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Inference

Sample

A statistical hypothesis test is a method of making statistical decisions 
from and about experimental data. Null-hypothesis testing just answers the 
question of "how well do the findings fit the possibility that chance factors 
alone might be responsible?”. 

Population

Statistical Model

sampling

Estimation
(Uncertainty!!!)

testing

Hypothesis testing



Statistical testing in five steps:

1. Construct a null hypothesis (H0) (RESEARCH QUESTION)
E.g. H0: Does spruce productivity depend on soil fertility?

 

2. Choose a statistical analysis
E.g. Regression between N and P and biomass

3. Collect the data (sampling)
E.g. Sampling of 145 sites with different level of fertility

4. Calculate P-value and test statistic
Test of our regression model (F-test)

5. Reject/accept (H0) if p is small/large

(ANSWER THE QUESTION)

Inferential statistics: logics

Common error
Sampling before (1) 
constructing the hypothesis and 
(2) choosing the statistical 
analysis

Hypothesis testing



Statistical testing in five steps:

1. Construct a null hypothesis (H0) 

2. Choose a statistical analysis (assumptions!!!)

3. Collect the data (sampling)

4. Calculate P-value and test statistic

5. Reject/accept (H0) if P is small/large

Key concepts

Concept of replication vs.  pseudoreplication
1. Spatial dependence (e.g. spatial autocorrelation)
2. Temporal dependence (e.g. repeated measures)
3. Biological dependence (e.g. siblings)
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Hypothesis testing

• 1 – Hypothesis formulation (Null hypothesis H0 vs. alternative 
hypothesis H1)

• 2 – Compute the probability P that H0 is false;

• 3 – If this probability is lower than a defined threshold we can 
reject the null hypothesis

Hypothesis testing



  

Introduction to Applied Statistics and R 

Statistical Analyses

Summer School   16­18 June 2015 
PhD Course in Environmental Life Sciences

Mean comparisons for 2 populations

Test the difference between the means drawn by two samples  

Correlation
In probability theory and statistics, correlation, (often measured as a 

correlation coefficient), indicates the strength and direction of a linear 
relationship between two random variables. In general statistical usage, 
correlation refers to the departure of two variables from independence. 

Introduction to Statistical Modelling
Basic concept

Hypothesis testing

http://en.wikipedia.org/wiki/Probability_theory
http://en.wikipedia.org/wiki/Statistics
http://en.wikipedia.org/wiki/Random_variables


  

Mean Comparison for 2 Samples

Sistemi Informativi Geografici (GIS)
CdL in Scienze e Tecnologie per l'Ambiente e la Natura

Assumptions
• Independence of cases  - this is a requirement of the design. 
• Normality - the distributions in each of the groups are normal
• Homogeneity of variances - the variance of data in groups should be the 

same (use Fisher test or Fligner's test for homogeneity of variances). 
• These together form the common assumption that the errors are 

independently, identically, and normally distributed

H0: means do not differ 

H1: means differ 

Hypothesis testing

http://en.wikipedia.org/wiki/Statistical_independence
http://en.wikipedia.org/wiki/Normal_distribution
http://en.wikipedia.org/wiki/Normal_distribution
http://en.wikipedia.org/wiki/Homoscedasticity
http://en.wikipedia.org/wiki/Levene%27s_test
http://en.wikipedia.org/wiki/Errors_and_residuals_in_statistics


  

Normality
Introduction to Applied Statistics and R 

+ Root, Vegetation and soil features
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Before we can carry out a test assuming normality of the data we 
need to test our distribution (not always before!!!)

