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Inference @

- Hypothesis testing

A statistical hypothesis test is a method of making statistical decisions
from and about experimental data. Null-hypothesis testing just answers the
guestion of "how well do the findings fit the possibility that chance factors
alone might be responsible?”.
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Inferential statistics: logics

- Hypothesis testing
Statistical testing In five steps:

1. Construct a null hypothesis (HO) (RESEARCH QUESTION)
E.g. HO: Does spruce productivity depend on soil fertility?

2. Choose a statistical analysis
E.g. Regression between N and P and biomass

3. Collect the data (sampling)
E.g. Sampling of 145 sites with different level of fertility

4. Calculate P-value and test statistic

Test of our regression model (F-test) Commpn error
Sampling before (1)

: . constructing the hypothesis and
5. Reject/accept (HO) if p is small/large 2) choosin% the s)t/aftistical

(ANSWER THE QUESTION) analysis



Key concepts

- Hypothesis testing

Statistical testing in five steps:

1. Construct a null hypothesis (HO)

2. Choose a statistical analysis (assumptions!!!)
3. Collect the data (sampling)

4. Calculate P-value and test statistic

5. Rejectlaccept (HO) if P is small/large v

Remember the order!!!

Concept of replication vs. pseudoreplication
1. Spatial dependence (e.g. spatial autocorrelation)
2. Temporal dependence (e.g. repeated measures)

3. Biological dependence (e.g. siblings) n=6
A Yi
®
o
Key quantities o ]
residual

_Zy,- . oo 2 Y | mean

mean = deviance =SS —Z (y. - mean)
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(n-1)



Hypothesis testing

- Hypothesis testing

* 1 - Hypothesis formulation (Null hypothesis HO vs. alternative
hypothesis H1)

* 2 — Compute the probability P that HO is false;

* 3 - If this probability is lower than a defined threshold we can
reject the null hypothesis



Statistical Analyses
] Hypothesistestng

Mean comparisons for 2 populations

Test the difference between the means drawn by two samples

Correlation

In probability theory and statistics, correlation, (often measured as a
correlation coefficient), indicates the strength and direction of a linear
relationship between two random variables. In general statistical usage,
correlation refers to the departure of two variables from independence.

Introduction to Statistical Modelling
Basic concept
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http://en.wikipedia.org/wiki/Probability_theory
http://en.wikipedia.org/wiki/Statistics
http://en.wikipedia.org/wiki/Random_variables

Mean Comparison for 2 Samples

- Hypothesis testing

HO: means do not differ
H1: means differ

Assumptions
* Independence of cases - this is a requirement of the design.
* Normality - the distributions in each of the groups are normal

* Homogeneity of variances - the variance of data in groups should be the
same (use Fisher test or Eligner's test for homogeneity of variances).

* These together form the common assumption that the errors are
independently, identically, and normally distributed
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http://en.wikipedia.org/wiki/Statistical_independence
http://en.wikipedia.org/wiki/Normal_distribution
http://en.wikipedia.org/wiki/Normal_distribution
http://en.wikipedia.org/wiki/Homoscedasticity
http://en.wikipedia.org/wiki/Levene%27s_test
http://en.wikipedia.org/wiki/Errors_and_residuals_in_statistics

Normality
o

Hypothesis testing

need to test our distribution (not always before!!!)

Before we can carry out a test assuming normality of the data we

Graphics analysis

Shpiro-WiIk Normality Test

% UNIVERSITA ;
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Normal qgplot

In many cases we B - g
must check this g ] s o
assumption after | & ©° g
having fitted the | * . | 2 .
— O o
model o
(e.g. re_gressipn or 0 5 10 15 1 0 1 2
multifactorial ass norm quantiles
ANOVA) hist(y) library(car)
lines(density(y)) qq.plot(y) or qqnorm(y)
RESIDUALS MUST _
BE NORMAL Test for normality

shapiro.test()



Basic concepts: Normal distribution

Frob
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The normal distribution is ubiquitous in nature and statistics due to
the central limit theorem: every variable that can be modelled as a
sum of many small independent variables is approximately normal.
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http://en.wikipedia.org/wiki/Normal_distribution
http://en.wikipedia.org/wiki/Central_limit_theorem

Basic concepts: Poisson distribution

The Poisson distribution, which describes a very large number of
individually unlikely events that happen (count data)
Non-negative values

Variance=mean

Right skewed

1 Parameter: A (mean=variance)

Use: count data

Sample from a Poisson distribution
(n=1000, mean=variance=0.2)
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http://en.wikipedia.org/wiki/Poisson_distribution

Basic concepts: Binomial distribution

Varlance

The binomial distribution describes the number of
successes in a finite series of independent Yes/No
experiments.

