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a  b  s  t  r  a  c  t

Biodiesel  is a renewable  transportation  fuel  consisting  of  fatty  acid methyl  esters  (FAME),  generally  pro-
duced  by  transesterification  of vegetable  oils and  animal  fats.  In this  review,  the  fatty  acid  (FA)  profiles  of
12  common  biodiesel  feedstocks  were  summarized.  Considerable  compositional  variability  exists  across
the range  of feedstocks.  For  example,  coconut,  palm  and  tallow  contain  high  amounts  of saturated  FA;
while corn,  rapeseed,  safflower,  soy,  and  sunflower  are  dominated  by unsaturated  FA. Much  less  informa-
tion  is  available  regarding  the  FA  profiles  of  algal  lipids  that could  serve  as  biodiesel  feedstocks.  However,
some  algal  species  contain  considerably  higher  levels  of poly-unsaturated  FA than  is  typically  found  in
vegetable  oils.

Differences  in chemical  and  physical  properties  among  biodiesel  fuels  can  be explained  largely  by  the
fuels’  FA profiles.  Two  features  that  are  especially  influential  are  the  size  distribution  and  the  degree  of
unsaturation  within  the  FA structures.  For  the 12  biodiesel  types  reviewed  here,  it  was shown  that  several

fuel properties  –  including  viscosity,  specific  gravity,  cetane  number,  iodine  value,  and  low  temperature
performance  metrics  – are  highly  correlated  with  the  average  unsaturation  of  the FAME  profiles.  Due
to  opposing  effects  of certain  FAME  structural  features,  it is  not  possible  to define  a  single  composition
that  is  optimum  with  respect  to  all important  fuel  properties.  However,  to  ensure  satisfactory  in-use
performance  with respect  to low  temperature  operability  and  oxidative  stability,  biodiesel  should  contain
relatively  low  concentrations  of  both  long-chain  saturated  FAME  and  poly-unsaturated  FAME.
© 2011 Elsevier Ltd. All rights reserved.
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. Introduction

.1. Background

Interest in biodiesel is continuing to increase in the U.S. and
hroughout the world. This is motivated primarily by: (1) concerns
bout greenhouse gas (GHG) emissions and global climate change,
2) a desire for renewable/sustainable energy sources, and (3) an
nterest in developing domestic and more secure fuel supplies. In
ecent years, several countries (and states) have embarked on leg-
slative and/or regulatory pathways that encourage increased use
f biodiesel fuel – using both incentives and prescriptive volumet-
ic requirements. For example, in the U.S., the Energy Independence
nd Security Act (EISA) of 2007 established a 0.5 billion gallon/year
bg/y) requirement for biomass-based diesel fuel in 2009, with this
mount increasing to 1.0 bg/y by 2012 [1].

With the biodiesel landscape being in a state of rapid flux, the
oordinating Research Council (CRC) recently sponsored Project
VFL-17 to define the state-of-knowledge regarding biodistillates
s blendstocks for transportation fuels. Utilizing an extensive lit-
rature review, this project investigated numerous topic areas,
ncluding policy drivers, fuel volumes and feedstocks, production
echnologies, fuel properties and specifications, in-use handling
nd performance, emissions impacts, and life-cycle analyses.
esults of this literature review are available in a project final report
2] and in a series of papers derived from this report [3–5].

More recently, CRC sponsored an updated review of the biodis-
illate literature. In this case, the focus was on biodiesel – as opposed
o the broader category of biodistillate fuels – and was limited
o fewer specific topic areas. The complete final report from this
pdated study is available from the CRC website [6].  The subject of
his paper is limited to a review of biodiesel compositions and prop-
rties, and the relationships between composition and properties.

.2. Definitions

Biodiesel is defined by ASTM as “a fuel comprised of mono-
lkyl esters of long-chain fatty acids derived from vegetable oils
r animal fats, designated B100” [7].  Congress has adopted a
imilar definition for “biomass-based diesel,” with the additional
equirement that the fuel have life-cycle greenhouse gas (GHG)

missions that are at least 50% less than baseline life-cycle GHG
1]. The vegetable- and animal-derived feedstocks used to produce
iodiesel are known as triacylglycerides (TAGs), or more simply,
riglycerides. Biodiesel is produced by a chemical process known
 . . . .  . . .  . . . . .  .  .  . .  .  . . . . .  . .  . . . . . . .  .  . . . .  . . .  .  . . .  . . .  .  .  . . . . .  .  .  .  .  .  . . . . . . . . . .  .  . .  .  . 163

as transesterification, by which the triglycerides are reacted with
alcohols, in the presence of a catalyst, to produce fatty acid alkyl
esters. A byproduct of transesterification is glycerine, also known as
glycerol. Since the most common alcohol used to produce biodiesel
is methanol, another name for biodiesel is fatty acid methyl esters
(FAME). Unless otherwise indicated, the term “biodiesel” refers to
neat material – i.e. 100% FAME, often designated as B100. Lower
concentrations, such as B20, are properly referred to as “biodiesel
blends,” not biodiesel itself.

