

Composition and Inheritance

Objectives

● Ofter the usage of exiting classes is used to define new
classes.

● This can be done using two methods:
● Composition
● Inheritance

Composition

● Composition (also called containment or aggregation) of classes
refers to the use of one or more classes within the definition of
another class.

● When a data member of the new class is an object of another class,
we say that the new class is a composite of the other objects.

Example: A Person Class

#include <iostream>
#include <string>
using std::cout;
using std::endl;
using std::string;

class Person
{public:
 Person(string n="", string nat="U.S.A.", int s=1)
 : name(n), nationality(nat), sex(s) {}
 void printName () { cout << name; }
 void printNationality () { cout << nationality; }
private:
 string name, nationality;
 int sex;
};

int main()
{
 Person creator("Bjarne Stroustrup", "Denmark");
 cout << "The creator of C++ was ";
 creator.printName();
 cout << " who was born in ";
 creator.printNationality();
 cout << ".\n";
 return 0;
}

The creator of C++ was Bjarne Stroustrup who was born in Denmark

Person.{cpp,h}
UsePerson.cpp

Example: A Person Class

#include <iostream>
#include <string>
using std::cout;
using std::endl;
using std::string;

class Person
{public:
 Person(string n="", string nat="U.S.A.", int s=1)
 : name(n), nationality(nat), sex(s) {}
 void printName () { cout << name; }
 void printNationality () { cout << nationality; }
private:
 string name, nationality;
 int sex;
};

int main()
{
 Person creator("Bjarne Stroustrup", "Denmark");
 cout << "The creator of C++ was ";
 creator.printName();
 cout << " who was born in ";
 creator.printNationality();
 cout << ".\n";
 return 0;
}

The creator of C++ was Bjarne Stroustrup who was born in Denmark

Person.cxx

Composition of the string class
with the Person class

Example a Date Class

#include <iostream>
#include <string>
using std::cout;
using std::cin;
using std::endl;
using std::istream;
using std::ostream;
using std::string;

class Date {
 friend istream& operator>>(istream&, Date&);
 friend ostream& operator<<(ostream&, const Date&);
public:
 Date(int m=0, int d=0, int y=0) : month(m), day(d), year(y) { }
 void setDate(int m, int d, int y) { month = m; day = d; year = y;}
private:
 int month, day, year;
};

istream& operator>>(istream& in, Date& x)
{in >> x.month >> x.day >> x.year;
 return in;
}
ostream& operator<<(ostream& out, const Date& x)
{static string monthName[13] = {"", "January", "February", "March",

 "April", "May","June", "July", "August",
 "September","October","November","December"};

 out << monthName[x.month] << " " << x.day << ", " << x.year;
 return out;
}

Overload of the << and >> operators

Date.{h,cpp}

Example a Date Class

int main()
{Date peace(11,11,1918);
 cout << "World War I ended on " << peace << ".\n";
 peace.setDate(8,14,1945);
 cout << "World War II ended on " << peace << ".\n";
 cout << "Enter month, day, and year: ";
 Date date;
 cin >> date;
 cout << "The date is "<< date << ".\n";
}

World War I ended on November 11, 1918.
World War II ended on August 14, 1945.
Enter month, day, and year: 10 10 2010
The date is October 10, 2010.

useDate.cpp

Composition of Date class with Person Class

#include <iostream>
using std::cout;
using std::endl;

#include <string>
using std::string;

#include "Date.h"

class Person1
{public:
 Person1(string n="", string nat="U.S.A.", int s=1)
 : name(n), nationality(nat), sex(s) {}
 void setDOB(int m, int d, int y){dob.setDate(m,d,y);}
 void setDOD(int m, int d, int y){dod.setDate(m,d,y);}
 void printName () { cout << name; }
 void printNationality () { cout << nationality; }
 void printDOB(){cout<<dob;}
 void printDOD(){cout<<dod;}

private:
 string name, nationality;
 Date dob, dod;
 int sex;
};

Note that a member function
of one class is used to
define member functions of
the composed class

Person1.{cpp,h)

Composition of Date class with Person Class

int main()
{
 Person1 author("Thomas Jefferson", "USA", 1);
 author.setDOB(4,13,1743);
 author.setDOD(7,4,1826);
 cout << "The author of the Declaration of Independence is ";
 author.printName();
 cout << ".\n He was born in ";
 author.printNationality();
 cout << " on ";
 author.printDOB();
 cout<<" and died on ";
 author.printDOD();
 cout<<".\n"<<endl;
 return 0;
}

The author of the Declaration of Independence is Thomas Jefferson.
He was born in USA on April 13, 1743 and died on July 4, 1826.

usePerson1.cpp

Composition

● Composition is often referred to as a “has-a” relationship because
the objects of the composite class “have” objects of the composed
class as members.