2 Parameters: sample size, probability

Use: proportion data and power analysis
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http://en.wikipedia.org/wiki/Binomial_distribution

Normality: Histogram and QQ plot

- Hypothesis testing

Histogram of fishes$mas Histogram of log(fishes$mas)
Normal distribution must be
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Normaliy: Quantile-Quantile Plot
|  Hypothesistesting

Normality: Quantile-Quantile Plot

IGR

Quantiles are points taken at o o

regular intervals from the SR il
cumulative distribution function ek

(CDF) of a random variable. : :

The quantiles are the data R N R
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http://en.wikipedia.org/wiki/Cumulative_distribution_function
http://en.wikipedia.org/wiki/Random_variable

Not Normal...what to do?

- Hypothesis testing
In case of non-normality: 2 possible approaches

1. Change the distribution (use GLMs) Advanced statistics

E.g. Poisson (count data)
E.g. Binomial (proportion)

- o _
2. Data transformation S - N
> T > ®
Log 2 o =
g 8 S S-
Square-root o - o
LL o | LL 8 -
. —
Arcsin (percentage)
© _I [ [ | © _I 1T 1 11
Probit (proportion) 0 5 10 15 05 05 15 25
mass fishes$logmass

Box-Cox transformation
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Box - Cox Normalization
| Hypothesistestng

Lambda Transformed -
A Y, = Y* i SRR
A=2  Yg=Y?

A =05 Y,=YR2=Y

A =0  Yy=loge(Y)

A=-05 Yg=1/Y12
=1 Yo =11Y

lambda parameter
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X)., _1
XIRAS — T XTMS = log(X)
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Homogeneity of Variance for two samples

- Hypothesis testing

Before we can carry out a test to compare two sample means,
we need to test whether the sample variances are significantly
different. The test could not be simpler. It is called Fisher’s F

To compare two variances, all you do is
divide the larger variance by the smaller variance.

E.g. Students from A group vs. Students from B group

F<-var(A)/var(B) F calculated

qf(0.975,n,-1,n_-1) F critical

If the calculated F is larger than Test can be carried
out with the

the critical value, we reject the null hypothesis var.test()
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Homogeneity of Variance > two samples
] Hypothesistestng_

It is important to know whether variance differs significantly
from sample to sample. Constancy of variance
(homoscedasticity) is the most important assumption
underlying regression and analysis of variance. For multiple
samples you can choose between the

Bartlett test and the Fligner—Killeen test.

Bartlett.test(response, factor)

Fligner.test(response, factor)

There are differences between the tests: Fisher and Bartlett are
very sensitive to outliers, whereas Fligner—Killeen is not
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Mean Comparisons

- Hypothesis testing

In many cases, a researcher is interesting in gathering information about
two populations in order to compare them. As in statistical inference for
one population parameter, confidence intervals and tests of significance
are useful statistical tools for the difference between two population
parameters.

Ho: the two means are the same
H1: the two means differ

- All Assumptions met? Parametric t.test ()
- t test with independent or paired sample

-Some assumptions not met? Non-parametric Wilcox.test()

- The Wilcoxon signhed-rank test is a non-parametric alternative to the
Student's t-test for the case of two samples.
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http://en.wikipedia.org/wiki/Non-parametric_statistics
http://en.wikipedia.org/wiki/Student%27s_t-test
http://www.stat.yale.edu/Courses/1997-98/101/confint.htm
http://www.stat.yale.edu/Courses/1997-98/101/sigtest.htm

Mean Comparison: Two independent sample

- Hypothesis testing

Students on the left Students on the right

The two samples
are statistically

iIndependent
var, var _
SE i = @40 Test can be carried
n, n, out with the
t.test() function