Renewable diesel fuel (also known as Green Diesel) is produced
by catalytic hydroprocessing of the same triglyceride feedstocks
used to produce biodiesel [8,9]. In this process, an alcohol is not
required, the products are hydrocarbons rather than fatty acid
alkyl esters, and no glycerol byproduct is formed. The general term
“biodistillate” is used to refer to both biodiesel and renewable
diesel.

Terminology regarding “1st Generation” and “2nd Generation”
biofuels are in popular usage, but have no legal or regulatory
meaning. Generally, the term “1st Generation” refers to biofuels
produced from commonly available, edible feedstocks using well-
established conversion technologies. Most biofuels in use today
are classified as 1st Generation. This includes ethanol produced
via fermentation of sugars (from corn, sugar cane, sorghum, etc.)
and biodiesel produced via transesterification of triglycerides (from
vegetable oils and animal fats). The term “2nd Generation” can
refer to biofuels produced from either advanced, non-food feed-
stocks, or produced via advanced processing technology (or both).
Examples of advanced feedstocks include lignocellulose and non-
edible triglycerides (such as jatropha and algae). Examples of
advanced processing technology include catalytic hydroprocessing
of triglycerides to produce renewable diesel, and thermal conver-
sion (gasification and pyrolysis) of lignocellulose. Because of their
imprecise and variable meanings, this paper avoids use of the terms
1st Generation and 2nd Generation (and related terms).

2. Biodiesel composition

Biodiesel fuel can be produced by transesterification of vir-
tually any triglyceride feedstock. This includes oil-bearing crops,
animal fats, and algal lipids. The literature contains hundreds of
references of biodiesel production from a wide variety of feed-

stocks. At present, however, the dominant feedstocks are soybean
oil in the U.S., rapeseed oil in Europe, and palm oil in southeast
Asia [2,10].  Animal fats (especially beef tallow) and used cooking
oil (also called yellow grease) represent significant niche markets
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Table 1
Potential biodiesel yield from triglyceride feedstocks.

Source Potential annual yield, gallons/acre Source of info (reference nos.)

Corn 18–20 [129–131]
Cotton 35–45 [107,130,131]
Soybean 40–55 [10,107,129–133]
Mustard 60–140 [10,134]
Camelina 60–65 [134,135]
Safflower 80–85 [129,134,135]
Sunflower 75–105 [107,130,133,134]
Canola 110–145 [10,107,129,130,134]
Rapeseed 110–130 [107,133–136]
Jatropha 140–200 [10,130,133–135,137]
Coconut 250–300 [107,134,135]
Palm oil 400–650 [10,107,129,130,133–135]
Algae >5000a [10,23,129,134,135]
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a Figure for algae is based upon extrapolations from small scale operations, and
s  quite speculative.

or biodiesel in many locations. Other vegetable oils having real
r potential commercial interest as biodiesel feedstocks include
amelina, canola, coconut, corn, jatropha, safflower, and sunflower.

In addition, there is great interest in developing and utilizing
lgal lipids as biodiesel feedstocks. Of all photosynthetic organ-
sms, microalgae are the most productive users of CO2, and can fix
arger amounts of CO2 per land area than other plants [11]. Table 1
ummarizes potential yields of biodiesel that could be produced
rom various triglyceride feedstocks. While many of these values
re rather speculative, it appears that algae has the potential to
roduce significantly larger annual volumes of biodiesel per acre
s compared to other sources.

Although biodiesel fuel produced from transesterification of
riglycerides contains numerous individual FAME species, a partic-
lar fuel is generally dominated by only a few species. A list of fatty
cids (FA) most commonly seen in biodiesel is provided in Table 2.

 simple FA naming convention is also shown in this table. This
onvention consists of two numbers, separated by a colon symbol.
he first number refers to the number of carbon atoms in the FA
hain; the second number refers to the number of carbon–carbon
ouble bonds in the FA chain.

Of the 13 species shown in Table 2, 5 typically dominate the
omposition of FAME derived from vegetable oils and animal
ats: palmitic acid (16:0), stearic acid (18:0), oleic acid (18:1),
inoleic acid (18:2), and linolenic acid (18:3). Some algal-derived
ipids are dominated by these same fatty acid groups, while other
lgae are more diverse in their composition, containing significant
mounts of several other FA groups. Biodiesel (FAME) produced
rom transesterification of triglycerides, regardless of their source,
s composed nearly exclusively of even-numbered FA chains. In
ontrast, renewable diesel produced from the same feedstocks con-
ains substantial amounts of odd-numbered FA chains, since one
arbon is removed during the hydroprocessing step used to manu-
acture renewable diesel.

