. Choose R=�1/2. Cal-
culate again D at T=0. Also in this case it’s interesting to make a snapshot
of an equilibrium configuration. Notice that (4) reduces to (3) for R=0,
so that you could implement directly this case.

5. Only if time permits, study also (3) and (4) in the case T ⌅=0, e.g. T=2.

2

=> Trend to aggregation (diffusive behavior is limited to a 
transient)

Add a repulsive (J<0) next-nearest-neighbor (NNN) 
interaction: total energy of the system:

you can limit the number of Monte Carlo steps so that ⇧�R(t)2⌃ is less
than (L/2)2.
⇤(Check whether D(t) ⇥ constant for t ⇥⇤)
Verify that deviations of D(t) from its mean value are proportional to the
inverse square root of the total number of particles.

3. Consider now the case in which an attractive nearest-neighbor (NN) bet-
ween impurities interaction exists, giving a total energy of the system:

E = �J

2

X

hiji

ninj

where ⇧ij⌃ are NN pairs; 1/2 avoid double counting; you can set J=1
considering to measure the energy is units of J and temperature in units
of J/kb. First, set T=0. For the same value of � fixed above, calculate
again D. It is interesting to make a snapshot (after the equilibration) of
the particle distribution on the lattice in this case and compare with the
non-interacting case (J=0).

4. A possible improvement is to include also next-nearest neighbor (NNN)
interactions, that are typically repulsive:

E = �1
2

X

hiji

Jijninj

where now Jij is di⇥erent for NN and NNN. It is useful to use R =
JNNN/JNN , < 0 to express the NNN interaction. Choose R=�1/2. Cal-
culate again D at T=0. Also in this case it’s interesting to make a snapshot
of an equilibrium configuration. Notice that (4) reduces to (3) for R=0,
so that you could implement directly this case.

5. Only if time permits, study also (3) and (4) in the case T ⌅=0, e.g. T=2.

2

R = JNNN/JNN=> The behavior depends on the ratio 

With finite NN and/or NNN interactions, temperature plays a role



Other models related 
to random walks

- diffusion limited aggregated (DLA)
- percolation



Diffusion Limited Aggregation

Electrodeposition:
cluster grown from a copper sulfate solution in an 
electrodeposition cell

Dielectric breakdown:
High voltage dielectric breakdown within a block of 
plexiglas

Several examples of formation of natural patterns showing common features:

These common features that can be captured by very simple models:



Diffusion Limited Aggregation
• simple model of FRACTALS GROWTH,  initially proposed for 

irreversible colloidal aggregation, although it was quickly realized that the 
model is very widely applicable.

• by T.A. Witten and L.M. Sander, 1981

REAL IMAGE (Atomic Field 
Microscopy) of a gold colloid 
of about 15 nm over a gel 
substrate

SIMULATION 



DLA: algorithm
* Start with an immobile seed on 
the plane

* A walker is then launched from a 
random position far away and is 
allowed to diffuse

* If it touches the seed, it is 
immobilized instantly and becomes 
part of the aggregate

* We then launch similar walkers 
one-by-one and each of them 
stops upon hitting the cluster

* After launching a few hundred 
particles, a cluster with intricate 
branch structures results 

seed

a walker



DLA: algorithm - details

• We launch walkers from a “launching circle” which 
inscribes the cluster

• They are discarded if they wander too far and go 
beyond a “killing circle”

• The diffusion is simulated by successive displacements in 
independent random directions

• After every step, all particles on the cluster are checked 
to detect any overlapping with the walker which would 
aggregate



DLA: results

DLA: results

(mass M of the cluster = 
number of particles N)

lnN ∝ ln r

⇓

N ∝ rk

r



DLA: interesting quantities
• in a “normal” 2D object: 

• FRACTAL DIMENSION: the number of 
particles       with respect to the maximum 
distance     of a particle of the cluster from 
its center of mass is                  , with  N ∝ r

Df

N

r

N ∝ r
2

1 < Df < 2



DLA: algorithm - details II
• the simplest DLA models: diffusion on a 

lattice. On a square lattice, 4 adjacent 
sites are available for the diffusing particle to 
stick

• It will stick with certain probability (the 
“sticking coefficient”) - to simulate 
somehow the surface tension

• (a bit more complicate models: with a sort 
of Brownian diffusion in a continuous way)



DLA: results

DLA: results

Diffusion-Limited Aggregation http://www.physics.uc.edu/~pinskia/dla/DLA.html

3 of 9 23-11-2005 1:13

to see differences.