__mean, - mean,

SE 4
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T-Test for paired samples

- Hypothesis testing

E.g. Test your performance before or after
the course. | measure twice on the same
student

————>Tmela:1,2,3,23,2,2

Za-b)/n \ Time2hb:1,2,1,1,5,1,2

SD,; /<n

If we have information about dependence,

we have to use this!!! Test can be carried

out with the
t.test () function
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Correlation

Correlation, (often measured as a correlation coefficient),
Indicates the strength and direction of a linear relationship
between two random variables

Bird species Plant species

richness richness *x»\
l, |

X4

2 |2

w
w

X
X

Sampling unit
X

4 |4

T X s -
Three altérnative app‘%aches >
1. Parametric - cor () ‘ n
2. Nonparametric - cor() »

..3. Bootstrapping - repkicate(), boot() nn
Jeg. UNIVERSITA
.o ¥, DEGLI STUDI DI TRIESTE D“ o

A VITA




Correlation: causal relationship?

N\
Which is the response vagaple in a correlation analysis?

Q
Bird species Plant species }X)\ -

richness richness ;{;“;’
X; L ~$H11

2 Sampling unit

B~ W DN B

X I
X3 |3
X I

4 4 S 11T
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Correlation

- Hypothesis testing

Plot the two variables in a Cartesian space

J e s e
)

5’*’:@%

A correlation of +1 means that there is a perfect positive LINEAR
relationship between variables.

A correlation of -1 means that there is a perfect negative LINEAR
relationship between variables.

A correlation of 0 means there is no LINEAR relationship between the two
variables.



Correlation

- Hypothesis testing

Same correlation coefficient!

x3 x4



Parametric correlation: when is significant?

- Hypothesis testing

Pearson product-moment correlation coefficient

Correlation coefficient: Z (xy) 5
SE_ = \/ (1- cor?)
n- 2

Hypothesis testing using the t distribution:
Ho:Iscor=0

Hl:Iscor#Z0
cor
t = T | > t critic value for d.f. = n-2

Assumptions
- Two random variables from a random populations

- cor () detects ONLY linear relationships



Nonparametric correlation

- Hypothesis testing

Rank procedures Distribution-free but

less power
Spearman correlation index

Z (rank,rank,)

\/ Z rank ° Z ranky2

cor.spearmdan =

The Kendall tau rank correlation coefficient

4P
nn-1)

cor.kendall =

P is the number of concordant pairs
n is the total number of pairs



Scale-dependent correlation
- Hypothesis testing

NB Don’t use grouped data to compute overall correlation!!!
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Statistical modelling
Hypothesis testing

MODEL
Generally speaking, a statistical model is a function of your
explanatory variables to explain the variation in your response
variable (y)

E.g. Y=a+bx,+cx,+ dx,
Y= response variable (performance of the students)
X.= explanatory variables (ability of the teacher, background, age)

The object is to determine the values of the parameters (a, b, ¢ and
d) in a specific model that lead to the best fit of the model to the data

The best model is the model that produces the least unexplained
variation (the minimal residual deviance), subject to the
constraint that all the parameters in the model should be
statistically significant (many ways to reach this!)

deviance =SS :Z (v, - mean)2



Statistical modelling

Getting started with complex statistical modeling

It is essential, that you can answer the following questions:
« Which of your variables Is the response variable?

» Which are the explanatory variables?

 Are the explanatory variables continuous or categorical, or a
mixture of both?

« What kind of response variable do you have: is it a
continuous measurement, a count, a proportion, a time at
death, or a category?



Statistical modelling: multicollinearit
o
1. Multicollinearity
Correlation between predictors in a non-orthogonal multiple linear

models
Confounding effects difficult to separate

Variables are not independent

This makes an important difference to our statistical modelling
because, in orthogonal designs, the variation that is attributed to a
given factor is constant, and does not depend upon the order in which
factors are removed from the model.

In contrast, with non-orthogonal data, we find that the variation
attributable to a given factor does depend upon the order in which
factors are removed from the model

The order of variable selection makes a huge difference



Statistical modelling

Getting started with complex statistical modeling

It is essential, that you can answer the following questions:
« Which of your variables Is the response variable?