● Each object of the Person class “has a” name and a
nationality which are string objects.

Inheritance

● Another way to reuse exiting software to create a new one is
by means of inheritance (also called specialization or
derivation)

● This is often referred as an “is-a” relationship because every
object of the class being defined “is” also an object of the
inherited class.

● The common syntax for the deriving class Y from class X is

class Y : public X {

// ….

};

Inheritance

Inheritance

● Another way to reuse exiting software to create a new one is
by means of inheritance (also called specialization or
derivation)

● This is often referred as an “is-a” relationship because every
object of the class being defined “is” also an object of the
inherited class.

● The common syntax for the deriving class Y from class X is

class Y : public X {

// ….

};

Inheritance

● Another way to reuse exiting software to create a new one is
by means of inheritance (also called specialization or
derivation)

● This is often referred as an “is-a” relationship because every
object of the class being defined “is” also an object of the
inherited class.

● The common syntax for the deriving class Y from class X is

class Y : public X {

// ….

};

Base class (or superclass)Derived class (or subclass)

public specify public inheritance →
public members of the base class are
public members of the derived class

Inheritance

● Inheritance
● Single Inheritance : Class inherits from one base class

● Multiple Inheritance: Class inherits from multiple base classes

● Three types of inheritance:

– public: Derived objects are accessible by the base class objects

– private: Derived objects are inaccessible by the base class

– protected: Derived classes and friends can access protected members of
the base class

Base and Derived Classes

● Implementation of public inheritance

class CommissionWorker : public Employee {
 ...
};

Class CommissionWorker inherits from class Employee
– friend functions not inherited
– private members of base class not accessible from derived class

Deriving a Student Class from Person1 Class

// Definizione Classe STUDENT

#ifndef STUDENT_H
#define STUDENT_H
#include <iostream>

using std::ostream;
using std::istream;

#include "Person1.h"
#include "Date.h"

class Student : public Person1
{
 public:
 Student(string n="", string id="", int s=1);
 void setDOM(int m, int d, int y){dom.setDate(m,d,y);};
 void printDOM();
 private:
 string id; //student identification
 Date dom; //student date of matriculation
 int credits; //course credit
 float gpa; // grade-point average
 //name and sex are implemented in Person
};

#endif // STUDENT_H

Deriving a Student Class from Person1 Class

#include <iostream>
#include <string>
using std::cout;
using std::endl;
using std::string;

#include "Student.h"

Student::Student(string n, string id, int s)
 : Person1(n,"Italy",s), id(id), credits(0) {}

void Student::setDOM(int m, int d, int y)
{
 dom.setDate(m,d,y);
}
void Student::printDOM(){
 cout<<dom;
}

Deriving a Student Class from Person1 Class

#include <iostream>
using std::cout;
using std::endl;

#include <string>
using std::string;

// #include "Date.h"
// #include "Person1.h"
#include "Student.h"

int main()
{
 Student x("Anna Rossi", "123456789K" ,0);
 x.setDOB(4,13,1996);
 x.setDOM(7,9,2016);
 x.printName();
 cout<<" Born on ";
 x.printDOB();
 cout<<" Matriculated on ";
 x.printDOM();
 cout<<".\n"<<endl;
 return 0;
}

Anna Rossi Born on April 13, 1996 Matriculated on July 9, 2016.

protected class members

● The Student class in has a significant problem: it cannot directly
access the private data members of its Person1 superclass:
name, nationality, DOB , DOD , and sex.

● The lack of access on the first four of these is not serious because
these can be written and read through the Person class’s
constructor and public access functions.

● However, there is no way to write or read a student's sex.
● One way to overcome this problem would be to make sex a data

member of the Student class. But that is unnatural: sex is an
attribute that all Person objects have, not just Students.

● A better solution is to change the private access specifier to
protected in the Person class.

● That will allow access to these data members from derived classes.

