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Variational Monte Carlo

A stochastic way of calculating expectation values of
observables in many-body (in general) systems using a
trial wavefunction which depends on PARAMETERS.
=> Which are the best parameters?

l.e.:
=> Which is the most reliable expectation value?

=> Which is the best trial wavefunction?

A method based on:
variational principle + Monte Carlo evaluation of integrals
using importance sampling based on the Metropolis algorithm
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Variational Monte Carlo

done in Lecture VIl for a single-particle

|) Start from a trial wavefunction (wfc)
problem (harmonlc oscillator) -

————— e E———— . =

| 2) Calculate the expectation value of the many -body hamiltonian /¢ or in

| general of other observables @ on the wfc transforming the integral in

rm suitable for MC integration

—

‘N\\‘.\

3) Change parame [eTS and recalculate T & expectation vaiue on the New W

4) Iterate to reach the best estimate of the expectation value
With VMC one can obtain exact properties only if the trial wavefunction is an

exact wavefunction of the system; it is a variational method to find the
ground state.
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Quantum averages - |

(Ground) state average:

f w* (R) Ow (R) dR R: compact notation for

the whole set of variables

<O >y=
v f W(R)\ZdR of the many-body wfc
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Quantum averages - |
(Ground) state average:
Y(R)Y ™ (R)

J ¥ (R)OY(R)dR

<O T (R)R
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Quantum averages - |

(Ground) state average:

Y(R)Y™(R)

J ¥ (R)OY(R)dR
J [H(R)PdR

- [0 (248 frano

probability .~ \

(weighting
factor) “local” operator

<O >y=
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Quantum averages - |l

integrals in many variables ({R}) =>
suitable for importance sampling - Monte Carlo
Integration:

<O >= /w(R)OL(R)dR N % > OL(R:)

provided that the configurations i - W(R)‘Q
are distributed with the probability (w(R;) = ]

<¢\>
error ~ ] /\/M
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VMC on one trial wfc - |

Details for the calculation of quantum averages:
2) Calculate the expectation value of the many-body hamiltonian #/ on the

wfc transforming the integral into a form suitable for MC integration

2a) Equilibration phase:

a walker consisting of an initially random set of particle positions {R} is
propagated according to the Metropolis algorithm, in order to equilibrate and
start sampling |[#*({R})|°. If the problem is many-body, a new configuration can
be obtained by moving just one particle and the others are unchanged.

2b) Accumulation phase:

New configurations are generated and energies and other observables are
accumulated for statistical analysis.
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VMC on one trial wfc - |

I. Equilibration phase:
1. Generate initial configuration using random positions for the particles.
2. For every particle* in the configuration:
1. Propose a move from r to r’
2. Compute w = |¥(x")/¥(r)|?
3. Accept or reject move accordingly to Metropolis probability min(1, w)
3. Repeat configuration moves until equilibrated
2. Accumulation phase:
1. For every particle in the configuration:
1. Propose a move from r to r’
2. Compute w = |¥(x")/¥(r)|?
3. Accept or reject move accordingly to Metropolis probability min(1, w)
4. Accumulate the contribution to the local energy and other observables at r (if
move is rejected) or r’ (if move is accepted)
2. Repeat configuration moves until sufficient data are accumulated

In this algorithm, a new configuration is considered when one particle is moved, individually.

() If the problem is many-body, r and r’ are single-particle coordinates and therefore
differ from R.
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The variational principle - |

For the ground state:
if ¢ (R) is a trial wavefunction and Fy is the exact
ground state eigenvalue, we have:

<E>¢ > B

and the ”=" holds if and only if the trial wavefunction
is the exact ground state wavefunction (i) = 1y).
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The variational principle - |

Basic idea for YMC:
calculate <@ > over different trial wavefunctions

and choose the best...
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VMC - standard procedure - |

|) Start from a trial wavefunction with a set of parameters o

2) Calculate the expectation value of the operator @, W|th a MC integration:

a0 (R)[POL(R)IR -
(Or)ay = UtV BLR S = [ (mOLRIR~ ZO (RL™)

