APPENDIX F

An Integral Laminar
Boundary Layer Solution
for Parallel Flow over

a Flat Plate




982

Appendix F m Integral Laminar Boundary Layer Solution

An alternative approach to solving the boundary layer equations involves the use of
an approximate infegral method. The approach was originally proposed by von
Karman [1] in 1921 and first applied by Pohlhausen [2]. It is without the mathemati-
cal complications inherent in the exact (similarity) method of Section 7.2.1; yet it can
be used to obtain reasonably accurate results for the key boundary layer parameters
(6,8, 8, G, h, and h,,). Although the method has been used with some success for a
variety of flow conditions, we restrict our attention to parallel flow over a flat plate,
subject to the same restrictions enumerated in Section 7.2.1, that is, incompressible
laminar flow with constant fluid properties and negligible viscous dissipation.

To use the method, the boundary layer equations, Equations 7.4 through 7.7, must
be cast in integral form. These forms are obtained by integrating the equations in the y
direction across the boundary layer. For example, integrating Equation 7.4, we obtain
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or, sincev = 0at y= 0,
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Similarly, from Equation 7.5, we obtain
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or, integrating the second term on the left-hand side by parts,
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Substituting from Equations 7.4 and F.2, we obtain
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Therefore
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Rearranging, we then obtain
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Equation F.3 is the integral form of the boundary layer momentum equation. In a
similar fashion, the following integral forms of the boundary layer energy and
species continuity equations may be obtained:

(F.3)
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Equations F.3 through F.5 satisfy the x momentum, the energy, and the species
conservation requirements in an integral (or average) fashion over the entire bound-
ary layer. In contrast, the original conservation equations, (7.5) through (7.7), satisfy
the conservation requirements /ocally, that is, at each point in the boundary layer.

The integral equations can be used to obtain approximate boundary layer solu-
tions. The procedure involves first assuming reasonable functional forms for the
unknowns u, T, and p, in terms of the corresponding (unknown) boundary layer
thicknesses. The assumed forms must satisfy appropriate boundary conditions. Sub-
stituting these forms into the integral equations, expressions for the boundary layer
thicknesses may be determined and the assumed functional forms may then be com-
pletely specified. Although this method is approximate, it frequently leads to accu-
rate results for the surface parameters.

Consider the hydrodynamic boundary layer, for which appropriate boundary
conditions are

(F.5)
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From Equation 7.5 it also follows that, since u=v = 0 at y = 0,
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With the foregoing conditions, we could approximate the velocity profile as a third-
degree polynomial of the form

2 3
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and apply the conditions to determine the coefficients a, to a,. It is easily verified

=0
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that a, = a; = 0, a, = § and a, = —3, in which case
u_3y_1(y)
ufza‘z(a) (E6)

The velocity profile is then specified in terms of the unknown boundary layer thick-
ness 8. This unknown may be determined by substituting Equation F.6 into F.3 and
integrating over yto obtain
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Separating variables and integrating over x, we obtain

8% _ 140 vx
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However, since 6 = 0 at the leading edge of the plate (x = 0), the integration con-
stant must be zero and

1/2
_ vx)'® _ 4.64x
6= 464 <uw> = W (F7)

Substituting Equation F.7 into Equation F.6 and evaluating 7, = w(du/dy),, we also
obtain

= Ts _ 0.646
Y plh/2 R
Despite the approximate nature of the foregoing procedure, Equations F.7 and F.8
compare quite well with results obtained from the exact solution, Equations 7.19
and 7.20.

In a similar fashion one could assume a temperature profile of the form
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and determine the coefficients from the conditions

(F.8)
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which is inferred from the energy equation (7.6). We then obtain
3V _1()
T 25 2\5, (F.9)
Substituting Equations F.6 and F.9 into Equation F.4, we obtain, after some manip-
ulation and assuming Pr= 1,

@_ Pr_1/3
5 1.026

This result is in good agreement with that obtained from the exact solution, Equa-
tion 7.24. Moreover, the heat transfer coefficient may be then computed from
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(F.10)

Substituting from Equations F.7 and F.10, we obtain

Nu, = %X — 0.332Re? Py (F.11)

This result agrees precisely with that obtained from the exact solution, Equation 7.23.
Using the same procedures, analogous results may be obtained for the concentration
boundary layer.
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