Chapter 11 Survival strategies of pathogens in the host
Survival strategies of pathogens

In order to survive in a host a pathogen must be able to

• Penetrate into the body
• Attach to host cells for colonization
• Obtain nutrients which may be limiting within the host in order to multiply
• Disseminate or spread within the host and to other hosts
• Evade the host’s innate and adaptive immunity to persist in the host
Attach to host cells for colonization

An essential step in the successful infection and production of disease by microbial pathogens is their ability to interact with host cell components.

Physical attachment of bacteria to host tissues (adhesion) is accomplished by specific molecular interaction accompanied by changes in the phenotype of the bacterium and changes in the behavior of the host cell.

The ability to adhere enable a pathogen to target itself to a particular tissue (tissue tropism).

Adhesion: for pathogens growing extracellularly on the apical surface of an epithelium it needs to resist to mechanical clearing mechanisms or to overcome the normal microbiota; for invasive pathogens needs to cross an epithelial layer and to penetrate deeper within host tissues where further interactions with the underlying extracellular matrix (ECM). damaged ECM can be the basis for initiation and progression of bacteria infection; for bacteria with intracellular lifestyle: it is a first step that precedes their internalization within host cells.
Bacterial structures involved in adherence to host cells

Bacteria have evolved a very large arsenal of molecular strategies allowing them to target and adhere to host cells. Often they are synergistic in their function, and their expression is regulated on the basis of different environment.

Different type of adhesins:

a) at the tip of a scaffold-like structure on the bacterial surface (pili or fimbriae)

b) anchored in the bacterial surface exposed (afimbrial or non polymeric adhesins).

Pathogens bind to soluble proteins such as the ECM proteins or blood proteins (complements) that serve as a bridge between the bacterium and host cell surface.
Cell adhesion molecules as receptors

Non polymeric surface proteins that mediate the tighter binding of bacteria to host cell that often follow initial binding via pili. They are important components of the system that allow bacteria to attach to and, in same cases invade host cells.

<table>
<thead>
<tr>
<th>Pathogen</th>
<th>Ligand (adhesin)</th>
<th>Counterligand (receptor)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B. pertussis</td>
<td>FHA (RGD domain)</td>
<td>integrins</td>
</tr>
<tr>
<td>N. gonorrhoeae/meningitidis</td>
<td>Opa proteins</td>
<td>integrins</td>
</tr>
<tr>
<td>Staphylococcus</td>
<td>FnBP, LTA,</td>
<td>Fibronectin</td>
</tr>
<tr>
<td>Streptococcus</td>
<td>LTA, M protein, FnBP</td>
<td>Fibronectin</td>
</tr>
<tr>
<td>Yersinia</td>
<td>YadA</td>
<td>Fibronectin, Collagens</td>
</tr>
<tr>
<td>N. gonorrhoeae</td>
<td>Opc</td>
<td>HS proteoglycans, Fibronectin,</td>
</tr>
<tr>
<td>E. coli EPEC EHEC</td>
<td>Intimin</td>
<td>intimin receptor (Tir)</td>
</tr>
<tr>
<td>Listeria</td>
<td>Internalin,</td>
<td>E- cadherin</td>
</tr>
<tr>
<td>Shigella</td>
<td>IpaB, IpaC</td>
<td>CD44, integrin α2β1</td>
</tr>
<tr>
<td>Yersinia</td>
<td>Inv (Invasin)</td>
<td>α3,6β1Integrin</td>
</tr>
</tbody>
</table>
Non-polymeric adhesins: the trimeric autotransporter protein YadA of pathogenic Yersinia.

Structure of YadA of enteropathogenic species of Yersinia. It is an essential virulence factor of Y. enterocolitica, and removing this protein from the bacteria leads to avirulence.

YadA is the prototype of the subfamily of trimeric autotransporters, in which three autotransporter subunits associate to form the functional pore. YadA shows an extended triple α-helical coiled coil stalk attached to the β-barrel anchor and an N-terminal head with adhesive properties.

YadA head mediates adhesion to collagens, but also laminin, and fibronectin.

B,C = YadA head domain in side and top views

http://www.helsinki.fi/goldman/Pages/research3.html
Bacterially-Encoded Cellular Receptor

E. coli EPEC and EHEC have developed an original bacterial adhesion system to create an intimate contact with host cells. These pathogens induce characteristic lesions known as the "attaching and effacing". After attachment to intestinal epithelial cells bacteria induce the local effacement of absorptive microvilli and the formation of pedestal-like structures on which bacteria seat.