» Which are the explanatory variables?

 Are the explanatory variables continuous or categorical, or a
mixture of both?

« What kind of response variable do you have: is it a
continuous measurement, a count, a proportion, a time at
death, or a category?



Statistical modelling

Each analysis estimate a MODEL

You want the model to be minimal (parsimony), and adequate
(must describe a significant fraction of the variation in the data)

It is very important to understand that there is not just one
model.

e given the data,

« and given our choice of model,

« what values of the parameters of that model make the observed
data most likely?

Model building: estimate of parameters
(slopes and level of factors)

Occam’s Razor



Statistical modelling

Occam’s Razor

* Models should have as few parameters as possible;

* linear models should be preferred to non-linear models;

« experiments relying on few assumptions should be preferred to those
relying on many;

 models should be pared down until they are minimal adequate,

» simple explanations should be preferred to complex explanations.

-

MODEL SIMPLIFICATION

N

The process of model simplification is an integral part of
hypothesis testing in R. In general, a variable is retained
In the model only If it causes a significant increase in
deviance when it is removed from the current model.



Statistical modelling: model simplification

Parsimony requires that the model should be as simple as
possible. This means that the model should not contain
any redundant parameters or factor levels.

Model simplification

e remove non-significant interaction terms;

e remove non-significant quadratic or other non-linear terms;

e remove non-significant explanatory variables;

 group together factor levels that do not differ from one another;

* in ANCOVA, set non-significant slopes of continuous
explanatory variables to zero.



Statistical modelling: model simplification

Step | Procedure Interpretation

1 Fit the maximal model Fit all the factors, interactions and covariates of interest. Note
the residual deviance. If you are using Poisson or binomial
errors, check for overdispersion and rescale if necessary.

2 Begin model simplification | Inspect the parameter estimates (e.g. using the R function
summary (). Remove the least significant terms first (using
update -,) starting with the highest-order interactions.

3 If the deletion causes an Leave that term out of the model.
insignificant increase in Inspect the parameter values again.
deviance Remove the least significant term remaining.

4 If the deletion causes a Put the term back in the model (using update +). These are
significant increase in the statistically significant terms as assessed by deletion from
deviance the maximal model.

5 Keep removing terms Repeat steps 3 or 4 until the model contains nothing but

from the model

significant terms.

This is the minimal adequate model (MAM).

If none of the parameters is significant, then the minimal
adequate model is the null model.




Statistical modelling: more than one parameter

Nature of the response variable
Generalized

NORMAL POISSON, BINOMIAL ... == | Linear Models
GLM

General Linear Models

Nature of the explanatory variables
Categorical Continuous Categorical + continuous

!

ANOVA Regression ANCOVA




LINEAR REGRESSION 1m()

Regression analysis is a technique used for the modeling and
analysis of numerical data consisting of values of a

dependent variable (response variable) and of one or more
iIndependent continuous variables (explanatory variables)

Assumptions

Independence: The Y-values and the error terms must be independent of
each other.

Linearity between Y and X.

Normality: The populations of Y-values and the error terms are normally
distributed for each level of the predictor variable x

Homogeneity of variance: The populations of Y-values and the error
terms have the same variance at each level of the predictor variable x.
(don’t test for normality or heteroscedasticity, check the residuals instead!)


http://en.wikipedia.org/wiki/Dependent_variable
http://en.wikipedia.org/wiki/Independent_variable

LINEAR REGRESSION 1m()

AIMS

1.To describe the linear relationships between Y and X

(EXPLANATORY APPROACH) and to quantify how much of the
total variation in Y can be explained by the linear relationship with X..

