
Docs » 2. Basic Data Types

2. Basic Data Types

Contents

Variable Types

Tables

We look at some of the ways that R can store and organize

data. This is a basic introduction to a small subset of the

different data types recognized by R and is not

comprehensive in any sense. The main goal is to

demonstrate the different kinds of information R can

handle. It is assumed that you know how to enter data or

read data files which is covered in the first chapter.

2.1. Variable Types

2.1.1. Numbers

The way to work with real numbers has already been

covered in the first chapter and is briefly discussed here.

The most basic way to store a number is to make an

assignment of a single number:

> a <- 3
>

The “<-” tells R to take the number to the right of the

symbol and store it in a variable whose name is given on

the left. You can also use the “=” symbol. When you make

an assignment R does not print out any information. If you

want to see what value a variable has just type the name of

the variable on a line and press the enter key:

> a
[1] 3

http://www.cyclismo.org/tutorial/R/index.html

This allows you to do all sorts of basic operations and save

the numbers:

> b <- sqrt(a*a+3)
> b
[1] 3.464102

If you want to get a list of the variables that you have

defined in a particular session you can list them all using

the ls command:

> ls()
[1] "a" "b"

You are not limited to just saving a single number. You can

create a list (also called a “vector”) using the c command:

> a <- c(1,2,3,4,5)
> a
[1] 1 2 3 4 5
> a+1
[1] 2 3 4 5 6
> mean(a)
[1] 3
> var(a)
[1] 2.5

You can get access to particular entries in the vector in the

following manner:

> a <- c(1,2,3,4,5)
> a[1]
[1] 1
> a[2]
[1] 2
> a[0]
numeric(0)
> a[5]
[1] 5
> a[6]
[1] NA

Note that the zero entry is used to indicate how the data is

stored. The first entry in the vector is the first number, and

if you try to get a number past the last number you get

“NA.”

Examples of the sort of operations you can do on vectors is

given in a next chapter.

To initialize a list of numbers the numeric command can be

used. For example, to create a list of 10 numbers, initialized

to zero, use the following command:

> a <- numeric(10)
> a
[1] 0 0 0 0 0 0 0 0 0 0

If you wish to determine the data type used for a variable

the type command:

> typeof(a)
[1] "double"

2.1.2. Strings

You are not limited to just storing numbers. You can also

store strings. A string is specified by using quotes. Both

single and double quotes will work:

> a <- "hello"
> a
[1] "hello"
> b <- c("hello","there")
> b
[1] "hello" "there"
> b[1]
[1] "hello"

The name of the type given to strings is character,

> typeof(a)
[1] "character"
> a = character(20)
> a
[1] "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" ""
"" "" ""

2.1.3. Factors

Another important way R can store data is as a factor.

Often times an experiment includes trials for different

levels of some explanatory variable. For example, when

looking at the impact of carbon dioxide on the growth rate

of a tree you might try to observe how different trees grow

when exposed to different preset concentrations of carbon

dioxide. The different levels are also called factors.

Assuming you know how to read in a file, we will look at the

data file given in the first chapter. Several of the variables in

the file are factors:

> summary(tree$CHBR)
A1 A2 A3 A4 A5 A6 A7 B1 B2 B3 B4 B5 B6 B7
C1 C2 C3 C4 C5 C6
3 1 1 3 1 3 1 1 3 3 3 3 3 3
1 3 1 3 1 1
C7 CL6 CL7 D1 D2 D3 D4 D5 D6 D7
1 1 1 1 1 3 1 1 1 1

Because the set of options given in the data file

corresponding to the “CHBR” column are not all numbers R

automatically assumes that it is a factor. When you use

summary on a factor it does not print out the five point

summary, rather it prints out the possible values and the

frequency that they occur.

In this data set several of the columns are factors, but the

researchers used numbers to indicate the different levels.