.1. Compositional profiles of biodiesel from fats and oils

For the purposes of this review, 12 common fat and oil mate-
ials were considered as biodiesel feedstocks. These 12 materials
re shown in Table 3, which provides fatty acid (FA) composi-
ional information for each one. Three of these 12 materials are
redicted by EPA to provide most of the total volume of biodiesel
eeded to satisfy the RFS2 requirements for biomass-based diesel
y the year 2022: soy oil (660 mg/y), corn oil (680 mg/y), and yellow

rease (230 mg/y), with the remainder predicted to come from
lgae (100 mg/y) [12].

The compositional data shown in Table 3 were obtained by
eviewing and summarizing numerous literature sources. Many
ble Energy Reviews 16 (2012) 143– 169 145

literature references cite compositional data derived from other
sources. Whenever possible, original sources were obtained and
reviewed. The data in Table 3 include FA compositions of both
triglyceride feedstocks and (FAME) produced from these feed-
stocks. (It is generally assumed that FA compositional profiles
remain unchanged during conversion of the feedstocks to fuels via
transesterification.)

Table 3 also indicates the number of literature references used
to obtain the average compositional profiles. These varied from 6
sources (for camelina) to 39 sources (for soy). The literature sources
themselves are listed in Table 4. While actual compositions do vary
somewhat based upon growing conditions and locations, much of
the variability reported for these compositional profiles probably
results from use of different analytical methods – and different skill
levels in applying these methods.

Very few reports in the literature document carefully con-
trolled studies that investigate the impacts of growth conditions
(water, nutrients, temperature, etc.) upon the fatty acid profiles
of vegetable oils. One controlled field experiment with Jatropha
demonstrated that the profile did not change dramatically with
growth conditions, although the total amount of fatty acids did
[13]. Another study, involving sunflower, inferred more significant
changes in FA profile, based upon variations in iodine values, which
correlate with degree of unsaturation [14].

In this review, no a priori judgments were made regarding the
validity of reported compositional data. All values were initially
accepted, and weighted equally to compute a mean compositional
result (wt.%) for each species. The distribution of values reported for
an individual species (from a given feedstock) was  then inspected,
and values far from the mean (typically > 2 standard deviations)
were identified. These “outliers” were first investigated by re-
inspecting the original literature source and correcting data entry
errors. In a few cases, even though no obvious errors could be
identified, outliers were eliminated when calculating means and
standard deviations.

The average profiles summarized in Table 3 have been adjusted
by eliminating outliers. Empty cells represent FA species that were
not reported in any reference that was  reviewed. Cases which show
a mean value but no standard deviation indicate that only one ref-
erence was found for this FA. The reader will note that the sum
of species in these average profiles does not equal 100%. In part,
this is due to rounding issues. However, it is also a consequence of
the way in which mean concentration values were determined. The
mean values were obtained by averaging only reported non-zero
values. In some instances, only a few references reported values
for a minor FA in a given profile, while other references reported
nothing. In such cases, averaging only the positive values has the
effect of over estimating the concentration of these minor species.

Average compositional profiles of biodiesel from four common
feedstocks (palm, rapeseed, soy, and yellow grease) are shown
graphically in Fig. 1. (Profiles of all 12 feedstocks investigated are
included in Fig. S-1 of the Supplemental Information.) These depic-
tions provide useful insights into differences among the various
biodiesel types. For example, most of the 12 compositions are dom-
inated by C18 compounds, while a few have substantial amounts of
lighter compounds; especially C12 for coconut and C16 for palm.

Of the fuels dominated by C18, the relative amounts of satu-
rated (18:0), mono-unsaturated (18:1) and di-unsaturated (18:2)
compounds varies considerably. Rapeseed and canola (a close rel-
ative of rapeseed) contain mostly 18:1; corn, safflower, soy, and
sunflower contain mostly 18:2; jatropha, and yellow grease have
more nearly equal amounts of 18:1 and 18:2. Of the 12 feedstocks

investigated, camelina contains the highest level of 18:3. Of interest
is the reported presence of lignoceric acid (24:0) in jatropha-
derived FAME. The mean concentration of 2.6% comes from just
two literature values – out of 20 total sources. Thus, this value may
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Table  2
Typical fatty acid (FA) groups in biodiesel (shaded compounds are most common).

