
Docs » 1. Input

1. Input

Contents

Assignment

Reading a CSV file

Brief Note on Fixed Width Files

Here we explore how to define a data set in an R session.

Only two commands are explored. The first is for simple

assignment of data, and the second is for reading in a data

file. There are many ways to read data into an R session, but

we focus on just two to keep it simple.

1.1. Assignment

The most straight forward way to store a list of numbers is

through an assignment using the c command. (c stands for

“combine.”) The idea is that a list of numbers is stored

under a given name, and the name is used to refer to the

data. A list is specified with the c command, and

assignment is specified with the “<-” symbols. Another

term used to describe the list of numbers is to call it a

“vector.”

The numbers within the c command are separated by

commas. As an example, we can create a new variable,

called “bubba” which will contain the numbers 3, 5, 7, and 9:

> bubba <- c(3,5,7,9)
>

When you enter this command you should not see any

output except a new command line. The command creates

a list of numbers called “bubba.” To see what numbers is

included in bubba type “bubba” and press the enter key:

http://www.cyclismo.org/tutorial/R/index.html

> bubba
[1] 3 5 7 9

If you wish to work with one of the numbers you can get

access to it using the variable and then square brackets

indicating which number:

> bubba[2]
[1] 5
> bubba[1]
[1] 3
> bubba[0]
numeric(0)
> bubba[3]
[1] 7
> bubba[4]
[1] 9

Notice that the first entry is referred to as the number 1

entry, and the zero entry can be used to indicate how the

computer will treat the data. You can store strings using

both single and double quotes, and you can store real

numbers.

You now have a list of numbers and are ready to explore. In

the chapters that follow we will examine the basic

operations in R that will allow you to do some of the

analyses required in class.

1.2. Reading a CSV file

Unfortunately, it is rare to have just a few data points that

you do not mind typing in at the prompt. It is much more

common to have a lot of data points with complicated

relationships. Here we will examine how to read a data set

from a file using the read.csv function but first discuss the

format of a data file.

We assume that the data file is in the format called “comma

separated values” (csv). That is, each line contains a row of

values which can be numbers or letters, and each value is

separated by a comma. We also assume that the very first

row contains a list of labels. The idea is that the labels in

the top row are used to refer to the different columns of

values.

First we read a very short, somewhat silly, data file. The

data file is called simple.csv and has three columns of data

and six rows. The three columns are labeled “trial,” “mass,”

and “velocity.” We can pretend that each row comes from

an observation during one of two trials labeled “A” and “B.”

A copy of the data file is shown below and is created in

defiance of Werner Heisenberg:

silly.csv¶

trial mass velocity

trial mass velocity

A 10 12

A 11 14

B 5 8

B 6 10

A 10.5 13

B 7 11

The command to read the data file is read.csv. We have to

give the command at least one arguments, but we will give

three different arguments to indicate how the command

can be used in different situations. The first argument is the

name of file. The second argument indicates whether or not

the first row is a set of labels. The third argument indicates

that there is a comma between each number of each line.

The following command will read in the data and assign it

to a variable called “heisenberg:”

http://www.cyclismo.org/tutorial/R/_static/simple.csv

> heisenberg <-
read.csv(file="simple.csv",head=TRUE,sep=",")
> heisenberg
trial mass velocity
1 A 10.0 12
2 A 11.0 14
3 B 5.0 8
4 B 6.0 10
5 A 10.5 13
6 B 7.0 11
> summary(heisenberg)
trial mass velocity
A:3 Min. : 5.00 Min. : 8.00
B:3 1st Bu.: 6.25 1st Qu.:10.25
 Median : 8.50 Median :11.50
 Mean : 8.25 Mean :11.33
 3rd Qu.:10.38 3rd Qu.:12.75
 Max. :11.00 Max. :14.00

(Note that if you are using a Microsoft system the file

naming convention is different from what we use here. If

you want to use a backslash it needs to be escaped, i.e. use

two backslashes together “\.” Also you can specify what

folder to use by clicking on the “File” option in the main

menu and choose the option to specify your working

directory.)

To get more information on the different options available

you can use the help command:

> help(read.csv)

If R is not finding the file you are trying to read then it may

be looking in the wrong folder/directory. If you are using

the graphical interface you can change the working

directory from the file menu. If you are not sure what files

are in the current working directory you can use the dir()

command to list the files and the getwd() command to

determine the current working directory:

> dir()
[1] "fixedWidth.dat" "simple.csv" "trees91.csv"
"trees91.wk1"
[5] "w1.dat"
> getwd()
[1] "/home/black/write/class/stat/stat383-13F/dat"

The variable “heisenberg” contains the three columns of

data. Each column is assigned a name based on the header

(the first line in the file). You can now access each individual

column using a “$” to separate the two names:

> heisenberg$trial
[1] A A B B A B
Levels: A B
> heisenberg$mass
[1] 10.0 11.0 5.0 6.0 10.5 7.0
> heisenberg$velocity
[1] 12 14 8 10 13 11

If you are not sure what columns are contained in the

variable you can use the names command:

> names(heisenberg)
[1] "trial" "mass" "velocity"

We will look at another example which is used throughout

this tutorial. we will look at the data found in a spreadsheet

located at http://cdiac.ornl.gov/ftp/ndp061a/trees91.wk1 .

A description of the data file is located at

http://cdiac.ornl.gov/ftp/ndp061a/ndp061a.txt . The

original data is given in an excel spreadsheet. It has been

converted into a csv file, trees91.csv , by deleting the top

set of rows and saving it as a “csv” file. This is an option to

save within excel. (You should save the file on your

computer.) It is a good idea to open this file in a

spreadsheet and look at it. This will help you make sense of

how R stores the data.