Through T3SS (coded by PAI LEE) they inject into the host an effector protein, Tir, that inserts into the host cell plasma membrane and serves as an “exogenous” receptor for the bacterial surface adhesin intimin into host target cells.

Tir is phosphorylated by host kinases and is involved in recruitment of host actin nucleators (WASP, Arp2/3) that in turn locally remolds actin cytoskeleton leading to the formation of bacterial-associated pedestals.
Intimin is shown in green colour. The Ig-like domains are shown as rectangles, and the lectin-like domain D3, which binds to the Tir intimin binding domain (IBD), as an oval. The N-terminal domain of Tir anchors host cytoskeletal components.
Bacterial invasion as a virulence mechanism

Pathogens (such as *Salmonella*, *Shigella*, *Neisseria*, *Mycobacterium tuberculosis*, *Listeria monocytogenes*, *E. coli EIEC*) are able to penetrate into host cells (invasive bacteria) by crossing the (tightly sealed) epithelium.

Some of them, such as *Salmonella spp.*, *L. monocytogenes*, and *Mycobacterium tuberculosis* also invade and survive within professional phagocytes (macrophages and neutrophils).

An intracellular lifestyle provides advantages for bacterial pathogens:
- they become inaccessible to humoral and complement attack
- they avoid shear stress-induced clearance
- they get access to a wide range of nutrients
Bacterial-induced phagocytosis

Invasive bacteria are able to induce their own phagocytosis into cells (epithelial and endothelial cells) that are **normally non-phagocytic** and that are not generally capable to engulfing particles as large as bacteria.

During bacterial-induced phagocytosis, the **bacterium is the key and active player** in the complex interplay between the invading microbe and the host cell.

To enter non-phagocytic cells such as intestinal epithelial cells, some microbial pathogens express surface proteins (adhesins) to bind eukaryotic **cell adhesion molecules (CAM)**, surface receptors involved in cell-matrix (**integrins**) or cell-cell adherence (**cadherins**).

Cell Adhesion Molecules are the molecules responsible for creating **cell junctions** that connect the epithelial and non epithelial cells each other and with ECM.
Cell surface receptors: integrins

Main cell surface receptors responsible for the attachment of cells to ECM playing important roles in adhesion and signaling in both epithelial and nonepithelial tissues. More than 20 members of heterodimeric transmembrane proteins. Different subunits α and β let to obtain combinatorial diversity.

Integrins bind to RGD motif present in fibronectin, and other recognition sequences in collagen and laminin providing a physical linkage between the ECM and the internal cytoskeleton.

Integrins typically exhibit low affinities for their ligands: multiple weak interactions generated by the binding of hundreds or thousands of integrin molecules to their ligands on ECM allow a cell to remain firmly anchored to its ligand-expressing target. The weakness of individual integrin-mediated interactions facilitates cell migration.
Cell-Cell adhesion: cadherins

Key molecules in cell–cell adhesion and cell signaling. They play a critical role during tissue differentiation.

Cadherins are a class of membrane glycoproteins folded into polypeptide chain repeats. Adhesiveness of cadherins depends on the presence of extracellular Ca²⁺, allowing interaction with similar domains on other cell (homophilic interactions).

Homophilic interactions (adherens junction) between E-cadherins lead to the selective adhesion of epithelial cells to one another.

Cadherins not only mediate cell-cell adhesion, but also influence the establishment of cytoskeletal networks.

The intracellular domain of cadherin is bound with catenins (signal transducer proteins) and actin filaments.

Stable adhesion junctions involving the cytoskeletons of adjacent cells are mediated by cadherins.

Chain repeats are alternated with Ca²⁺ ions which function to hold the chain together into a stiff structure, strong enough to link cadherins on one cell membrane interact with those on another cell in a zipper-like fashion forming a strong cell adhesion junction.

http://csls-text.c.u-tokyo.ac.jp/active/11_01.html
Two main mechanisms of entry are involved in this case, namely the **zipper** (*Yersinia* and *Listeria M.*) and the **trigger** (*Salmonella* and *Shigella*) mechanisms. Both of them rely on the activation of signaling cascades, leading to the **reorganization of the actin cytoskeleton** at the level of the host plasma membrane.
Zipper-like uptake mechanism

Uptake mechanism that involves a **bacterial surface molecule (invasin)** that binds tightly to a cellular host receptor. The bacterial molecule is expressed over the entire bacterial surface, thereby allowing sequential binding of additional molecules to the host receptors and "zippering" the pathogen into the host cell.