Graphics analysis

Shapiro-Wilk Normality Test   shapiro.test()

Test for normality

In many cases we 
must check this 
assumption after 
having fitted the 

model

(e.g. regression or 
multifactorial 

ANOVA)
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hist(y)
lines(density(y))

library(car)
qq.plot(y) or qqnorm(y)

RESIDUALS MUST 
BE NORMAL

Hypothesis testing



Basic concepts: Normal distribution

The normal distribution is ubiquitous in nature and statistics due to 
the central limit theorem: every variable that can be modelled as a 
sum of many small independent variables is approximately normal. 

http://en.wikipedia.org/wiki/Normal_distribution
http://en.wikipedia.org/wiki/Central_limit_theorem


10

The Poisson distribution, which describes a very large number of 
individually unlikely events that happen (count data)
Non-negative values
Variance=mean
Right skewed
1 Parameter: λ (mean=variance)
Use: count data 

var = mean

Sample from a Poisson distribution 
(n=1000, mean=variance=0.2)

Basic concepts: Poisson distribution

http://en.wikipedia.org/wiki/Poisson_distribution


The binomial distribution describes the number of 
successes in a finite series of independent Yes/No 
experiments. 
2 Parameters: sample size, probability
Use: proportion data and power analysis

Basic concepts: Binomial distribution

http://en.wikipedia.org/wiki/Binomial_distribution


  

Normality: Histogram and QQ plot
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Histogram of fishes$mas

fishes$mas

F
re

q
u

e
n

cy

0 5 10 15

0
1

0
3

0
5

0
Histogram of log(fishes$mas)
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symmetrical around the mean

Hypothesis testing



  

Normaliy: Quantile-Quantile Plot
Introduction to Applied Statistics and R 

Normality: Quantile-Quantile Plot
Quantiles are points taken at 
regular intervals from the 
cumulative distribution function 
(CDF) of a random variable. 
The quantiles are the data 
values marking the boundaries 
between consecutive subsets 

Hypothesis testing

http://en.wikipedia.org/wiki/Cumulative_distribution_function
http://en.wikipedia.org/wiki/Random_variable


  

Not Normal...what to do?
Introduction to Applied Statistics and R 

In case of non-normality: 2 possible approaches

1. Change the distribution (use GLMs)

2. Data transformation

E.g. Poisson (count data)

E.g. Binomial (proportion)

Square-root
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Arcsin (percentage)

Probit (proportion)

Box-Cox transformation

Advanced statistics

Hypothesis testing

Log



  

Box – Cox Normalization
Introduction to Applied Statistics and R Hypothesis testing



  

Homogeneity of Variance for two samples 

Introduction to Applied Statistics and R 

Before we can carry out a test to compare two sample means, 
we need to test whether the sample variances are significantly 
different. The test could not be simpler. It is called Fisher’s F

To compare two variances, all you do is
divide the larger variance by the smaller variance.

Test can be carried 
out with the 
var.test()

F<-var(A)/var(B)

qf(0.975,nA-1,nB-1)

F calculated

F critical

if the calculated F is larger than

the critical value, we reject the null hypothesis

E.g. Students from A group  vs. Students from B group

Hypothesis testing



  



  

Introduction to Applied Statistics and R 

It is important to know whether variance differs significantly 
from sample to sample. Constancy of variance 
(homoscedasticity) is the most important assumption 
underlying regression and analysis of variance. For multiple 
samples you can choose between the

Bartlett test and the Fligner–Killeen test.

Bartlett.test(response,factor)

There are differences between the tests: Fisher and Bartlett are 
very sensitive to outliers, whereas Fligner–Killeen is not

Fligner.test(response,factor)

Homogeneity of Variance > two samples 

Hypothesis testing



  

Introduction to Applied Statistics and R 

-Some assumptions not met? Non-parametric Wilcox.test() 
- The Wilcoxon signed-rank test is a non-parametric alternative to the 
Student's t-test for the case of two  samples.  

- All Assumptions met? Parametric t.test()

- t test with independent or paired sample

In many cases, a researcher is interesting in gathering information about 
two populations in order to compare them. As in statistical inference for 
one population parameter, confidence intervals and tests of significance 
are useful statistical tools for the difference between two population 
parameters. 

