
MICROARRAYS

FASI: estrazione e manipolazione deglia ac nucleici da analizzare, chip, produzione dei microarrays mediante trasferimento dei probes sul chip o per sintesi in situ, sistema di ibridazione al target, scanner per la lettura dei chip, software per la quantificazione e analisi dei risultati.

SINTESI IN SITU dei DNA su vetro con approccio chimico combinatoriale. (oligomeri 10-25 b) DEPOSIZIONE: vetro attivato

- •DNA legato via crosslinking :formazione di legami covalenti fra residui di timidina e cariche positive dell'NH2 del vetro funzionalizzato.possono variare sequenza e lunghezza degli oligo.
- ·Fissazione delle molecole di DNA ad una estremita`⇒DNA carbossilati o fosforillati vengono accoppiati
- · A supporti amminati o il contrario. O oligonucleotidi amino terminali vengono legati a vetri attivati con
- ·Isotiocianato, a vetri "aldeidici"

Microarrays are used as a <u>screening tool</u> because of the <u>high</u> throughput capabilities

Quantitative real-time reverse-transcription PCR (qRT-PCR)

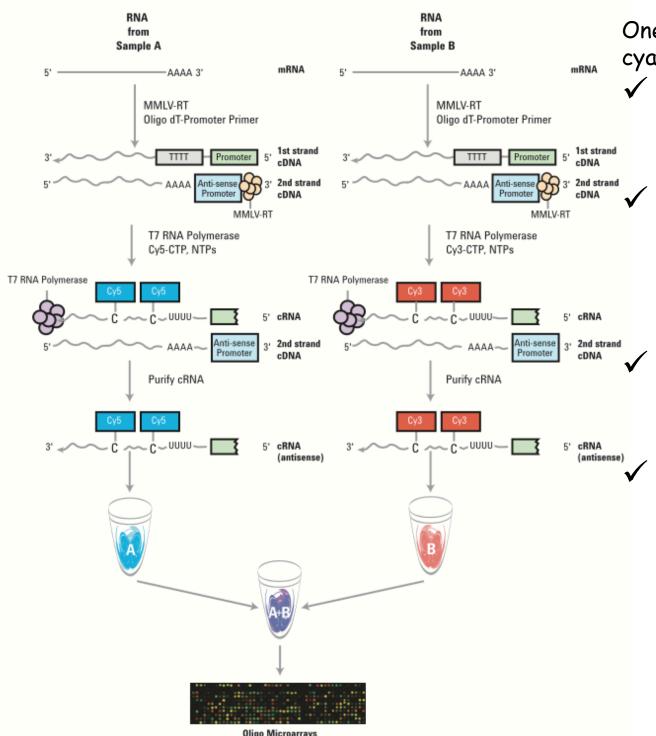
- 1. is able to detect low levels of individual mRNA and miRNAs
- 2. requires less highly specialized equipment
- 3. data analysis is less complex → less time consuming and less costly per sample

Basis of Microarrays

- ✓ Hybridization of labelled mRNA fragments to large number of specific probes attached to a solid support
- ✓ Probes: oligonucleotides (20-60 bases) or cDNA of the genes of interest
- ✓ Labelling of target mRNAs with fluorescent dyes
- ✓ Hybridization and scanning
- ✓ Data normalization to provide the relative abundance of each mRNA

DATA NORMALIZATION

Normalization is an essential procedure in the analysis of DNA microarrays to compare data from different arrays or colour channels. There are three types of internal controls that can be used for normalization.


- 1. Most commonly normalization is based on all genes on the array. The majority of genes do not change in terms of their expression level.
- 2. Previously known Housekeeping-genes.
- 3. Spiked-in control genes.

One method is used for data normalization, the others to validate results

Normalization consists of several steps:

- a) Background Correction
- b) Transformation: Microarray intensities should always be looked at using log2 scale.
- c) Robust estimation of a "rescaling" factor (e.g. median of differences)

Amplified cRNA

One sample is labeled with cyanine 3 and one with cyanine 5.