Expression of Invasin in non-pathogenic *E. coli* enables it to enter the non-phagocytic cells, such as epithelial cells.

Pathogenic *Yersinia spp.* encode an OM protein called **invasin**, resemble **fibronectin** and binds to host cell surface β1 integrins very tightly. The density of invasin particles present on the Yersinia OM and the density of β1 receptors on the host cells have to be high.

The higher affinity for integrins combined with the ability to oligomerize leads to **integrin receptor clustering**. These signals induce actin polymerization in the cell and membrane extension. The host cell membrane then wrap the surface of the bacterium.
Signal transduction in zipper mechanism of entry

The gram-positive food-borne pathogen *Listeria monocytogenes* uses a similar zipper mechanism of internalization based on transmembrane cell-adhesion proteins (*E cadherins*) as receptors for entry into mammalian cells the binding to a specific adhesion protein (*Internalin, InlA*) to

A Zipper mechanism

The initial interactions between the bacterial adhesion proteins in Yersinia or Listeria and their receptors trigger a cascade of signals that involve Rho GTPases and activate actin nucleators (N-WASP) and Arp2/3 responsible for synthesis of a local branched actin network that culminate in phagocytic cup closure and bacterial internalization.
The trigger mechanism of entry

In trigger mechanisms, exemplified by *Salmonella Typhimurium* and *Shigella flexneri*, the pathogen induces its internalization into non-phagocytic cells by injecting **soluble effector proteins** across the host membrane, often via the syringe-like T3SS, inducing a bloom of actin-rich membrane ruffles that engulf the bacterium and nearby particles.

Ruffles directly mediate macropinocytosis, a process in which extracellular cargo is taken up non-selectively.
The trigger mechanism induces membrane ruffling

Formation of a macropinocytic pocket involves localized but massive rearrangements of the cell surface, characterized by the formation of intricate filopodial and lamellipodial structures that appear similar in Salmonella and Shigella. Some injected bacteria effectors of Salmonella and Shigella activate host cell Rho GTPases (blue color) that stimulate actin cytoskeleton rearrangements and the Arp2/3 complex and allow membrane ruffling.
Crossing of host barriers

Several types of sentinel cells, such as M cells macrophages or dendritic cells (DCs) are continuously sensing the presence of pathogenic bacteria in the mucosal environment.

They may constitute entry portals for invasive pathogens. M cells are exploited by many different pathogens as a route of entry to deeper tissues of the host. (2).

A second route across the epithelium uses uptake by the projections that dendritic cells extend into the intestinal lumen (3).

Yersinia then reinvade epithelial cells basolaterally.

Nature Immunology 2, 288 - 290 (2001)
Many Pathogens Alter Membrane Traffic in Host Cells

A pathogenic microbe that has been internalized by a eukaryotic host cell must either avoid delivery to a degradative lysosomal compartment or develop strategies for survival within this degradative organelle.

They therefore must follow one of these strategies to survive:
1) escape from the compartment before getting digested (*L. monocytogenes*, *and Shigella* spp., viruses, and the protozoa *Trypanosoma cruzi*);
2) modify the compartment to prevent its fusion (*M. tuberculosis*, *S. enterica*, *L. pneumophila*).
3) find ways to survive in the hostile environment of the **phagolysosome** (in professional phagosomes) (*Coxiella burnetii*).

Different strategies adopted by pathogens to survive in the phagosome of the host cells.
Selective destruction of the phagosomal membrane to escape

L. monocytogenes induces its own uptake and escapes from vacuole. Within the phagosome, the bacterium secretes a **pore forming toxin** (listeriolysis, hemolysin in the figure) which creates **large pores** and eventually disrupt the membrane. *Shigella* escapes from the vacuole upon in a similar way.

Once in the host cell cytosol, the bacteria begin to replicate and continue to secrete the toxin. Because listeriolyis contains a **PEST sequence** is rapidly degraded by proteasomes, so that the host cell plasma membrane remains intact an the cell is nor damaged.