Common Name Formal
Name

CAS. No. Abbreviation Molecular
Formula

Molecular
Weight

Molecular
Structure

Lauric acid Dodecanoic acid 143-07-7 12:0 C12H24O2 200.32

O

OH

Myristic acid Tetradecanoic acid 544-63-8 14:0 C14H28O2 228.38

O

OH

Myristoleic acid cis-9-Tetradecenoic acid 544-64-9 14:1 C14H26O2 226.26

O

OH

Palmitic acid Hexadecanoic acid 57-10-3 16:0 C16H32O2 256.43

O

OH

Palmitoleic acid cis-9-Hexadecanoic acid 373-49-9 16:1 C16H30O2 254.42

O

OH

Stearic acid Octadecanoic acid 57-11-4 18:0 C18H36O2 284.48

O

OH

Oleic acid cis-9-Octadecenoic acid 112-80-1 18:1 C18H34O2 282.47

O

OH

Linoleic acid cis-9,12-Octadecadienoic acid 60-33-3 18:2 C18H32O2 280.46

O

OH

Linolenic acid cis-9,12,15-Octadecatrienoic acid 463-40-1 18:3 C18H30O2 278.44

O

OH

Arachidic acid Eicosanoic acid 506-30-9 20:0 C20H40O2 312.54

O

OH

Gondoic acid cis-11-Eicosenoic acid 5561-99-9 20:1 C20H38O2 310.53

O

OH

Behenic acid Docosanoic acid 112-85-6 22:0 C22H44O2 340.60

O

OH
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Erucic acid cis-13-Docosenoic acid 112-86-7 22:1

e unreliable, though it warrants further investigation, since even
% of this heavy paraffinic species could lead to concerns about low
emperature performance of biodiesel.

As indicated by relatively large standard deviations, the compo-
ition of yellow grease is more variable than that of most other
eedstocks. The heterogeneous nature of yellow grease has also
een noted by Knothe and Steidley [15]. This is expected, because
ellow grease is not a well defined, single material, but is composed
f used cooking oil from various sources. Hence, yellow grease
ould resemble corn oil, canola oil, sunflower oil, olive oil, or several
ther food-grade oils.

.2. Compositional profiles of biodiesel from algal lipids

Numerous algal strains have been investigated as potential
ources of triglyceride feedstocks for biodiesel production. Due
o their rapid growth rates, high lipid contents, tolerance for

oor quality water, use in cleaning-up wastewater effluents, and
ther favorable qualities, interest in developing algal feedstocks for
iodiesel continues to increase [16–20].  A comprehensive inves-
igation of algae as a biodiesel feedstock was conducted by the
C22H42O2 338.58
OH

National Renewable Energy Laboratory (NREL), who maintained an
active Aquatic Species Program (ASP) from 1978 to 1996. The ASP
final closeout report was issued in 1998, and remains an excellent
source of information about growth conditions, productivities, and
compositional profiles of various algal strains [21]. Recently, NREL
and DOE have resumed investigations of algal fuels and have issued
a technical roadmap for establishment of a domestic, commercial-
scale algae-based biofuels industry [22,23].

Despite tremendous interest in algal feedstocks for biodiesel,
the literature contains relatively few reports of detailed com-
positional profiles of the triglyceride fractions in algal lipids.
It is known that for some algal strains, the FA compositional
profiles are highly influenced by specific growth conditions such
as nutrient levels, temperatures, and light intensities [18]. This
makes it more difficult to define a single compositional profile
for algal-based biodiesel, as compared to vegetable oil-based
biodiesel. Also, although many different algal materials have been

investigated, the exact species is often unknown, or mixed species
are used. In addition, there are relatively few instances of the
same algal species being characterized by more than one research
group.



S.K
.

 H
oekm

an
 et

 al.
 /

 R
enew

able
 and

 Sustainable
 Energy

 R
eview

s
 16 (2012) 143– 169

147

Table 3
Fatty acid compositional profiles of biodiesel (FAME) from fats and oils.
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Table  4
Literature references used to determine FA compositions of biodiesel produced from vegetable oil and animal fat feedstocks.

Feedstock References

Camelina [138,139,140,141,142,143]
Canola [138,144,79,88,145,146,98,147,148,149,142,150,151,152]
Coconut [138,153,154,155,156,157,158,148,149,159,151,160,161,162]
Corn [138,163,41,88,156,95,149,159,164,165,166,167]
Jatropha [168,138,169,170,171,172,13,173,174,175,157,176,177,178,179,180,181,182,183,184,185]
Palm [186,168,187,138,163,41,79,76,188,153,154,155,75,96,98,189,156,157,158,176,71,95,148,149,142,151,165,166]
Rapeseed [186,97,168,190,163,41,76,191,192,153,139,96,156,158,193,71,95,148,149,159,166,167,194]
Safflower [156,193,71,148,149,159,195,167,194]
Soybean [196,186,197,198,199,138,200,163,41,79,76,201,202,88,192,188,153,75,96,98,203,156,204,205,77,158,193,95,148,206,159,142,151,164,

207,152,166,167,194]
Sunflower [208,138,163,88,98,209,156,210,176,193,95,148,149,159,164,166,167,194]

