3. Basic Operations and Numerical Descriptions

Contents

- Basic Operations
- Basic Numerical Descriptions
- Operations on Vectors

We look at some of the basic operations that you can perform on lists of numbers. It is assumed that you know how to enter data or read data files which is covered in the first chapter, and you know about the basic data types.

3.1. Basic Operations

Once you have a vector (or a list of numbers) in memory most basic operations are available. Most of the basic operations will act on a whole vector and can be used to quickly perform a large number of calculations with a single command. There is one thing to note, if you perform an operation on more than one vector it is often necessary that the vectors all contain the same number of entries.

Here we first define a vector which we will call "a" and will look at how to add and subtract constant numbers from all of the numbers in the vector. First, the vector will contain the numbers 1, 2, 3, and 4. We then see how to add 5 to each of the numbers, subtract 10 from each of the numbers, multiply each number by 4, and divide each number by 5.

```
> a <- c(1,2,3,4)
> a
[1] 1 2 3 4
> a + 5
[1] 6 7 8 9
> a - 10
[1] -9 -8 -7 -6
> a*4
[1] 4 8 12 16
> a/5
[1] 0.2 0.4 0.6 0.8
```

We can save the results in another vector called *b*:

```
> b <- a - 10
> b
[1] -9 -8 -7 -6
```

If you want to take the square root, find e raised to each number, the logarithm, etc., then the usual commands can be used:

```
> sqrt(a)
[1] 1.000000 1.414214 1.732051 2.000000
> exp(a)
[1] 2.718282 7.389056 20.085537 54.598150
> log(a)
[1] 0.0000000 0.6931472 1.0986123 1.3862944
> exp(log(a))
[1] 1 2 3 4
```

By combining operations and using parentheses you can make more complicated expressions:

```
> c <- (a + sqrt(a))/(exp(2)+1)
> c
[1] 0.2384058 0.4069842 0.5640743 0.7152175
```

Note that you can do the same operations with vector arguments. For example to add the elements in vector a to the elements in vector b use the following command:

```
> a + b
[1] -8 -6 -4 -2
```

The operation is performed on an element by element basis. Note this is true for almost all of the basic functions. So you can bring together all kinds of complicated expressions:

```
> a*b
[1] -9 -16 -21 -24
> a/b
[1] -0.1111111 -0.2500000 -0.4285714 -0.66666667
> (a+3)/(sqrt(1-b)*2-1)
[1] 0.7512364 1.0000000 1.2884234 1.6311303
```

You need to be careful of one thing. When you do operations on vectors they are performed on an element by element basis. One ramification of this is that all of the vectors in an expression must be the same length. If the lengths of the vectors differ then you may get an error message, or worse, a warning message and unpredictable results:

As you work in R and create new vectors it can be easy to lose track of what variables you have defined. To get a list of all of the variables that have been defined use the ls() command:

```
> ls()
[1] "a" "b" "bubba" "c"
"last.warning"
[6] "tree" "trees"
```

Finally, you should keep in mind that the basic operations almost always work on an element by element basis. There are rare exceptions to this general rule. For example, if you look at the minimum of two vectors using the min command you will get the minimum of all of the numbers. There is a special command, called pmin, that may be the command you want in some circumstances:

```
> a <- c(1,-2,3,-4)
> b <- c(-1,2,-3,4)
> min(a,b)
[1] -4
> pmin(a,b)
[1] -1 -2 -3 -4
```

3.2. Basic Numerical Descriptions

Given a vector of numbers there are some basic commands to make it easier to get some of the basic numerical descriptions of a set of numbers. Here we assume that you can read in the tree data that was discussed in a previous chapter. It is assumed that it is stored in a variable called *tree*:

```
> tree <-
read.csv(file="trees91.csv",header=TRUE,sep=",");
> names(tree)
[1] "C" "N" "CHBR" "REP" "LFBM"
"STBM" "RTBM" "LFNCC"
[9] "STNCC" "RTNCC" "LFBCC" "STBCC" "RTBCC"
"LFCACC" "STCACC" "RTCACC"
[17] "LFKCC" "STKCC" "RTKCC" "LFMGCC" "STMGCC"
"RTMGCC" "LFPCC" "STPCC"
[25] "RTPCC" "LFSCC" "STSCC" "RTSCC"
```