- ✓ A primer, which contains poly dT and a T7 polymerase promoter, is annealed to the poly A+ RNA.
 - Reverse transcriptase is added to synthesize the first and second strands of cDNA. At this point, double-stranded cDNA has been synthesized.
 - Next, cRNA is synthesized using T7 RNA polymerase, which incorporates cyanine 3-or cyanine 5-labeled CTP.
 Once labeling is complete, both samples are combined and hybridized to the microarray. Genes whose expresssion differs between

the samples are easily

microarray with a laser-

based detection system.

identifiable by scanning the

From: Genome Res. May 2004; 14(5): 878-885. doi: 10.1101/gr.2167504

DASL ASSAY

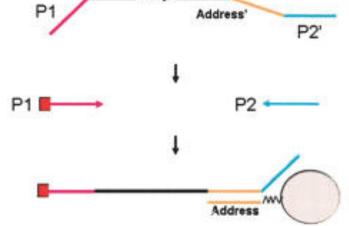
DASL assay

Total RNA

small size of the targeted gene sequence (~50 nucleotides),

cDNA synthesis

the use of random primers in the cDNA synthesis


three independent probe sets per gene

Query oligo annealing, extension, and ligation

Those factors are important for expression profiling of degraded RNAs on bead array-based platform using a minimal amount of total RNA

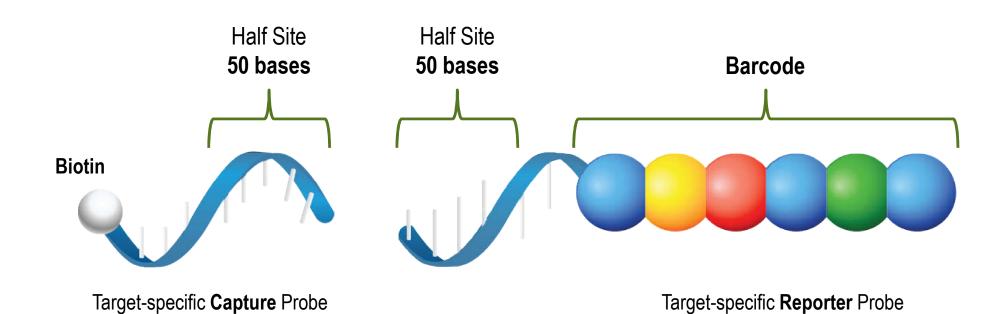
PCR with common primers

Product capture by hybridization to array

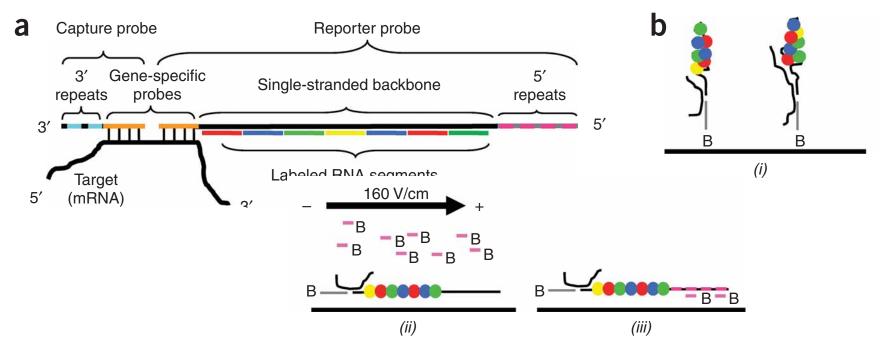
Two oligonucleotides for each target site on the cDNA.

biotin

biotin


The upstream oligonucleotide consists of two parts, the gene-specific sequence and a universal PCR primer sequence (P1) at the 5'-end.

The downstream oligonucleotide consists of three parts, the gene-specific sequence, a unique address sequence which is complementary to a capture sequence immobilized on the array, and a universal PCR primer sequence (P2') at the 3'-end. A single address sequence is uniquely associated with a single target site.

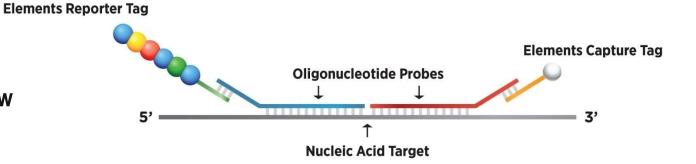

PCR products, which are fluorescently labelled by incorporation of the 5'-labeled primer P1, are hybridized to capture sequences on the beads in the array.

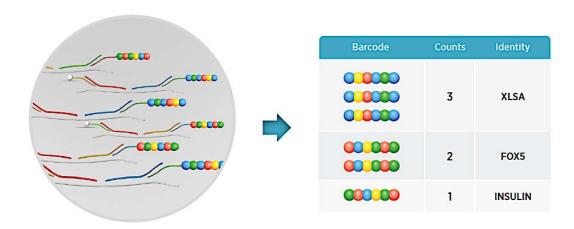
Digital Counting: How it Works

a) A schematic representation of the hybridized complex (not to scale).

The capture probe and reporter probe hybridize to a complementary target mRNA in solution via the gene-specific sequences.