Person class with protected Data Members

// Definizione Classe PERSON2

#ifndef PERSON2_H
#define PERSON2_H
#include <iostream>
#include "Date.h"

using std::ostream;
using std::istream;

class Person2
{
 public:
 Person2(string n="", string nat="U.S.A.", int s=1);
 void setDOB(int m, int d, int y);
 void setDOD(int m, int d, int y);
 void printName() ;
 void printNationality();
 void printDOB();
 void printDOD();
 protected:
 string name, nationality;
 Date dob, dod;
 int sex;
};

#endif // PERSON2_H

Person2.cpp

Person class with protected Data Members

// Definizione Classe STUDENT

#ifndef STUDENT_H
#define STUDENT_H
#include <iostream>

using std::ostream;
using std::istream;

#include "Person2.h"
#include "Date.h"

class Student : public Person2
{
 public:
 Student(string n="", string id="", int s=1);
 void setDOM(int m, int d, int y);
 void printDOM();
 void printSex();
 protected:
 string id; //student identification
 Date dom; //student date of matriculation
 int credits; //course credit
 float gpa; // grade-point average
 //name and sex are implemented in Person
};

#endif // STUDENT_H

Student.{h,cpp}

Person class with protected Data Members

#include <iostream>
#include <string>
using std::cout;
using std::endl;
using std::string;

#include "Student.h"

Student::Student(string n, string id, int s)
 : Person2(n,"Italy",s), id(id), credits(0) {}

void Student::setDOM(int m, int d, int y)
{
 dom.setDate(m,d,y);
}
void Student::printDOM(){
 cout<<dom;
}
void Student::printSex(){
 cout<<(sex? "male":"female");
}

useStudent1.cpp

Person class with protected Data Members

#include <iostream>
using std::cout;
using std::endl;

#include <string>
using std::string;

// #include "Date.h"
// #include "Person1.h"
#include "Student.h"

int main()
{
 Student x("Anna Rossi", "123456789K" ,0);
 x.setDOB(4,13,1996);
 x.setDOM(7,9,2016);
 x.printName();
 cout<<"\nSex ";
 x.printSex();
 cout<<" Born on ";
 x.printDOB();
 cout<<" Matriculated on ";
 x.printDOM();
 cout<<".\n"<<endl;
 return 0;
}

Anna Rossi
Sex female Born on April 13, 1996 Matriculated on July 9, 2016.

protected Data Members

● The protected access category is a balance between private and
public categories:
● private members are accessible only from within the class itself and its
friend classes;

● protected members are accessible from within the class itself, its friend
classes, its derived classes, and their friend classes;

● public members are accessible from anywhere within the file.

● In general, protected is used instead of private whenever it
is anticipated that a sub-class might be defined for the class.
● A subclass inherits all the public and protected members of its base

class. This means that, from the point of view of the subclass, the public
and protected members of its base class appear as though they actually
were declared in the subclass.

protected Data Members

class X
{
public:
 int a;
protected:
 int b;
private:
 int c;
};

class X : public Y
{
public:
 int d;
};

X x;
Y y;

a

b

c

a

d

b

X Y

x ypublic

protected

private

Overriding and dominating inherited members

● If Y is a subclass of X, then Y objects inherit all the public and protected
member data and member functions of X .

● In some cases, you might want to define a local version of an inherited
member. For example, if a is a data member of X and if Y is a subclass of X,
then you could also define a separate data member named a for Y.

● In this case, the a defined in Y dominates the a defined in X. Then a
reference y.a for an object y of class Y will access the a defined in Y
instead of the a defined in X.

● To access the a defined in X, one would use y.x::a.
● The same rule applies to member functions: if a function named f() is

defined in X and another function named f() with the same signature is
defined in Y, then Y.f() invokes the latter function, and y.x::f()
invokes the former.

● In this case, the local function y.f() overrides the f() function defined
in X unless it is invoked as y.x::f().