Although diffusion limited aggregation1 is a model for crystal growth, it is not necessarily an 
accurate one; it only works in certain limits. The first problem is that diffusion limited aggregation

does not include the effects of surface tension2; one way to include this feature would be to make 
a particle stick with a probability (different from one), called the sticking coefficient. I have included
this effect in my calculations. Another problem with diffusion-limited aggregation as a model for
crystal growth is that particles (or small hunks) cannot detach. Also diffusion-limited aggregation

only simulates the zero-density limit2 since the growth happens one particle at a time, rather than 
with bits containing a few or more particles. A way to fix this problem is to allow multiple
aggregates that also diffuse and break up.

Bibliography

1 T. A. Witten, Jr. and L. M. Sander, Phys. Rev. Lett. 47, 1400 (1981).

2 K. Kassner, Pattern Formation in Diffusion-Limited Crystal Growth (World Scientific, Singapore, 
1996).

3 B. B. Mandelbrot, The Fractal Geometry of Nature (Freeman, New York, 1983).

4 H. Gould and J. Tobochnik, An Introduction to Computer Simulation Methods (Addison-Wesley, 
Reading, 1996).

5 R. J. Gaylord and P. R. Wellin, Computer Simulations with Mathematica®: explorations in the 
physical, biological, and social sciences (Springer-Verlag, New York, 1995).

6 P. Meakin, Phys. Rev. A 27, 1495 (1983).

7 S. R. Forrest and T. A. Witten, Jr., J. Phys. A (1979)
1 < Df = 1.6 < 2



DLA: results

DLA: resultsDiffusion-Limited Aggregation http://www.physics.uc.edu/~pinskia/dla/DLA.html

4 of 9 23-11-2005 1:13

Figure 1. Aggregate on a square lattice with a sticking coefficient of 1.0

Figure 2. Aggregate on a square lattice with a sticking coefficient of 0.5

Diffusion-Limited Aggregation http://www.physics.uc.edu/~pinskia/dla/DLA.html

4 of 9 23-11-2005 1:13

Figure 1. Aggregate on a square lattice with a sticking coefficient of 1.0

Figure 2. Aggregate on a square lattice with a sticking coefficient of 0.5

Diffusion-Limited Aggregation http://www.physics.uc.edu/~pinskia/dla/DLA.html

5 of 9 23-11-2005 1:13

Figure 3. Aggregate on a square lattice with a sticking coefficient of 0.1

Figure 4. Aggregate on a square lattice with a sticking coefficient of 0.01

Diffusion-Limited Aggregation http://www.physics.uc.edu/~pinskia/dla/DLA.html

5 of 9 23-11-2005 1:13

Figure 3. Aggregate on a square lattice with a sticking coefficient of 0.1

Figure 4. Aggregate on a square lattice with a sticking coefficient of 0.01

Df → 2

as the sticking coeff. → 0



Models of surface growth

modello
di Eden

modello di 
deposizione 
casuale

modello di 
deposizione 
balistica

see e.g.  Barabasi & Stanley, Fractal concepts in surface growth, Cambridge University Press



Percolation
geometric connectivity in a stochastic system;
modeling threshold and transition phenomena

existence of a critical  occupation fraction P above which spanning 
clusters occur (in nature: mixtures of conducting/insulating 
spheres...; resistor networks..)



Percolation

L = 8    p = 0.25 L = 8    p = 0.50 L = 8    p = 0.60

The (non trivial) part of the model:
choose a smart algorithm to identify and label the clusters

made of adjacent occupied sites



Percolation

Hoshen- Kopelman algorithm for clusters labeling

(1, 1)
1

2

(1, 2)
1 1

(1, 1)
1

2

(1, 2)
1 1

(3, 4)

(3, 3) 3
2 np

(3, 3) (3, 4) np

(3, 3) np(3) = 2
2 3 3 i np(i)

np(i)

np

L!1

P1 P1 = 0 p < p

c

p p < p

c

P1 p

�

P1(p) ⇠ (p� p

c

)�

P1

S(p)

S(p) ⇠ |p� p

c

|��

�

n

s

s

n

s

⇠ s

�⌧

(1):  span all the cells 
(here:  left => right
and bottom => up) 
and start labeling

(2):  attribute the minimum cluster label 
to cells neighboring to different clusters

(3): refine labeling