3) Change the set of parameters & and recalculate from scratch the
expectation value on the new wfc:

_ Ja(BFOL IR _ [ (e
(O = R i _/ (R)OL(R)IR ~ —- ZOLR

( @L(R) changes (contains the new parameters) but also the m(R) and hence

the set of points {Ri} change)

4) Iterate to reach the best estimate of the expectation value
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VMC - standard procedure - |l

Two problems:
|) time consuming
2) stochastic errors can be comparable to

differences between expectation values for different
sets of parameters

solution?
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“reweighting”’ technique

A better idea: use the same sampling for similar trial wfc, Vg, Vq, .

o(R)*
Start from . Define: r,(R)= [Va
: )=y ()P
2
Remembering that :  w,(R) = T ||$a( )\LdR and similar for w,,, we have :
(O} = J Vo (R PO (R)dR _ fTa ) tay (R)|2OL(R)dR _
. [ Wa(R)PAR [ 7a(B)|ta, (R)PAR

fTa wOéo R)OL(R>dR ~ Z Toz( )OL(Rz)
[ 70 (R)wa, (R)dR > i ra(Ri)

where the set {Ri} is generated according to w,,(R)

2
(Check that: A(a,ap) = (Zzi TrO;(fRi-))) ~ M ;if not, generate other points)
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“zero-variance” property

A very useful note:
if a trial wavefunction is the exact one,

the variance in the numerical estimate of <> /<4~ /

IS zero:

o’ =< Y|(H— < H >)*]p >=0

the criterion to find the best parameter set
is precisely defined!
(remark: applicable also to excited states if
the exact excited state wfc is contained in the trial wfc set)
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possible problems/remarks

® nodes of the trial wfc: not a real problem,
provided the trial moves are large enough to

overcome nodes

o H(R)¥(R) must be defined everywhere

e (1) must have the proper symmetry
(bosons or fermions) and proper boundary
conditions
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Trial wavefunction

The reliability of the VMC estimates
are crucially dependent
on the quality of the trial wfc
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Trial wavefunctions
for many-body systems

The choice of trial wavefunction is critical in VMC calculations. All observables are evaluated with

respect to the probability distribution Tr(R)[* | The trial wavefunction, Tr{R} , must well

approximate an exact eigenstate for all Rt in order that accurate results are obtained. Improved trial
wavefunctions also improve the importance sampling, reducing the cost of obtaining a certain

statistical accuracy.
Typical form chosen for the many-body trial wfc:
N

i = exp Z — (T )

/ | 1<l ] _

Jastrow or two-bodgl correlation function
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det Hk (7“1', Uz)]

Slater determinant on
single-particle spin-orbitals



on Programs:

$/home/peressi/comp-phys/XII-QMC/
[do: $cp /home/peressi/.../ XII-QMC/* ]
or on moodl|e2

metropolis_gaussian.f90

(see also: metropolis _sampling.f90, Unit VII)
metropolis_parabola.f90
metropolis_parabola_vs_a.f90
job_gaussian

job_parabola
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Exercises

|) Harmonic oscillator solved with VMC : (@ particularly simple

example, where everything could be done also analytically, used to test the numerical algorithm)

H:Ekin"_Eot:_p + =T
|.a) Trial wfc.: 2 2
1

Ae P o Ae"/497) ith s p= =
Y(x) = Ae or Ae with : 3 152

Epot,L(fC) — EpOt(ng) 15132
) — Epin(z) _%dci;w( ) 2,2
Bantl® =2y " "o
(Bpot1) = ~=  (Eiin) = =
d{(Eiot,0.(B)) 1 1
43 —Ojﬁ—iaEzﬁot—i
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variance:

For the exact ground state:
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Notice the zero-variance property for this problem:

Variational Monte Carlo for Harmonic Oscillator Variational Monte Carlo for Harmonic Oscillator
1 4 T T T T T T T 3 T T T T T T . T
energy + Variance —+—
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beta beta
()

300 walkers and MCSteps = 10,000

(*) In this simple case, even a single walker is enough.