Ho: the two means are the same

H1: the two means differ

Mean Comparisons  
Hypothesis testing

http://en.wikipedia.org/wiki/Non-parametric_statistics
http://en.wikipedia.org/wiki/Student%27s_t-test
http://www.stat.yale.edu/Courses/1997-98/101/confint.htm
http://www.stat.yale.edu/Courses/1997-98/101/sigtest.htm


  

Mean Comparison: Two independent sample
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The two samples 
are statistically 
independent

Students on the left Students on the right

Test can be carried 
out with the 
t.test() function

Hypothesis testing



  

T-Test for paired samples

Time 1 a: 1, 2, 3, 2, 3, 2 ,2

Time 2 b: 1, 2, 1, 1, 5, 1, 2
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If we have information about dependence,

we have to use this!!! Test can be carried 
out with the 
t.test() function

E.g. Test your performance before or after 
the course. I measure twice on the same 
student

We can deal with dependence 

Hypothesis testing



  

Correlation

Correlation, (often measured as a correlation coefficient), 
indicates the strength and direction of a linear relationship 
between two random variables

Three alternative approaches
1. Parametric - cor()
2. Nonparametric - cor()
3. Bootstrapping - replicate(), boot()

Plant species

richness

Bird species

richness
x1

x2

x3

x4

…

x458

l1
l2
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…

l458

Sampling unit

Hypothesis testing



Correlation: causal relationship?

Which is the response variable in a correlation analysis?

Plant species

richness
1

2

3

4

…

458

Bird species

richness
x1

x2

x3

x4

…

x458

l1
l2
l3
l4
…

l458

Sampling unit

NONEHypothesis testing



Correlation

A correlation of +1 means that there is a perfect positive LINEAR 
relationship between variables. 
A correlation of -1 means that there is a perfect negative LINEAR 
relationship between variables.
A correlation of 0 means there is no LINEAR relationship between the two 
variables. 

Plot the two variables in a Cartesian space

Hypothesis testing



Correlation

Same correlation coefficient!

r= 0.816

Hypothesis testing



Assumptions
- Two random variables from a random populations
 
- cor() detects ONLY linear relationships 

Pearson product-moment correlation coefficient

Correlation coefficient: 

Hypothesis testing using the t distribution:

Ho: Is cor = 0

H1: Is cor ≠ 0

Parametric correlation: when is significant?

t critic value for d.f. = n-2
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Rank procedures

Nonparametric correlation

Spearman correlation index

The Kendall tau rank correlation coefficient 
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P is the number of concordant pairs
n is the total number of pairs

Distribution-free but
less power

Hypothesis testing



NB Don’t use grouped data to compute overall correlation!!!

Scale-dependent correlation

7 sites

Hypothesis testing



Statistical modelling 

MODEL

Generally speaking, a statistical model is a function of your 

explanatory variables to explain the variation in your response 

variable (y)

The best model is the model that produces the least unexplained 
variation (the minimal residual deviance), subject to the 
constraint that all the parameters in the model should be 
statistically significant (many ways to reach this!)

The object is to determine the values of the parameters (a, b, c and 

d) in a specific model that lead to the best fit of the model to the data

2
)(  meanySSdeviance i

E.g. Y=a+bx1+cx2+ dx3

Y= response variable (performance of the students)

xi= explanatory variables (ability of the teacher, background, age)

Hypothesis testing



Statistical modelling 

Getting started with complex statistical modeling 

It is essential, that you can answer the following questions:

• Which of your variables is the response variable?

• Which are the explanatory variables?

• Are the explanatory variables continuous or categorical, or a 
mixture of both?

• What kind of response variable do you have: is it a 
continuous measurement, a count, a proportion, a time at 
death, or a category?

Hypothesis testing



1. Multicollinearity
Correlation between predictors in a non-orthogonal multiple linear 
models
Confounding effects difficult to separate

Variables are not independent

This makes an important difference to our statistical modelling 
because, in orthogonal designs, the variation that is attributed to a 
given factor is constant, and does not depend upon the order in which 
factors are removed from the model.