Overriding and dominating inherited members
#include <iostream>
#include <string>
using std::cout;
using std::endl;
using std::string;

class X {
public:
 void f() {cout<<"X::f() executing\n";}
 int a;
};
class Y : public X {
public:
 void f() { cout << "Y::f() executing\n";}
 int a;
};

int main(){
 X x;
 x.a = 22;
 x.f();
 cout << "x.a = "<<x.a<<endl;
 Y y;
 y.a = 44; //assign 44 to the a defined in Y
 y.X::a = 66; //assign 66 to the a defined in X
 y.f(); //invokes the f() defined in X
 y.X::f(); //invokes the f() defined in Y
 cout << "y.a = "<<y.a<<endl;
 cout << "y.X::a = " <<y.X::a << endl;
 X z = y;
 cout << "z.a = : "<< z.a << endl;
}

X::f() executing
x.a = 22
Y::f() executing
X::f() executing
y.a = 44
y.X::a = 66
z.a = : 66

X

X

Y

x

y

z

a

a

X::a

a

22

66

44

66

DominatingOverriding.cpp

virtual functions and polymorphism

● One of the most powerful features of C++ is that it allows objects of
different types to respond differently to the same function call.

● This is called polymorphism and it is achieved by means of
virtual functions.

● Polymorphism is rendered possible by the fact that a pointer to a
base class instance may also point to any subclass instance

class X
{ //
};

class Y : public X // Y is a subclass of X
{//
};

int main(){
 X* p; // p is a pointer to object of class X
 Y y;
 p = &y; // p can also point to object of subclass Y
}

virtual functions and polymorphism

● If p has type X* (“pointer to type x”), then p can also point to any
object whose type is a subclass of X. However, even when p is
pointing to an instance of a subclass Y, its type is still X*.

● An expression like p→f() would invoke the function f() defined
in the base class.
● Recall that p→f() is an alternate notation for (*p).f()

● This invokes the member function f() of the object to which p
points.

● p→f() will always execute x::f() because p had type X* .
● The fact that p happens to be pointing at that moment to an

instance of subclass Y is irrelevant; it’s the statically defined type
X* of p that normally determines its behavior.

virtual functions and polymorphism
#include <iostream>
#include <string>
using std::cout;
using std::cin;
using std::endl;
using std::string;

class X {
public:
 void f() {cout<<"X::f() executing\n";}
};
class Y : public X {
public:
 void f() { cout << "Y::f() executing\n";}
};

int main(){
 X x;
 Y y;
 X *p = &x; // invokes X::f() because p has type X*
 p->f();
 p = &y; // invokes X::f() because p has type X*
 p->f();

}

X::f() executing
X::f() executing

virtualfunction.cppTwo function calls p→f() are made. Both calls invoke the same version of
f() that is defined in the base class X because p is declared to be a pointer
to X objects. Having p point to y has no effect on the second call p→f() .

virtual functions and polymorphism
#include <iostream>
#include <string>
using std::cout;
using std::cin;
using std::endl;
using std::string;

class X {
public:
 Virtual void f() {cout<<"X::f() executing\n";}
};
class Y : public X {
public:
 void f() { cout << "Y::f() executing\n";}
};

int main(){
 X x;
 Y y;
 X *p = &x; // invokes X::f() because p has type X*
 p->f();
 p = &y; // invokes Y::f()
 p->f();

}

X::f() executing
Y::f() executing

virtualfunction1.cpp

This example illustrates polymorphism:
the same call p→f() invokes different
functions. The function is selected
according to which class of object p
points to. This is called dynamic
binding because the association (i.e.,
binding) of the call to the actual code to
be executed is deferred until run time.
The rule that the pointer’s statically
defined type determines which member
function gets invoked is overruled by
declaring the member function
virtual.

virtual functions and polymorphism
#include <iostream>
#include <string>
using std::cout;
using std::endl;
using std::string;

class Person
{public:
 Person(string n=""): name(n) {}
 void print () { cout << "My name is: "<<name<<endl; }
protected:
 string name;
};

class Student : public Person
{public:
 Student(string n="", float g = 0): Person(n),gpa(g) {}
 void print () { cout << "My name is: "<<name<<" and my gpa is:
"<<gpa<< endl; }
private:
 float gpa;
};

class Professor : public Person
{public:
 Professor(string n="", int p = 0): Person(n),publs(p) {}
 void print () { cout << "My name is: "<<name<<" and I have: "<<publs<<
" publications "<<endl; }
private:
 float publs;
};

Polymorphism.cpp

virtual functions and polymorphism
int main()
{
 Person *p;
 Person x("Bob");
 p = &x;
 p->print();
 Student y("Tom",28.8);
 p = &y;
 p->print();
 Professor z("Ann",52);
 p = &z;
 p->print();
 return 0;
}