Each column in the data frame can be accessed as a vector. For example the numbers associated with the leaf biomass (LFBM) can be found using *tree\$LFBM*:

```
> tree$LFBM
[1] 0.430 0.400 0.450 0.820 0.520 1.320 0.900 1.180
0.480 0.210 0.270 0.310
[13] 0.650 0.180 0.520 0.300 0.580 0.480 0.580 0.580
0.410 0.480 1.760 1.210
[25] 1.180 0.830 1.220 0.770 1.020 0.130 0.680 0.610
0.700 0.820 0.760 0.770
[37] 1.690 1.480 0.740 1.240 1.120 0.750 0.390 0.870
0.410 0.560 0.550 0.670
[49] 1.260 0.965 0.840 0.970 1.070 1.220
```

The following commands can be used to get the mean, median, quantiles, minimum, maximum, variance, and standard deviation of a set of numbers:

Finally, the *summary* command will print out the min, max, mean, median, and quantiles:

```
> summary(tree$LFBM)
    Min. 1st Qu. Median Mean 3rd Qu. Max.
    0.1300 0.4800 0.7200 0.7649 1.0080 1.7600
```

The summary command is especially nice because if you give it a data frame it will print out the summary for every vector in the data frame:

<pre>> summary(tree)</pre>				
С	Ν	CHBR	REP	
LFBM				
Min. :1.000	Min. :1.000	A1 : 3 M	1in. :	
1.00 Min. :0	1300			
1st 0u :2 000	1st 0u ·1 000	Δ/ · 3	1st 0u ·	
13t Qui.izi000	1000		LSC QUII	
9.00 ISL QU.:0	. 4000 Madáan 2,000		4	
Median :2.000	Median :2.000	A0 : 3 I	legian	
:14.00 Median	:0.7200			
Mean :2.519	Mean :1.926	B2 : 3 N	lean	
:13.05 Mean	:0.7649			
3rd Qu.:3.000	3rd Qu.:3.000	B3 : 3 3	3rd	
Qu.:20.00 3rd (Qu.:1.0075			
Max. :4.000	Max. :3.000	B4 : 3 M	1ax.	
:20.00 Max.	:1.7600			
		$(0 \pm her) \cdot 36$ NA $\pm c$		
.11 00		(01101)150 1		
	ртрм			
SIBM	RIBM	LFNCC		
SINCC				
Min. :0.0300	Min. :0.1200	Min. :0.88	30	
Min. :0.3700				
1st Qu.:0.1900	1st Qu.:0.2825	1st Qu.:1.31	12 1st	
Qu.:0.6400				
Median :0.2450	Median :0.4450	Median :1.55	50	
Median :0.7850				
Mean :0 2883	Mean •0 /662	Mean 156	50	
Moon :0 7872	1014002			
Predit :0.7072		2 md 0 1 70	20 2	
310 QU.:0.3800	310 QU.:0.5500	3ra Qu.:1.78	58 510	
Qu.:0.9350				
Max. :0.7200	Max. :1.5100	Max. :2.76	50	
Max. :1.2900				
RTNCC	LFBCC	STBCC		
RTBCC				
Min. :0.4700	Min. :25.00	Min. :14.00) Min.	
15 00			,	
1ct 0u :0 6000	1ct 0u :34 00	1ct 0u .17 00) 1c+	
1St Qu0.0000	ISC QU54.00	15t Qu17.00	9 150	
QU.:19.00	M 11 07 00	M 1' 10 0		
Median :0.7500	Median :37.00	Median :18.00	.)	
Median :20.00				
Mean :0.7394	Mean :36.96	Mean :18.80) Mean	
:21.43				
3rd Qu.:0.8100	3rd Qu.:41.00	3rd Qu.:20.00	9 3rd	
Qu.:23.00				
Max. :1.5500	Max. :48.00	Max. :27.00) Max.	
·41 00				
112100				
	STONCO	PTCACC		
	STCACC	RICACC		
LFKU				
Min. :0.2100	Min. :0.1300	Min. :0.1.	100	
Min. :0.6500				
1st Qu.:0.2600	1st Qu.:0.1600	1st Qu.:0.10	500	
lst Qu.:0.8100				
Median :0.2900	Median :0.1700	Median :0.16	550	
Median :0.9000				
Mean :0.2869	Mean :0.1774	Mean :0.16	554	
Mean :0.9053				
3rd 01 .0 3100	3rd () 1275	3rd Au ·A 17	700	
	5.4 (4110110/5			
210 QU. 0.3300				