In contrast, with non-orthogonal data, we find that the variation 
attributable to a given factor does depend  upon the order in which 
factors are removed from the model

Statistical modelling: multicollinearity

The order of variable selection makes a huge difference

Hypothesis testing



Statistical modelling 

Getting started with complex statistical modeling 

It is essential, that you can answer the following questions:

• Which of your variables is the response variable?

• Which are the explanatory variables?

• Are the explanatory variables continuous or categorical, or a 
mixture of both?

• What kind of response variable do you have: is it a 
continuous measurement, a count, a proportion, a time at 
death, or a category?

Hypothesis testing



You want the model to be minimal (parsimony), and adequate 
(must describe a significant fraction of the variation in the data)

It is very important to understand that there is not just one 
model. 

• given the data,

• and given our choice of model,

• what values of the parameters of that model make the observed 
data most likely?

Model building: estimate of parameters

(slopes and level of factors)

Occam’s Razor

Statistical modelling 

Each analysis estimate a MODEL



• Models should have as few parameters as possible;

• linear models should be preferred to non-linear models;

• experiments relying on few assumptions should be preferred to those 
relying on many;

• models should be pared down until they are minimal adequate;

• simple explanations should be preferred to complex explanations.

The process of model simplification is an integral part of 
hypothesis testing in R. In general, a variable is retained 
in the model only if it causes a significant increase in 
deviance when it is removed from the current model.

Occam’s Razor

MODEL SIMPLIFICATION

Statistical modelling 



Statistical modelling: model simplification

Parsimony requires that the model should be as simple as 
possible. This means that the model should not contain 
any redundant parameters or factor levels.

• remove non-significant interaction terms;

• remove non-significant quadratic or other non-linear terms;

• remove non-significant explanatory variables;

• group together factor levels that do not differ from one another;

• in ANCOVA, set non-significant slopes of continuous 
explanatory variables to zero.

Model simplification



Statistical modelling: model simplification

Step Procedure Interpretation
1 Fit the maximal model Fit all the factors, interactions and covariates of interest. Note

the residual deviance. If you are using Poisson or binomial
errors, check for overdispersion and rescale if necessary.

2 Begin model simplification Inspect the parameter estimates (e.g. using the R function
summary(). Remove the least significant terms first (using

update -,) starting with the highest-order interactions.

3 If the deletion causes an 
insignificant increase in 
deviance

Leave that term out of the model.
Inspect the parameter values again.
Remove the least significant term remaining.

4 If the deletion causes a
significant increase in
deviance

Put the term back in the model (using update +). These are

the statistically significant terms as assessed by deletion from
the maximal model.

5 Keep removing terms 
from the model

Repeat steps 3 or 4 until the model contains nothing but
significant terms.
This is the minimal adequate model (MAM).
If none of the parameters is significant, then the minimal
adequate model is the null model.



Statistical modelling: more than one parameter 

Nature of the response variable

NORMAL POISSON, BINOMIAL …

GLM

Categorical Continuous Categorical + continuous

General Linear Models

Generalized

Linear Models

ANOVA Regression ANCOVA

Nature of the explanatory variables



LINEAR REGRESSION lm()

Regression analysis is a technique used for the modeling and 
analysis of numerical data consisting of values of a 
dependent variable (response variable) and of one or more 
independent continuous variables (explanatory variables)

Assumptions

Independence: The Y-values and the error terms must be independent of 

each other.

Linearity between Y and X.

Normality: The populations of Y-values and the error terms are normally 

distributed for each level of the predictor variable x

Homogeneity of variance: The populations of Y-values and the error 
terms have the same variance at each level of the predictor variable x.
(don’t test for normality or heteroscedasticity, check the residuals instead!)

http://en.wikipedia.org/wiki/Dependent_variable
http://en.wikipedia.org/wiki/Independent_variable


AIMS

1.To describe the linear relationships between Y and Xi 
(EXPLANATORY APPROACH) and to quantify how much of the 
total variation in Y can be explained by the linear relationship with Xi.