For example, the first column, labeled “C,” is a factor. Each

trees was grown in an environment with one of four

different possible levels of carbon dioxide. The researchers

quite sensibly labeled these four environments as 1, 2, 3,

and 4. Unfortunately, R cannot determine that these are

factors and must assume that they are regular numbers.

This is a common problem and there is a way to tell R to

treat the “C” column as a set of factors. You specify that a

variable is a factor using the factor command. In the

following example we convert tree$C into a factor:

> tree$C
[1] 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
2 2 2 2 2 2 3 3 3 3 3 3 3
[39] 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4
> summary(tree$C)
 Min. 1st Qu. Median Mean 3rd Qu. Max.
 1.000 2.000 2.000 2.519 3.000 4.000
> tree$C <- factor(tree$C)
> tree$C
[1] 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
2 2 2 2 2 2 3 3 3 3 3 3 3
[39] 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4
Levels: 1 2 3 4
> summary(tree$C)
1 2 3 4
8 23 10 13
> levels(tree$C)
[1] "1" "2" "3" "4"

Once a vector is converted into a set of factors then R

treats it differently. A set of factors have a discrete set of

possible values, and it does not make sense to try to find

averages or other numerical descriptions. One thing that is

important is the number of times that each factor appears,

called their “frequencies,” which is printed using the

summary command.

2.1.4. Data Frames

Another way that information is stored is in data frames.

This is a way to take many vectors of different types and

store them in the same variable. The vectors can be of all

different types. For example, a data frame may contain

many lists, and each list might be a list of factors, strings, or

numbers.

There are different ways to create and manipulate data

frames. Most are beyond the scope of this introduction.

They are only mentioned here to offer a more complete

description. Please see the first chapter for more

information on data frames.

One example of how to create a data frame is given below:

> a <- c(1,2,3,4)
> b <- c(2,4,6,8)
> levels <- factor(c("A","B","A","B"))
> bubba <- data.frame(first=a,
 second=b,
 f=levels)
> bubba
first second f
1 1 2 A
2 2 4 B
3 3 6 A
4 4 8 B
> summary(bubba)
 first second f
Min. :1.00 Min. :2.0 A:2
1st Qu.:1.75 1st Qu.:3.5 B:2
Median :2.50 Median :5.0
Mean :2.50 Mean :5.0
3rd Qu.:3.25 3rd Qu.:6.5
Max. :4.00 Max. :8.0
> bubba$first
[1] 1 2 3 4
> bubba$second
[1] 2 4 6 8
> bubba$f
[1] A B A B
Levels: A B

2.1.5. Logical

Another important data type is the logical type. There are

two predefined variables, TRUE and FALSE:

> a = TRUE
> typeof(a)
[1] "logical"
> b = FALSE
> typeof(b)
[1] "logical"

The standard logical operators can be used:

< less than

> great than

<= less than or equal

>= greater than or equal

== equal to

!= not equal to

| entry wise or

|| or

! not

& entry wise and

&& and

xor(a,b) exclusive or

Note that there is a difference between operators that act

on entries within a vector and the whole vector:

> a = c(TRUE,FALSE)
> b = c(FALSE,FALSE)
> a|b
[1] TRUE FALSE
> a||b
[1] TRUE
> xor(a,b)
[1] TRUE FALSE

There are a large number of functions that test to

determine the type of a variable. For example the

is.numeric function can determine if a variable is numeric:

> a = c(1,2,3)
> is.numeric(a)
[1] TRUE
> is.factor(a)
[1] FALSE

2.2. Tables

Another common way to store information is in a table.

Here we look at how to define both one way and two way

tables. We only look at how to create and define tables; the

functions used in the analysis of proportions are examined

in another chapter.