Many independent walkers starting at different random points in the configuration space
could be necessary for a better sampling in more complicate systems (a single walker might
have trouble locating all of the peaks in the distribution; using a large number of randomly located
walkers improves the probability that the distribution will be correctly generated)
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Exercises

|) Harmonic oscillator solved with VMC.:
1 1

H = Ekzn + Epot — 5]92 =+ 5332

|.b) Trial wfc.:

(reasonable choice:
satisfies boundary conditions; correct symmetry; only one parameter)

B(a? — z?), for |z| < a; o a 2 15
Y(x) = {O,( ) for }x} o g Normalization: [* B?(a* —2?)?de =1 = B* = 1645

Ep(z) = @) _ ( L 1932)

a? —x2 2

(in this case the problem can be analytically solved:)

(Fiorr) = /_a %J; By (z)dz = / (a® — 22 (QQ . 5+ %x2> da

— / (a* — x dx-l—% _aa:2(a2—a:2)2da::%—|-cll—4
d<Et0t L(CL)> 2 39
’ =0 — — 4/ —, FEi, =0.6
da ‘! 2 tot
a =204
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Notice: the zero-variance property does not hold for this class of trial wfc's!
and the energy minimum does not correspond to the variance minimum

I | I I
psi(x)=(a”2-x2); potential: x"2/2 +——

1.8 | .

1.6 .

12 | T . _

<Etot> and error
|
|

08 1 .

02 " 1 | -
0 | | | | | (mln) | | -I-
1 1.2 1.4 1.6 1.8 2T 2.2 2.4 2.6
param eter a
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0.8

o
(o))

o
F'S

V(x), P(x), <E>

0.2
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Exercises

2) Anharmonic oscillator solved with VMC:

1 2 1 2 1 4
H = Egin + Epot = 5P +§CU +§x
Trial wfc.: >
P(x) = Ae™"*
(also in this case the problem can be analytically solved:)
1 1 3
Errr) = (= —282) =
(Etot,L.) (2 ﬁ>4ﬂ+6+128ﬂ2
d%;” —0 = B(4B°—1)= g — B~0.63, By~ 0.5725

(better than |st order perturbation theory)
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fO(0)(x)=.75"exp(-
pert. th. E¢(1)=.5937 ===
0.8 pert. th:jﬁ(j_)li)é,(;?&'ﬂ-0.09375‘(2’x"2-1 ) efp(-x**2/2)) ===
oo’y VMC: C)=.5725 e
2 “,‘..~--~--'""f“"'-'-'V.MG.‘,:IO(VMC)(x)=.795 i =63"X""2) rreees

0.6

o
F

V(x), P(x), <E>

0.2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
0sc. anarm. conx**4: cfr. soluz.:(0), perturb.(1), variaz.
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managing input/output

job_parabola Note:it must be executable!

make it with: ($prompt)> chmod u+x job_parabola
run with: ($prompt)> ./job_parabola

for sigmain 0.5 0.6 0.7 0.8 0.9 I.;do
cat > input << EOF

1000

$sigma

0.

5.

EOF

Ja.out < input >> dati
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Other exercises

3) Hydrogen atom solved with VMC:

we need the radial part of the laplacian
operator in polar coordinates:
2
or? r Or
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other Quantum Monte
Carlo methods

(not treated here)

* DIFFUSION MONTE CARLO

a technique to project the ground state wavefunction of the system
out of a trial wavefunction (provided that the two are not orthogonal).

* PATH INTEGRAL MONTE CARLO

useful for quantum calculations at non-zero temperatures, based on Feynman’s
imaginary time path integral description
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