The data is used to indicate an estimate of biomass of

ponderosa pine in a study performed by Dale W. Johnson,

J. Timothy Ball, and Roger F. Walker who are associated

with the Biological Sciences Center, Desert Research

Institute, P.O. Box 60220, Reno, NV 89506 and the

Environmental and Resource Sciences College of

Agriculture, University of Nevada, Reno, NV 89512. The

data is consists of 54 lines, and each line represents an

observation. Each observation includes measurements and

http://cdiac.ornl.gov/ftp/ndp061a/trees91.wk1
http://cdiac.ornl.gov/ftp/ndp061a/ndp061a.txt
http://www.cyclismo.org/tutorial/R/_static/trees91.csv

markers for 28 different measurements of a given tree. For

example, the first number in each row is a number, either 1,

2, 3, or 4, which signifies a different level of exposure to

carbon dioxide. The sixth number in every row is an

estimate of the biomass of the stems of a tree. Note that

the very first line in the file is a list of labels used for the

different columns of data.

The data can be read into a variable called “tree” in using

the read.csv command:

> tree <-
read.csv(file="trees91.csv",header=TRUE,sep=",");

This will create a new variable called “tree.” If you type in

“tree” at the prompt and hit enter, all of the numbers stored

in the variable will be printed out. Try this, and you should

see that it is difficult to make any sense out of the numbers.

There are many different ways to keep track of data in R.

When you use the read.csv command R uses a specific kind

of variable called a “data frame.” All of the data are stored

within the data frame as separate columns. If you are not

sure what kind of variable you have then you can use the

attributes command. This will list all of the things that R

uses to describe the variable:

> attributes(tree)
$names
[1] "C" "N" "CHBR" "REP" "LFBM"
"STBM" "RTBM" "LFNCC"
[9] "STNCC" "RTNCC" "LFBCC" "STBCC" "RTBCC"
"LFCACC" "STCACC" "RTCACC"
[17] "LFKCC" "STKCC" "RTKCC" "LFMGCC" "STMGCC"
"RTMGCC" "LFPCC" "STPCC"
[25] "RTPCC" "LFSCC" "STSCC" "RTSCC"

$class
[1] "data.frame"

$row.names
[1] "1" "2" "3" "4" "5" "6" "7" "8" "9" "10"
"11" "12" "13" "14" "15"
[16] "16" "17" "18" "19" "20" "21" "22" "23" "24" "25"
"26" "27" "28" "29" "30"
[31] "31" "32" "33" "34" "35" "36" "37" "38" "39" "40"
"41" "42" "43" "44" "45"
[46] "46" "47" "48" "49" "50" "51" "52" "53" "54"

The first thing that R stores is a list of names which refer to

each column of the data. For example, the first column is

called “C”, the second column is called “N.” Tree is of type

data.frame. Finally, the rows are numbered consecutively

from 1 to 54. Each column has 54 numbers in it.

If you know that a variable is a data frame but are not sure

what labels are used to refer to the different columns you

can use the names command:

> names(tree)
[1] "C" "N" "CHBR" "REP" "LFBM"
"STBM" "RTBM" "LFNCC"
[9] "STNCC" "RTNCC" "LFBCC" "STBCC" "RTBCC"
"LFCACC" "STCACC" "RTCACC"
[17] "LFKCC" "STKCC" "RTKCC" "LFMGCC" "STMGCC"
"RTMGCC" "LFPCC" "STPCC"
[25] "RTPCC" "LFSCC" "STSCC" "RTSCC"

If you want to work with the data in one of the columns

you give the name of the data frame, a “$” sign, and the

label assigned to the column. For example, the first column

in tree can be called using “tree$C:”

> tree$C
[1] 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
2 2 2 2 2 2 3 3 3 3 3 3 3
[39] 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4

1.3. Brief Note on Fixed Width Files

There are many ways to read data using R. We only give

two examples, direct assignment and reading csv files.

However, another way deserves a brief mention. It is

common to come across data that is organized in flat files

and delimited at preset locations on each line. This is often

called a “fixed width file.”

The command to deal with these kind of files is read.fwf.

Examples of how to use this command are not explored

here, but a brief example is given. If you would like more

Next 

information on how to use this command enter the

following command:

> help(read.fwf)

The read.fwf command requires at least two options. The

first is the name of the file and the second is a list of

numbers that gives the length of each column in the data

file. A negative number in the list indicates that the column

should be skipped. Here we give the command to read the

data file fixedWidth.dat . In this data file there are three

columns. The first colum is 17 characters wide, the second

column is 15 characters wide, and the last column is 7

characters wide. In the example below we use the optional

col.names option to specify the names of the columns:

 > a =
read.fwf('fixedWidth.dat',widths=c(-17,15,7),col.names=c('temp','offices'))

 > a
 temp offices
1 17.0 35
2 18.0 117
3 17.5 19
4 17.5 28

 Previous

 Sponsorship

This site generously supported by Datacamp.

Datacamp offers a free interactive introduction to R

coding tutorial as an additional resource. Already over

100,000 people took this free tutorial to sharpen their

R coding skills.

http://www.cyclismo.org/tutorial/R/types.html
http://www.cyclismo.org/tutorial/R/_static/fixedWidth.dat
http://www.cyclismo.org/tutorial/R/index.html
https://www.datacamp.com/
https://www.datacamp.com/courses/free-introduction-to-r