2. To predict new values of Y from new values of Xi (PREDICTIVE 
APPROACH)

LINEAR REGRESSION lm()

Yi = α + βxi + εi Y
response

Xi

predictors

We estimate one INTERCEPT
and one or more SLOPES



Estimating parameters

SIMPLE LINEAR REGRESSION

yi = α + βxi + εi 

α =  ymean- β*xmean

β = Σ [(xi-xmean)(yi-ymean)]

      Σ (xi-xmean)2

Measure of goodness-of-fit

Total SS = Σ(yfitted i- ymean)2

Model SS = Σ(ypredicted i - ymean)2

Residual SS = Total SS - Model SS

R2 = Model SS /Total SS Explained variation



SIMPLE LINEAR REGRESSION

Hypothesis testing

Ho: β = 0 (There is no relation between X and Y)

H1: β ≠ 0 

We must measure the unreliability associated with each of the 

estimated parameters (i.e. we need the standard errors)

SE(β) = [(residual SS/(n-2))/Σ(xi - xmean)]2

t = (β – 0) /  SE(β)

Analysis of variance 

Parameter t testing 

Parameter t testing  (test the single parameter!)

Analysis of variance (test the model!)

F1, n-2 = (Model SS/1) / (Residual SS/n-2)



SIMPLE LINEAR REGRESSION: example 1

If the model is significant, then model checking

1. Linearity between X and Y?

ok

No patterns in the residuals vs. predictor plot



2. Normality of the residuals
Q-Q plot + Shapiro-Wilk test on the residuals

> shapiro.test(residuals)
Shapiro-Wilk normality test
data:  residuals 
W = 0.9669, p-value = 0.2461

ok

ok

SIMPLE LINEAR REGRESSION: example 1



no

NO LINEARITY between X and Y

SIMPLE LINEAR REGRESSION: example 2

no

yes

1. Linearity between X and Y?



> shapiro.test(residuals)
Shapiro-Wilk normality test
data:  residuals 
W = 0.8994, p-value = 0.001199 no

no

SIMPLE LINEAR REGRESSION: example 2

2. Normality of the residuals
Q-Q plot + Shapiro-Wilk test on the residuals



              Transformation of the data
-Box-cox transformation (power transformation of the response)

-Square-root transformation

-Log transformation

-Arcsin transformation

How to deal with non-linearity and non-normality situations?

SIMPLE LINEAR REGRESSION: example 2

              Polynomial regression

Regression with multiple terms (linear, quadratic, and cubic)

Y= a + b1X + b2X2 + b3X3 + error             X is one variable!!!



POLYNOMIAL REGRESSION: one x, n parameters

Hierarchy in the testing (always test the highest)!!!!

X + X2 + X3 X + X2 X
n.s.

Stop Stop

P<0.01 P<0.01

Stop

P<0.01

n.s.
No relation

NB Do not delete lower terms even if non-significant

n.s.



MULTIPLE LINEAR REGRESSION: more than one x

Multiple regression

Regression with two or more variables

Y= a + b1X1 + b2X2
 +… + biXi

 + quadratic and cubic terms + 
interactions+ error

The Multiple Regression Model

There are important issues involved in carrying out a multiple regression:

• which explanatory variables to include (VARIABLE SELECTION);

• NON-LINEARITY in the response to the explanatory variables;

• INTERACTIONS between explanatory variables;

• correlation between explanatory variables (COLLINEARITY);

• RELATIVE IMPORTANCE of variables

Assumptions

Same assumptions as in the simple linear regression!!!



Let’s begin with an example from air pollution studies. How is ozone 

concentration related to wind speed, air temperature and the intensity 

of solar radiation?