07,152
75,219
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Tallow [168,138,79,209,211,193,55,212,148,149,213,159,2
Yellow grease [97,208,215,216,138,217,218,200,163,192,145,146,

Over 40,000 algal species have been identified, with many more
emaining unidentified [18]. Algae are often classified into the fol-
owing major groupings:

Cyanobacteria (Cyanophyceae)
Green algae (Chlorophyceae)
Yellow-green algae (Xanthophyceae)
Golden algae (Chrysophyceae)
Red algae (Rhodophyceae)
Brown algae (Phaeophyceae)
Diatoms (Bacilleriophyceae)
Pico-plankton (Eustigmatophyceae)

Most algae that have been investigated as potential biodiesel
eedstocks are green algae (Chlorophyceae), although several other
ypes have also been reported. Triacylglycerides are the desired
omponent within algal lipids for use as biodiesel feedstocks. How-
ver, these lipids typically also contain lesser amounts of wax
sters, sterols, tocopherols, hydrocarbons, and others compounds.
ust as with the vegetable oil feedstocks described earlier, triglyc-
ride production within algae varies considerably from one species
o the next. For algae, this is typically represented as the total lipid
ontent, expressed as mass percent on a dry basis. As shown in
ig. 2, reported lipid contents vary widely, from less than 10% to
ver 50%. One reason for the large range of values for each species
s that lipid content also varies as a function of growth conditions.
owever, lipid content alone does not define the total productivity
f an algal strain, as productivity is the product of lipid content and
lgal growth rates [24].

Table 5
identifies 12 algal species having FA compositional profiles

eported in the literature, and provides average profile data for each
ne. The literature sources used to define these average profiles are
iven in Table 6. In several cases, only one or two literature refer-
nces were found to give the FA profiles; in no case were more
han five references found. Consequently, these profiles should be
egarded as having high uncertainty – even more so when consider-
ng that algal compositions also vary significantly depending upon
rowth conditions. For these algal FA compositions, no effort was
ade to identify and eliminate outliers, or to manipulate the data

n any other way.
Average compositional profiles of the 12 algal species inves-

igated are shown graphically in Fig. S-2.  Comparison with the
egetable oil FA profiles reveals several interesting features. First,
lthough most of these algal species have considerable amounts of
16 and C18 species, they are not as dominated by these species as

re most vegetable oils. Second, some (but not all) algal FA profiles
re broader than those of vegetable oils, containing significant
mounts of both lighter species (C12–C14) and heavier species
C20–C22). Third, many (but not all) of the algal profiles contain
,166,214]
,204,216,55,151,214]

substantial amounts of highly unsaturated species, including FAs
with 3–6 double bonds. A useful comparison between animal
fats/vegetable oils and algal lipids with respect to saturated and
unsaturated compounds is provided in Fig. 3. As discussed below,
the substantial levels of highly unsaturated constituents in many
algal species have important implications with respect to biodiesel
properties.

3. Biodiesel properties

The physical and chemical properties of biodiesel are deter-
mined by the compositional profiles described above. Biodiesel
properties can vary substantially from one feedstock to the next.
Specific variations with feedstock are discussed below in greater
detail. However, it is also useful to briefly compare a few criti-
cal properties of biodiesel fuels as a class, with the properties of
petroleum diesel, as shown in Table 7. For completeness, typi-
cal properties of renewable diesel are also included. (A thorough
comparison of biodiesel and renewable diesel with respect to
production, properties, and impacts has recently been published
[25].) The property values shown in Table 7 were derived by
combining information from several literature sources [8,26–32].
The properties of individual fuels can vary from those shown
here.

Because of its considerable oxygen content (typically 11%),
biodiesel has lower carbon and hydrogen contents compared to
diesel fuel, resulting in about a 10% lower mass energy content.
However, due to biodiesel’s higher fuel density, its volumetric
energy content is only about 5–6% lower than petroleum diesel.
Typically, biodiesel has somewhat higher molecular weight than
petroleum diesel, which is reflected in slightly higher distillation
temperatures (as measured by T90). Consisting mainly of straight
chain esters, most biodiesel fuels have excellent cetane numbers
– typically higher than No. 2 diesel fuel. The viscosity of most
biodiesel fuels is significantly higher than petroleum diesel, often
by a factor of 2.

Renewable diesel consists mainly of paraffinic hydrocarbons,
usually dominated by odd carbon numbers [8,26,33]. (Depend-
ing upon process variables, even carbon number hydrocarbons
can also be produced.) While some renewable diesel fuels contain
primarily straight-chain, normal paraffins, others contain appre-
ciable amounts of branched paraffins. As a consequence of their
high paraffinic content, renewable diesel fuels typically have cetane
numbers much higher than biodiesel. On a mass basis, the energy
content of renewable diesel is higher than biodiesel (similar to
petroleum diesel); on a volumetric basis, the energy contents of

biodiesel and renewable diesel are very similar.