Polymorphism.cpp

My name is: Bob
My name is: Tom
My name is: Ann

The print() function defined in the base class is not virtual. So the call
p→print() always invokes that same base class function
Person::print() because p has type
Person*. The pointer p is statically bound to that base class function at
compile time.

virtual functions and polymorphism
#include <iostream>
#include <string>
using std::cout;
using std::endl;
using std::string;

class Person
{public:
 Person(string n=""): name(n) {}
 virtual void print () { cout << "My name is: "<<name<<endl; }
protected:
 string name;
};

class Student : public Person
{public:
 Student(string n="", float g = 0): Person(n),gpa(g) {}
 void print () { cout << "My name is: "<<name<<" and my gpa is:
"<<gpa<< endl; }
private:
 float gpa;
};

class Professor : public Person
{public:
 Professor(string n="", int p = 0): Person(n),publs(p) {}
 void print () { cout << "My name is: "<<name<<" and I have: "<<publs<<
" publications "<<endl; }
private:
 float publs;
};

Polymorphism.cpp

virtual functions and polymorphism
int main()
{
 Person *p;
 Person x("Bob");
 p = &x;
 p->print();
 Student y("Tom",28.8);
 p = &y;
 p->print();
 Professor z("Ann",52);
 p = &z;
 p->print();
 return 0;
}

Polymorphism.cpp

My name is: Bob
My name is: Tom and my gpa is: 28.8
My name is: Ann and I have: 52 publications

Now the pointer p is dynamically bound to the print() function of
whatever object it points to. The call p→print() is polymorphic because
its meaning changes according to the circumstance

Esercitazione 9

Esercizio 1

Implement a Cerchio class that inherits from the Punto class.
An object of the Punto class will be the center of the circle. For the Punto class,
implement two get functions (one the x and one for the y coordinates) and one set
function (i.e. you set x and y with a single function). Override the "<<" operator with an
ostream like [x,y].
For the Cerchio class implement the functions SetRadius() and GetRadius() and GetArea().
Start from the Exercise in Esercitazione7 for the implementation of the Punto class

Example of execution:
./cerchio
Center and Radius
x: 1 y: 1 r: 4
New Center Coordinates [3, 2]
Area : 50.24

Additional stuff

● This is not a backup: this section contains “random”
useful stuff not mentioned up to now

Overloading function

● C++ allows you to use the same name for different functions.
● As long as they have different parameter type lists, the compiler

will regard them as different functions.
● To be distinguished, the parameter lists must either contain a

different number of parameters, or there must be at least one
position in their parameter lists where the tyes are different.

Overloading max() function

#include <iostream>

using std::cout; // program uses cout
using std::endl; // program uses endl

int max(int, int);
int max(int, int, int);

int main(){
 cout<<"Max(10,20): " <<max(10,20)<<"\nMax(2,9,6): "<<max(2,9,6)<<endl;
 return 0;
}

int max(int x, int y){
 return (x>y ? x: y);
}

int max(int x, int y, int z){
 int m = (x>y ? x: y); // m = max(x,y)
 return (z>m ? z: m);
}

Max(10,20): 20
Max(2,9,6): 9

OverloadingMax.cpp

Command line arguments in C/C++
● The most important function of C/C++ is main() function. It is mostly defined with a return type of int and

without parameters :

 int main() { /* ... */ }
● We can also give command-line arguments in C and C++. Command-line arguments are given after the

name of the program in command-line shell of Operating Systems.
● To pass command line arguments, we typically define main() with two arguments: first argument is the

number of command line arguments and second is list of command-line arguments.

 int main(int argc, char *argv[]) { /* ... */ }
or

 int main(int argc, char **argv) { /* ... */ }

● argc (ARGument Count) is a int and stores number of command-line arguments passed by the user
including the name of the program. So if we pass a value to a program, value of argc would be 2 (one for
argument and one for program name)

● The value of argc should be non negative.
● argv(ARGument Vector) is array of character pointers listing all the arguments.
● If argc is greater than zero,the array elements from argv[0] to argv[argc-1] will contain pointers to strings.
● argv[0] is the name of the program , After that till argv[argc-1] every element is command -line

arguments.