Presence of non-linearity and 
possible interactions

MULTIPLE LINEAR REGRESSION: more than one x



Model simplification (Occam’s razor)

1. Remove non-significant interaction terms.

2. Remove non-significant quadratic or other non-linear terms.

3. Remove non-significant explanatory variables.

4.  Amalgamate explanatory variables that have similar parameter 
values.

Start with a complex model with interactions and quadratic
and cubic terms

Minimum Adequate Model

How to carry out a model simplification in multiple regression 

MULTIPLE LINEAR REGRESSION: more than one x



Start with the most complicate model (it is one approach)

model1<lm( ozone ~ temp*wind*rad+I(rad2)+I(temp2+I(wind2))

Estimat
e

Std.Erro
r t Pr(>t)

(Intercept) 5.7E+02 2.1E+02 2.74 0.01 **

temp -1.1E+01 4.3E+00 -2.50 0.01 *

wind -3.2E+01 1.2E+01 -2.76 0.01 **

rad -3.1E-01 5.6E-01 -0.56 0.58

I(rad^2) -3.6E-04 2.6E-04 -1.41 0.16

I(temp^2) 5.8E-02 2.4E-02 2.44 0.02 *

I(wind^2) 6.1E-01 1.5E-01 4.16 0.00 ***

temp:wind 2.4E-01 1.4E-01 1.74 0.09

temp:rad 8.4E-03 7.5E-03 1.12 0.27

wind:rad 2.1E-02 4.9E-02 0.42 0.68

temp:wind:ra
d -4.3E-04 6.6E-04 -0.66 0.51

Delete only the highest interaction temp:wind:rad

!!!!!!
We cannot 
delete these 
terms
!!!!!!!

MULTIPLE LINEAR REGRESSION: more than one x



At each deletion test:
Is the fit of a

simpler model worse?

Manual model simplification
(It is one of the many philosophies)
Deletion the non-significant terms one by one:

Hierarchy in the deletion:
1. Highest interactions
2. Cubic terms
3. Quadratic terms
4. Linear terms 

If you have quadratic and cubic terms significant you cannot
delete the linear or the quadratic term even if they are not significant

If you have an interaction significant you cannot
delete the main terms even if they are not significant

COMPLEX

SIMPLE

Deletion

MULTIPLE LINEAR REGRESSION: more than one x

IMPORTANT!!!



Once we reached the MAM we must check the assumptions

We can transform the data (e.g. Log-transformation of y)
model<lm( log(ozone) ~ temp + wind + rad + I(wind2))

MULTIPLE LINEAR REGRESSION: more than one x

NO
NO

Variance tends to increase with y Non-normal errors



The log-transformation has improved our model but 
maybe there is an outlier

MULTIPLE LINEAR REGRESSION: more than one x



VARIATION PARTITIONING
Relative importance of groups of explanatory variables

Longitude (km)

EnvironmentSpace

Lat
i
t
u
d
e
 
(
k
m
)

Site
Full.model<lm(species ~ environment i + space i)

R2= 76%  (TOTAL EXPLAINED VARIATION)

What is space and what is environment?

Unexpl.

Total variation

Explained variation

Space
∩

Envir.

Response variable: orthopteran species richness 

Explanatory variable: SPACE (latitude + longitude) +

ENVIRONMENT (temperature + land-cover heterogeneity)



VARIATION PARTITIONING: varpart(vegan)

Env.model<lm(SPECIES ~ temp + het)

Pure.Space.model<lm(ENV.RESIDUALS ~ lat + long)

env.residuals

Full.model<lm(SPECIES ~ temp + het + lat + long)

TVE=76%

VE=15%

Space.model<lm(SPECIES ~ lat + long)

Pure.env.model<lm(SPACE.RESIDUALS ~ tem + het)

space.residuals

VE=40%

EnvironmentUnexpl.
Space

EnvironmentUnexpl.
Space

EnvironmentUnexpl.
Space

EnvironmentUnexpl.
Space

EnvironmentUnexpl.
Space
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