When reviewing the properties of biodiesel prepared from
different feedstocks, it is useful to bear in mind the standard specifi-
cations that have been established by various fuel standard-setting
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Table 5
Fatty acid (FA) compositional profiles of algal lipids.

Fatty acid Bacillariophyta Chlorophyta

Common name Abbrev. C. calcitrans S. costatum P. tricornutum C. reinhardtii C. vulgaris D. salina D. teriolecta S. obliquus N. oleabundans

Mean Dev Mean Dev Mean Dev Mean Dev Mean Dev Mean Dev Mean Dev Mean Dev Mean Dev

Capriotic 6:0 0.2 0.1
Caprylic  8:0 0.6
Capric 10:0 24.6 0.5 0.4 1.0
Lauric  12:0 2.7 1.5 1.9 2.0 0.5
Tridecylic 13:0 0.7 1.8 0.2
Myristic 14:0 18.6 14.6 2.6 7.5 3.7 2.3 2.5 1.1 0.6 0.1 1.0 0.6 0.9 0.9 1.9 1.7
Myristoleic 14:1 0.4 0.0 25.5 36.0 0.9 0.4 0.4 0.7 0.8 21.7 0.4
Pentadanoic 15:0 2.7 8.0 9.8 1.9 9.4 11.9 2.3 1.4
Pentadecenoic 15:1 2.4 2.4 6.2
Palmitic 16:0 26.3 12.4 4.2 15.4 4.0 32.4 17.4 10.6 19.4 2.3 13.2 9.7 11.6 14.4 36.3 33.2
Palmitoleic 16:1 27.5 22.8 4.5 22.6 3.8 1.7 3.1 2.3 1.7 1.1 5.5 4.5 5.6 0.6 2.5 0.9
Hexadecadienoic 16:2 4.1 2.1 4.4 1.2 1.6 8.1 5.6 1.5 2.7 0.6 3.2 1.2 2.1 0.6
Hexadecatrienoic 16:3 10.2 0.2 8.3 5.4 2.1 2.6 1.6 7.2 4.4 2.8 1.7 0.7 1.0
Heptadecanoic 17:0 0.3 0.1 3.9 1.4 20.4 11.7
Heptadecenoic 17:1 31.6 4.1 1.2 1.0
Stearic  18:0 2.6 1.8 0.6 1.8 1.2 1.0 0.4 1.5 2.6 3.3 10.0 13.5 5.0 5.3
Oleic  18:1 4.5 2.9 0.4 5.5 6.5 17.7 9.2 4.4 5.3 2.6 5.7 4.3 9.5 11.8 23.4 11.4
Linoleic  18:2 0.8 1.4 0.3 1.6 0.8 10.8 20.7 19.6 6.2 0.1 14.2 9.6 17.5 6.0 10.2 4.0
Linolenic 18:3 0.9 0.9 0.9 0.7 21.6 14.3 12.0 38.7 1.0 35.0 6.1 1.9 2.6 10.0 10.6
Stearidonic 18:4 2.4 0.8 0.5 0.7 1.3 0.2 2.1
Arachidic  20:0 1.3 1.5 2.0 2.0 2.1
Gondoic  20:1 0.5 0.1 0.9 2.5
Eicosadiensic 20:2 0.2 0.5 0.5 0.1 0.4
Eicosatrienoic 20:3 0.1 0.8
Eicosatetraenoic 20:4 1.4 2.2 2.2 0.4 0.2 0.3 0.0
Eicosapentaenoic 20:5 6.7 14.2 1.7 26.1 11.0 0.5 0.1 0.4
Behenic  22:0
Erucic 22:1
Docosatetraenoic 22:4
Docosapentaenoic 22:5
Docosahexaenoic 22:6 0.6 2.1 0.4 0.9 0.3 0.5
Lignoceric 24:0
Nervonic 24:1
Total 87.6 94.4 158.1 90.0 107.0 86.6 127.0 116.9 113.7
No.  of references 1 2 5 1 4 2 4 2 3
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Table 5 ( Continued. )