Command line arguments in C/C++

#include <iostream>
#include <cstdlib>

using std::cout; // program uses cout
using std::endl; // program uses endl

int max(int, int);
int max(int, int, int);

int main(int argc, char* argv[]){

 int a = atoi(argv[1]);
 int b = atoi(argv[2]);
 int c = atoi(argv[3]);
 // Converting string type to integer type
 // using function "atoi(argument)"

 cout<<"Max("<<a<<","<<b<<"): " <<max(a,b)<<endl;
 cout<<"Max("<<a<<","<<b<<","<<c<<"): "<<max(a,b,c)<<endl;
 return 0;
}

int max(int x, int y){
 return (x>y ? x: y);
}

int max(int x, int y, int z){
 int m = (x>y ? x: y); // m = max(x,y)
 return (z>m ? z: m);
}

Command line arguments in C/C++

g++ OverloadingMaxArg.cpp -o max
./max 4 5 6
Max(4,5): 5
Max(4,5,6): 6

Important: if you define a function that needs some argument, you have
to specify them at the runtime, otherwise you will get a segmentation
violation!!!

File input

● To get data from a file, we have to create a stream that flows from the file
into the program.

● We can do that using the ifstream constructor.
ifstream infile ("file-name");

● The argument for this constructor is a string that contains the name of the
file you want to open.

● The result is an object named infile that supports all the same
operations as cin, including >> and getline.
int x;

apstring line;

infile >> x;

getline (infile, line);

// get a single integer and store in x

// get a whole line and store in line

File input

● To get data from a file, we have to create a stream that flows from the file
into the program.

● We can do that using the ifstream constructor.
ifstream infile ("file-name");

● The argument for this constructor is a string that contains the name of the
file you want to open.

● The result is an object named infile that supports all the same
operations as cin, including >> and getline.
int x;

apstring line;

infile >> x;

getline (infile, line);

// get a single integer and store in x

// get a whole line and store in line

File input

● If we know ahead of time how much data is in a file, it is
straightforward to write a loop that reads the entire file and then
stops.

● More often, though, we want to read the entire file, but don’t know
how big it is.

● There are member functions for ifstreams that check the status
of the input stream; they are called good, eof, fail and bad.

● We will use good to make sure the file was opened successfully
and eof to detect the “end of file.”

● Whenever you get data from an input stream, you don’t know
whether the attempt succeeded until you check. If the return value
from eof is true then we have reached the end of the file and we
know that the last attempt failed.

File input

● Here is a program that reads lines from a file and displays them on the
screen:
apstring fileName = ...;

ifstream infile (fileName.c_str());

if (infile.good() == false) {

 cout << "Unable to open the file named " <<
fileName;

 exit (1);

 }

while (true) {

 getline (infile, line);

 if (infile.eof()) break;

 cout << line << endl;

}

File input

● Here is a program that reads lines from a file and displays them on the
screen:
apstring fileName = ...;

ifstream infile (fileName.c_str());

if (infile.good() == false) {

 cout << "Unable to open the file named " <<
fileName;

 exit (1);

 }

while (true) {

 getline (infile, line);

 if (infile.eof()) break;

 cout << line << endl;

}

The function c_str converts an
apstring to a native C string.
Because the ifstream constructor
expects a C string as an argument, we
have to convert the apstring.

● good function: return value is false if the system
could not open the file (most likely because it
does not exist, or you do not have permission to
read it)

● The statement while(true) is an idiom for
an infinite loop: usually there will be a break
statement somewhere in the loop so that the
program does not really run forever.

● The break statement allows us to exit the loop
as soon as we detect the end of file.

● It is important to exit the loop between the input
statement and the output statement, so that
when getline fails at the end of the file, we
do not output the invalid data in line.

File output
● Sending output to a file is similar. For example, we could modify the previous

program to copy lines from one file to another.

ifstream infile ("input-file");

ofstream outfile ("output-file");

if (infile.good() == false || outfile.good() == false) {

 cout << "Unable to open one of the files." << endl;

 exit (1);

}

while (true) {

 getline (infile, line);

 if (infile.eof()) break;

 outfile << line << endl;

}

Esercitazione 9

Esercizio 2
● Write a macro where the function min(a,b) and min(a,b,c) are

overloaded. The argument of the function can be with the cin
operator.

● Repeat the exercise passing the argument from the command line.

./min
Insert how many numbers you want to compare
2
Insert the first number: 3
Insert the second number: 6
The minimum is: 3

./minArg 3 3 4 6
Min(3,4,6): 3

	Slide 1
	Objectives
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	19.1 Introduction
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50