2. To predict new values of Y from new values of X. (PREDICTIVE
APPROACH)

* Y Y=o+ BX+ €
predictors response | i i

We estimate one INTERCEPT
and one or more SLOPES

0000000000
0000000000
0000000000
0000000000
0000000000



SIMPLE LINEAR REGRESSION

Estimating parameters

yi = o+ Bx+ €

B =2 [(Xi_xmean)(yi_ymean)]
2 (Xx-X

mean)z

— *
a= Ymean™ B Xmean

Measure of goodness-of-fit

Total SS = z(yfitted i ymean)2

Model SS = Z(ypredicted i ymean)2
Residual SS = Total SS - Model SS

a0

Fitted value

T

R2 = Model SS [Total SS

Explained variation

1350 200 230

Reszidual

300 340

Somma totale dei quadrati

Somma dei quadrati
egli errori

Y, ﬁl(y,- )2 = soE
i -~
/ Y= by* biX;

n
E](Y,-' Y)? = sQT Somma dei quadrati
! della regressione
nooa
13 nt= sor
> Y
/ 1
1
1
1
1
1
1
i
X; X
llo di re




SIMPLE LINEAR REGRESSION

alysis of variance
Hypothesis testing _
Parameter t testing

Ho: 3 = 0 (There is no relation between X and Y)
H1.3#0

Analysis of variance (test the model!)

F. .= (Model SS/1) / (Residual SS/n-2)
Parameter t testing (test the single parameter!)

We must measure the unreliability associated with each of the
estimated parameters (i.e. we need the standard errors)

SE(B) = [(residual SS/(n-2))/Z(X; - X can)]?
t=(B-0)/SEP)



SIMPLE LINEAR REGRESSION: example 1

If the model is significant, then model checking

1. Linearity between X and Y?

Regression model

T I T I T
0.1 02 03 04 05
X

Residuals

Residuals vs predictor

ok

No patterns in the residuals vs. predictor plot



SIMPLE LINEAR REGRESSION: example 1

2. Normality of the residuals
Q-Q plot + Shapiro-Wilk test on the residuals

Regression model Normal Q-Q Plot

ok

I I I I I
0.1 02 03 04 0.5
X T

Sample Quantiles
0
|

> shapiro.test(residuals)
Shapiro-Wilk normality test

data: residuals

W = 0.9669, p-value = 0.2461 Ok

Theoretical Quantiles



SIMPLE LINEAR REGRESSION: example 2

1. Linearity between X and Y?

) Residuals vs fitted
Regression model
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SIMPLE LINEAR REGRESSION: example 2

2. Normality of the residuals

-Q plot + Shapiro-Wilk n the residual
Q-Q plot + Shapiro test on the residuals Normal Q-G Plot

Regression model
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> shapiro.test(residuals)
Shapiro-Wilk normality test

data: residuals

W = 0.8994, p-value = 0.001199 no

Theoretical Quantiles



SIMPLE LINEAR REGRESSION: example 2

How to deal with non-linearity and non-normality situations?

:> Transformation of the data

-Box-cox transformation (power transformation of the response)
-Square-root transformation

-Log transformation
-Arcsin transformation

:> Polynomial regression

Regression with multiple terms (linear, quadratic, and cubic)

Y=a+ b, X+ b,X2+ b, X3+ error X is one variable!!!



POLYNOMIAL REGRESSION: one X, n parameters
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Hierarchy in the testing (always test the highest)!!!!

X + X2 4.6(%3‘ X @ nIS.‘XdLSJO relation
P<0.01 1 P<0.01 1P<0.01 1

Stop Stop Stop

NB Do not delete lower terms even if non-significant



MULTIPLE LINEAR REGRESSION: more than one X

Multiple regression

Regression with two or more variables

Y=a+ b, X, +b,X,+... + b.X.+ quadratic and cubic terms +
Interactions+ error

Assumptions
Same assumptions as in the simple linear regression!!!

The Multiple Regression Model

There are important issues involved in carrying out a multiple regression:
« which explanatory variables to include (VARIABLE SELECTION);

« NON-LINEARITY in the response to the explanatory variables;
 INTERACTIONS between explanatory variables;

e correlation between explanatory variables (COLLINEARITY);

 RELATIVE IMPORTANCE of variables



MULTIPLE LINEAR REGRESSION: more than one X

Let’'s begin with an example from air pollution studies. How is ozone
concentration related to wind speed, air temperature and the intensity
of solar radiation?

1 1T 1T T T 1
150 300

0

Presence of non-linearity and
possible interactions




MULTIPLE LINEAR REGRESSION: more than one X

Start with a complex model with interactions and quadratic
and cubic terms

Model simplification (Occam’s razor)

Minimum Adequate Model

How to carry out a model simplification in multiple regression

1. Remove non-significant interaction terms.
2. Remove non-significant quadratic or other non-linear terms.
3. Remove non-significant explanatory variables.