Fatty Acid Cryptophyta Eustigmatophyta Haptophyta

Common name Abbrev. C. salina N. oculata I. galbana

Mean Dev Mean Dev Mean Dev

Capriotic 6:0
Caprylic 8:0
Capric 10:0
Lauric 12:0 3.6 3.9
Tridecylic 13:0
Myristic 14:0 20.4 14.8 3.7 0.2 10.6 5.3
Myristoleic 14:1 0.3 0.2 0.0
Pentadanoic 15:0 3.5 4.2 1.8
Pentadecenoic 15:1
Palmitic 16:0 16.7 2.8 24.9 10.0 13.8 2.5
Palmitoleic 16:1 1.8 0.6 23.3 3.8 9.8 10.3
Hexadecadienoic 16:2 0.7 0.8
Hexadecatrienoic 16:3 0.6
Heptadecanoic 17:0 1.1 0.4 1.1
Heptadecenoic 17:1
Stearic 18:0 2.2 0.9 2.1 1.5 1.2 0.1
Oleic  18:1 12.8 6.8 5.8 1.8 15.7 8.3
Linoleic  18:2 9.3 10.0 3.6 3.3 4.4 2.4
Linolenic  18:3 8.5 2.8 3.8 4.1 2.9 2.0
Stearidonic 18:4 11.4 16.4 13.8 6.8
Arachidic  20:0
Gondoic 20:1 0.2 0.1
Eicosadiensic 20:2 0.1
Eicosatrienoic 20:3 0.4 0.1
Eicosatetraenoic 20:4 1.8 1.4 4.5 0.8 0.5
Eicosapentaenoic 20:5 5.0 6.9 27.6 10.8 13.1 17.7
Behenic 22:0
Erucic  22:1
Docosatetraenoic 22:4 0.1
Docosapentaenoic 22:5 1.2
Docosahexaenoic 22:6 2.9 3.7 14.4 5.4
Lignoceric  24:0
Nervonic 24:1 2.3
Total 102.0  104.3 101.2
No.  of References 3 3 3
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Fig. 1. Compositional profiles of fatty acids from (a) p
rganizations, particularly ASTM (in the U.S.) and the European
ommittee for Standardization (CEN). ASTM has established stan-
ard specifications for biodiesel fuel blendstocks (B100) for middle
istillate fuels, called ASTM D6751 [7],  as well as for biodiesel
il, (b) rapeseed oil, (c) soy oil, and (d) yellow grease.
blends of B6 to B20 in petroleum diesel, called ASTM D7467 [34].
Blends of B5 and below are permitted under the standard specifi-
cations for No. 2 diesel fuel, ASTM D975 [35]. To date, the CEN has
only established standard specifications for B100, called EN 14214
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onfidence intervals are min. and max. of reported values. Data taken from [18,134

36,37],  but not for mid-level blends such as B20. The European

tandard specifications for conventional No. 2 diesel fuel (EN 590)
ermit blends of B7 and below; and deliberations are underway
o allow an increase to B10 [32]. Table 8 provides a side-by-side
isting of specifications for biodiesel blendstock (B100; ASTM and

able 6
iterature references used to determine FA compositions of biodiesel produced from
lgal feedstocks.

Microalgae feedstocks References

Bacillariophyta Chaetoceros calcitrans [220]
Skeletonema costatum [221,222]
Phaeodactylum tricornutum [223,224,220,40,222]

Chlorophyta Chlamydomonas reinhardtii [225]
Chorella vulgaris [226,227,40,225]
Dunaliella salina [228,222]
Dunaliella teriolecta [226,40,225,222]
Scenedesmes obliquus [226,40]
Neochloris oleabundans [229,230,226]

Cryptophyta Chromonas salina [231,232,222]
Eustigmatophyta Nannochloropsis oculata [233,229,222]
Haptophyta Isochrysis galbana [224,229,234]

able 7
ypical properties of biodiesel compared to petroleum diesel and renewable diesel.

Property No. 2 petroleum
diesel

Biodiesel
(FAME)

Renewable
diesel

Carbon, wt.% 86.8 76.2 84.9
Hydrogen, wt.% 13.2 12.6 15.1
Oxygen, wt.% 0.0 11.2 0.0
Specific Gravity 0.85 0.88 0.78
Cetane no. 40–45 45–55 70–90
T90, ◦C 300–330 330–360 290–300
Viscosity, mm2/s. @ 40 ◦C 2–3 4–5 3–4
Energy content (LHV)
Mass basis, MJ/kg 43 39 44
Mass basis, BTU/lb. 18,500 16,600 18,900
Vol.  basis, 1000 BTU/gal 130 121 122
 various algal species, wt.%.
9,336].

CEN) and mid-level biodiesel blends (B6–B20; ASTM only). For each
specification, both the limits and the methods are shown.

3.1. Properties of biodiesel from fats and oils

Table 9 summarizes several of the most important physi-
cal/chemical properties of biodiesel (FAME) derived from the same
12 feedstocks whose compositional profiles were discussed above.
These data were obtained using a similar process as with the fatty
acid (FA) profile data. Numerous literature sources (identified in
Table 10)  were reviewed to create these profiles. The number of
references for a given FAME varied from 4 (for safflower) to 59 (for
soy).

FAME property values reported by different authors vary con-
siderably. As with the FA compositional profiles, this variation in
properties is largely attributed to use of different analytical meth-
ods and different skill levels in applying these methods. Additional
sources of variability include the chemical process used to produce
the FAME, the clean-up process used to purify raw FAME, and the
storage time (and conditions) prior to analysis.