The LLO secreted by *L. monocytogenes* is closely related to hemolysins secreted by other bacteria that are not intracellular pathogens and all lack PEST sequences. It seems that the *L. monocytogenes* has acquired an essentially eukaryotic protein domain expressly to allow its activity to be regulated in the host cell.
Survival by inhibition of phagosome maturation

Some invasive bacterial pathogens (and some parasites) may alter the biogenesis and dynamics of their vacuolar compartment, thus creating for themselves a less hostile niche that is permissive for their survival and growth. These pathogens have a variety of strategies to manipulate the vesicle trafficking. They must prevent lysosomal fusion, and secondarily, they must provide a pathway for importing nutrients from the host cytosol.

Examining the association of the different Rab proteins on vacuoles containing bacterial pathogens has facilitated the determination of which host membrane transport pathways are utilized during infection. *M. tuberculosis, H. pylori* can survive within macrophage phagosomes inhibiting maturation of the early endosome-like vacuole that contains it. Fusion is prevented by retention on phagosome of a coat protein which is associated to the surface and that must be removed before it can be fused with lysosomes.
Remodelled endosomal compartments

After internalization *Salmonella* reside in an atypical acidic compartment called **SCV** (*Salmonella* containing vacuole) which acquire markers of both late and early endosome and shows typical Salmonella-induced filament (SIF) developed by bacterial effectors. Its maturation is arrested at a stage prior to lysosomal fusion.

L. Pneumophila shows mechanisms by which bacteria can subvert host factors involved in the transport of secretory vesicles to generate a vacuole derived from the host endoplasmic reticulum. Using a type IV secretion system it prevents fusion of the vacuole in which it resides with endosomal compartments and recruits vesicles derived from the ER.
Diverse pathogens “discovered” actin-based motility

Some invasive bacteria that replicate in the host cell cytosol (*Listeria monocytogenes*, *Shigella flexneri*) have adopted a remarkable mechanism for moving between cells very effectively, enabling them to evade the humoral immune response of the host. They induce the nucleation and assembly of host cell actin filaments at one pole of the bacterium. The growing filaments generate force and push the bacteria through the cytoplasm at rates up to 1 µm/sec.

The actin-based movement of *Listeria monocytogenes* within and between host cells comet-like tail of actin filaments (green) behind each moving bacterium (red).

When they reach the plasma membrane continue to move outward, inducing the formation of a long, thin protrusion with the bacterium at its tip which is often engulfed by a neighboring cell, allowing the bacterium to enter the neighbor's cytoplasm without exposure to the extracellular environment.
Pathogens exploit the Host Cell Cytoskeleton for Intracellular Movement

Molecular mechanisms of different pathogen-induced actin assembly have been determined. All of them make use of the same host cell regulatory pathway that normally controls the nucleation of actin filaments, but they exploit different points in the pathway.

L. monocytogenes surface protein (ActA) directly binds to and activates the ARP2/3 complex to initiate the formation of an actin tail, while an unrelated surface protein on *S. flexneri* (IcsA) binds to and activates actin nucleating factors.

Video on *L. monocytogenes* moving into host cell: http://www.youtube.com/watch?v=sF4BeU60yT8
<table>
<thead>
<tr>
<th>Strategy</th>
<th>mechanisms</th>
<th>Chapter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulators on the pathogen surface</td>
<td>carbohydrates such as capsules Change carbohydrates in the LPS</td>
<td>3, 5</td>
</tr>
<tr>
<td>Antigenic hypervariability</td>
<td>•Antigenic Variation in surface structures</td>
<td>7</td>
</tr>
<tr>
<td>Subvert or kill immune cells/phagocytes</td>
<td>•superantigens • avoid phagosome fusion with lysosome • block inflammatory pathways by injecting effectors</td>
<td>12, 11</td>
</tr>
<tr>
<td>Inhibit cytokines/interferon/chemokines activities</td>
<td>•block inflammatory pathways • secrete proteases to degrade cytokines</td>
<td></td>
</tr>
<tr>
<td>Interfere with TLRs</td>
<td>•Modification of lipid A to reduce TLR4 responses • inject effectors to inhibit downstream inflammation signaling</td>
<td></td>
</tr>
</tbody>
</table>
The actin monomer, a 42-kDa protein, is the basic unit for building a double-stranded helical actin filament.

One specific form of actin architecture involved in actin-based force generation for cell movement and shape changes is the branched network initiated by a complex made of seven proteins: the Arp2/3 complex.