Max. Max.	:0.3600 :1.1800	Max.	:0.2400	Max.	:0.2400	
NA's	:1.0000					
STKCC		RTKCC		LFMGCC		
STMGCC						
Min. ∙0 100	:0.870	Min.	:0.330	Min.	:0.0700	Min.
1st Qu	.:0.940	1st Qu.	:0.400	1st Qu.	:0.1000	1st
Qu.:0.1	10					
Median	:1.055	Median	:0.475	Median	:0.1200	
Median	:0.130					
Mean	:1.105	Mean	:0.473	Mean	:0.1109	Mean
3rd Qu	.:1.210	3rd Qu.	:0.520	3rd Qu.	:0.1300	3rd
Qu.:0.1	50			-		
Max.	:1.520	Max.	:0.640	Max.	:0.1400	Max.
:0.190						
RT	MGCC	L	.FPCC		STPCC	
RTPCC						
Min.	:0.04000	Min.	:0.1500	9 Min.	:0.150	0
Min.	:0.1000					
1st Qu	.:0.06000	lst Q	u.:0.2000	9 1st	Qu.:0.220	0
1st Qu.	:0.1300					
Median Median	:0.07000 :0.1450	Media	in :0.2400	9 Medi	lan :0.280	Θ
Mean	:0.06648	Mean	:0.238	1 Mear	n :0.270	7
Mean	:0.1465	Dural 0		0 Jud	0	-
3rd Qu 3rd Ou.	:0.1600	3ra Q	u.:0.2700	9 3ra	QU.:0.31/	5
Max.	:0.09000	Max.	:0.310	9 Max.	:0.410	0
Max.	:0.2100					
LF	SCC	ST	SCC	F	RTSCC	
Min.	:0.0900	Min.	:0.1400	Min.	:0.0900	
1st Qu	.:0.1325	1st Qu	.:0.1600	lst ()u.:0.1200	
Median	:0.1600	Median	:0.1800	Media	an :0.1300	
Mean	:0.1661	Mean	:0.1817	Mean	:0.1298	
3rd Qu	.:0.1875	3rd Qu	.:0.2000	3rd ()u.:0.1475	
Max.	:0.2600	Max.	:0.2800	Max.	:0.1700	

3.3. Operations on Vectors

Here we look at some commonly used commands that perform operations on lists. The commands include the *sort, min, max,* and *sum* commands. First, the *sort* command can sort the given vector in either ascending or descending order:

```
> a = c(2,4,6,3,1,5)
> b = sort(a)
> c = sort(a,decreasing = TRUE)
> a
[1] 2 4 6 3 1 5
> b
[1] 1 2 3 4 5 6
> c
[1] 6 5 4 3 2 1
```

The *min* and the *max* commands find the minimum and the maximum numbers in the vector:

> **min**(a) [1] 1 > **max**(a) [1] 6

Finally, the *sum* command adds up the numbers in the vector:

G Previous

Next 🕄

Operation Sponsorship

This site generously supported by Datacamp. Datacamp offers a free interactive introduction to R coding tutorial as an additional resource. Already over 100,000 people took this free tutorial to sharpen their R coding skills.