4. Amalgamate explanatory variables that have similar parameter
values.



MULTIPLE LINEAR REGRESSION: more than one X

Start with the most complicate model (it is one approach)

modell<lm( ozone ~ temp*wind*rad+I(rad?)+I(temp?+I(wind?))

Estimat Std.Erro

e r t Pr(>t)
(Intercept) 5.7E+02 2.1E+02 2.74 0.01 **
temp -1.1E+01 4.3E+00 -2.50 0.01 *
wind -3.2E+01 1.2E+01 -2.76 0.01 -
rad -3.1E-01 5.6E-01 -0.56 0.58 We cannot
delete these

I(radn2) -3.6E-04 2.6E-04 -1.41 0.16 terms
I(tempA2) 5.8E-02 2.4E-02 2.44 0.02 *‘| i
I(windAn2) 6.1E-01 1.5E-01 4.16 0.00 jgs)
temp :wind 2.4E-01 1.4E-01 1.74 @.09

. ra . 4E-03, -, 7.5E; 1.12 . 0,27
BBt Dnly the Kighet interdEifn mp:wikd:rad
wind:rad 2.1E-02 4,9E-02 0.42 0.68

teTf:wind:ra
-4.3E-04 6.6E-04 -0.66 0.51



MULTIPLE LINEAR REGRESSION: more than one X

Manual model simplification
(It is one of the many philosophies) COMPLEX
Deletion the non-significant terms one by one:

Hierarchy in the deletion: Deletion
1. Highest interactions
2. Cubic terms :
. At each deletion test:
3. Quadratic terms Is the fit of
4. Linear terms _ s thefit ot a
simpler model worse? SIMPLE
IMPORTANT!!!

If you have quadratic and cubic terms significant you cannot
delete the linear or the quadratic term even if they are not significant

If you have an interaction significant you cannot
delete the main terms even if they are not significant



MULTIPLE LINEAR REGRESSION: more than one X

Residuals

Once we reached the MAM we must check the assumptions

Residuals vs Fitted MNormal Q-Q
s ¥
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Fitted values Theoretical Quantiles

Variance tends to increase with y Non-normal errors

We can transform the data (e.g. Log-transformation of y)
model<lm( log(ozone) ~ temp + wind + rad + I(wind?))



MULTIPLE LINEAR REGRESSION: more than one X

Residuals

Residuals vs Fitted Normal Q-Q
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Im(log(ozone) ~ temp + wind + rad + l[(wind"2)) Theoretical Quantiles

Im(log({ozone) ~ temp + wind + rad + l(wind"2))

The log-transformation has improved our model but
maybe there is an outlier



VARIATION PARTITIONING

Relative importance of groups of explanatory variables

A

o % R?=76% (TOTAL EXPLAINED VARIATION)
° o goooo What is space and what is environment?
Lat o ° Total variation

i A
t ° ~ TN
U . IR
2 °° °°°80:o°° o Unexpl. Space Sp?(.:e Environment
1 %oo @ | i Ll
k @ Longitude (km) h Explained variation
OSlte Full.model<lm(species ~ environment . + space ;)

Response variable: orthopteran species richness

Explanatory variable: SPACE (latitude + longitude) +
ENVIRONMENT (temperature + land-cover heterogeneity)



VARIATION PARTITIONING: varpart (vegan)

Full.model<lm(SPECIES ~ temp + het + lat + long)

Unexpl.

Space ﬂ

Environment
A

Env.model<lm(SPECIES ~ temp + het)

Unexpl.

Space

Environment
T

TVE=76%

Pure.Space.model<lm(ENV.RESIDUALS ~ lat + long)

Environment
A A

Unexpl. Space ‘

Space.model<lm(SPECIES ~ lat + long)

Pure.env.model<lm(SPACE.RESIDUALS ~ tem + het)

U | e
nexpt. Space Environment
AR
ﬁ

Unexpl.

Space ﬂ

Environment
R AR AR AR AR RO

E::i> env.residuals

::> VE=15%

E:::D>spacexe§duab

::> VE=40%
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