2.2.1. One Way Tables

The first example is for a one way table. One way tables are

not the most interesting example, but it is a good place to

start. One way to create a table is using the table

command. The arguments it takes is a vector of factors, and

it calculates the frequency that each factor occurs. Here is

an example of how to create a one way table:

> a <- factor(c("A","A","B","A","B","B","C","A","C"))
> results <- table(a)
> results
a
A B C
4 3 2
> attributes(results)
$dim
[1] 3

$dimnames
$dimnames$a
[1] "A" "B" "C"

$class
[1] "table"

> summary(results)
Number of cases in table: 9
Number of factors: 1

If you know the number of occurrences for each factor then

it is possible to create the table directly, but the process is,

unfortunately, a bit more convoluted. There is an easier

way to define one-way tables (a table with one row), but it

does not extend easily to two-way tables (tables with more

than one row). You must first create a matrix of numbers. A

matrix is like a vector in that it is a list of numbers, but it is

different in that you can have both rows and columns of

numbers. For example, in our example above the number of

occurrences of “A” is 4, the number of occurrences of “B” is

3, and the number of occurrences of “C” is 2. We will create

one row of numbers. The first column contains a 4, the

second column contains a 3, and the third column contains

a 2:

> occur <- matrix(c(4,3,2),ncol=3,byrow=TRUE)
> occur
 [,1] [,2] [,3]
[1,] 4 3 2

At this point the variable “occur” is a matrix with one row

and three columns of numbers. To dress it up and use it as a

table we would like to give it labels for each columns just

like in the previous example. Once that is done we convert

the matrix to a table using the as.table command:

> colnames(occur) <- c("A","B","C")
> occur
 A B C
[1,] 4 3 2
> occur <- as.table(occur)
> occur
 A B C
A 4 3 2
> attributes(occur)
$dim
[1] 1 3

$dimnames
$dimnames[[1]]
[1] "A"

$dimnames[[2]]
[1] "A" "B" "C"

$class
[1] "table"

2.2.2. Two Way Tables

If you want to add rows to your table just add another

vector to the argument of the table command. In the

example below we have two questions. In the first question

the responses are labeled “Never,” “Sometimes,” or

“Always.” In the second question the responses are labeled

“Yes,” “No,” or “Maybe.” The set of vectors “a,” and “b,”

contain the response for each measurement. The third item

in “a” is how the third person responded to the first

question, and the third item in “b” is how the third person

responded to the second question.

Next 

> a <-
c("Sometimes","Sometimes","Never","Always","Always","Sometimes"

> b <-
c("Maybe","Maybe","Yes","Maybe","Maybe","No","Yes","No")

> results <- table(a,b)
> results
 b
a Maybe No Yes
 Always 2 0 0
 Never 0 1 1
 Sometimes 2 1 1

The table command allows us to do a very quick

calculation, and we can immediately see that two people

who said “Maybe” to the first question also said

“Sometimes” to the second question.

Just as in the case with one-way tables it is possible to

manually enter two way tables. The procedure is exactly

the same as above except that we now have more than one

row. We give a brief example below to demonstrate how to

enter a two-way table that includes breakdown of a group

of people by both their gender and whether or not they

smoke. You enter all of the data as one long list but tell R to

break it up into some number of columns:

> sexsmoke<-matrix(c(70,120,65,140),ncol=2,byrow=TRUE)
> rownames(sexsmoke)<-c("male","female")
> colnames(sexsmoke)<-c("smoke","nosmoke")
> sexsmoke <- as.table(sexsmoke)
> sexsmoke
 smoke nosmoke
male 70 120
female 65 140

The matrix command creates a two by two matrix. The

byrow=TRUE option indicates that the numbers are filled

in across the rows first, and the ncols=2 indicates that

there are two columns.

 Previous

 Sponsorship

http://www.cyclismo.org/tutorial/R/basicOps.html
http://www.cyclismo.org/tutorial/R/input.html

This site generously supported by Datacamp.

Datacamp offers a free interactive introduction to R

coding tutorial as an additional resource. Already over

100,000 people took this free tutorial to sharpen their

R coding skills.

https://www.datacamp.com/
https://www.datacamp.com/courses/free-introduction-to-r