After hybridization, the tripartite molecule is affinity-purified first by the 3'-repeat sequence and then by the 5'-repeat sequence to remove excess reporter and capture probes, respectively. (b) Schematic representation of binding, electrophoresis, and immobilization. (i) The purified complexes are attached to a streptavidin-coated slide via biotinylated capture probes. (ii) Voltage is applied to elongate and align the molecules. Biotinylated anti-5' oligonucleotides that hybridize to the 5'-repeat sequence are added. (iii) The stretched reporters are immobilized by the binding of the anti-5¢ oligonucleotides to the slide surface via the biotin. Voltage is turned off and the immobilized reporters are prepared for imaging and counting. (c) False-color image of immobilized reporter probes.


nCounter Elements - Digital Molecular Barcoding Chemistry


General Purpose Reagents

for Laboratory Use

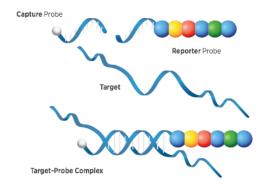
Custom designs for as few as 12 samples

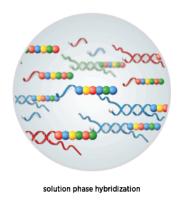
- Ideal for complex projects requiring iterative design
- Target-specific
 oligonucleotide probes can
 be re-used in multiple
 studies

nCounter

Hybridise

Purify


Count


~50 base probes per mRNA that hybridize in solution. The Reporter Probe carries the signal; the Capture Probe allows the complex to be immobilized for data collection

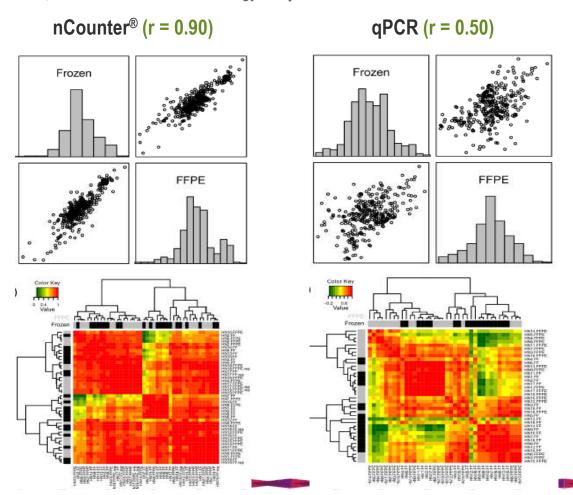
After hybridization, the excess probes are removed and the probe/target complexes aligned and immobilized in the nCounter Cartridge.

Sample Cartridges are placed in the Digital Analyzer for data collection. Color codes on the surface of the cartridge are counted and tabulated for each target molecule. 1COUNT=1 MOLECULE

Barcode	Counts	Identity
010000 010000 010000	3	XLSA
001000	2	FOX5
000000	1	INSULIN

nCounter

NanoString does not require amplification, and up to 800 genes can be detected in a single sample, which reduces sample-handling errors and removes enzymatic reaction errors, although reference gene stability can be a challenge as with qPCR, because of differences in reference gene expression in different tissues

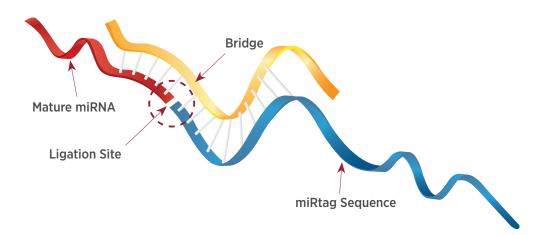

This technique is feasible in RNA extracts from FFPE

Application to diagnostics: The Prosigna assay analyzes the activity of 58 genes and calculates a risk of recurrence score (low, intermediate, or high). Research suggests the Prosigna assay eventually may be used more to make treatment decisions based on the risk of distant recurrence within 10 years of diagnosis of early-stage hormone-receptor positive disease with up to three positive lymph nodes after 5 years of hormonal therapy treatment in postmenopausal women. The Prosigna test is approved by the FDA and it is a CE-IVD product.

Outstanding Performance on FFPE Samples

mRNA transcript quantification in archival samples using multiplexed, color-coded probes

Reis, P.P. et al., BMC Biotechnology; May 9, 2011



"... the probe-based
NanoString method achieved
superior gene expression
quantification results when
compared to RQ-PCR in
archived FFPE samples. We
believe that this newly
developed technique is optimal
for large-scale validation
studies using total RNA
isolated from archived, FFPE
samples."

nCounter-miRNA

miRNA Sample Preparation

Sample Hybridization

DNA sequences called miRtags are ligated to the mature miRNAs through complementarity with sequence-specific bridging oligonucleotides (bridges). Excess tags and bridges are removed via a simple enzymatic step in the same tube. No further purification is required.

The miR tagged mature miRNA is then hybridized to a probe pair in the standard nCounter gene expression assay workflow.