The oxidative stability of FAME is a critical in-use property of
biodiesel, but was  not considered in this summary of fuel prop-
erties because it is influenced greatly by the FAME clean-up and
storage practices employed. In addition, some of the biodiesel sam-
ples contained anti-oxidant additives, which modified the inherent
stability of the FAME material. There are several other FAME prop-
erties for which specifications have been established, but that also
depend largely upon manufacturing and handling practices, rather
than being inherent properties of FAME itself. These include water
and sediment, methanol content, ash, metals, acid number, glycer-
ine content, and cold soak filterability. Thus, these properties are
not included in the summary Table 9.
Important properties that are directly related to FAME itself, and
are reported frequently in the literature, include viscosity, cetane
number, cloud point, pour point, cold filter plugging point, spe-
cific gravity, flash point, iodine value, and heating value. All these
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Fig. 3. Saturation/unsaturation profiles of biodiesel feeds

roperties are included in Table 9, along with cetane index (CI),
hich was reported by many authors. CI is commonly used to

pproximate the cetane number for petroleum mid-distillate fuels
sing formulas defined in test methods ASTM D976 and D4737.
hese formulas are based upon the fuel’s density and distilla-
ion properties, both of which are quite different for biodiesel as
ompared to petroleum diesel. Because of this, the ASTM stan-
ard methods for CI should not be applied to biodiesel, and any
eported biodiesel CI value derived from these methods should
ot be considered reliable. Nevertheless, CI values are included in
his assessment to illustrate their lack of correlation with cetane
umbers, and to highlight the unreliability of CI for biodiesel.

The approach taken in handling literature-reported biodiesel
roperty data was similar to that described above for the FA profile
ata. Initially, all reported values were accepted, with no a pri-
ri judgment about data validity. From this raw data, a mean and

tandard deviation were computed for each FAME. More careful
nspection of the data was then conducted, especially for values
hat were greatly different from the mean. In several cases, viscos-
ty values were found to have been determined at temperatures
 from (a) animal fat and vegetable oil and (b) algal lipids.

other than the standard of 40 ◦C. Because viscosity varies greatly
with temperature, values determined at non-standard temperature
conditions were eliminated when determining means and standard
deviations.

Sulfur values also required careful assessment. Many sources
report values using older analytical methods meant for conven-
tional diesel fuel, having sulfur levels of 500 ppm or higher. In such
cases, results were often reported as <0.05% (or similar value). These
relatively insensitive methods are not appropriate for ultra-low sul-
fur diesel (ULSD) or biodiesel. Therefore, sulfur values were only
included in this review if they were determined by ASTM D5453
(or equivalent method), which is reliable in measuring ppm levels
of sulfur.

Energy content is another important in-use property of FAME,
though there is no specification for this in either U.S. or European
biodiesel standards. Nevertheless, many authors reported values

for energy content – although there is much inconsistency in
the metrics used. For example, lower heating value (LHV), higher
heating value (HHV), gross energy content, and net energy content
were all reported – often without a clear definition of how the
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Table  8
U.S. and European specifications for biodiesel (B100) and biodiesel blends.

Property Biodiesel blendstock (B100) B6–B20 Blends

U.S. (ASTM D6751-08) Europe (EN 14214) U.S. (ASTM D7467-08)

Limits Method Limits Method Limits Method

Water and sediment (vol.%, max) 0.05 D 2709 0.05 EN 12937g 0.05 D 2709
Total  contamination (mg/kg, max.) 24 EN 12662
Kinematic viscosity @ 40 ◦C (mm2/s) 1.9–6.0 D 445 3.5–5.0 EN 3104/3105 1.9–4.1 D 445
Flash  point, closed cup (◦C, min) 93 D 93 101 EN 3679 52 D 93
Methanol (wt.%, max.) 0.20a EN 14110 0.20 EN 14110
Cetane no. (min) 47 D 613 51 EN 5165 40 D 613
Cloud  point (◦C) Reportd D 2500 Country Specificd Reportd D 2500
Sulfated ash (wt.%, max.) 0.020 D 874 0.020 EN 3987
Total  ash (wt.%, max.) 0.01 D 482
Gp  I metals Na + K (mg/kg, max.) 5.0 EN 14538 5.0 EN 14108/14109
Gp  II Metals Ca + Mg  (mg/kg, max.) 5.0 EN 14538 5.0 EN 14538
Total  Sulfur (ppm, max.) 15b D 5453 10 EN 20846 15 D 5453
Phosphorous (ppm, max.) 10 D 4951 4 EN 14107
Acid  no. (mg  KOH/g, max.) 0.50 D 664 0.50 EN 14104 0.3 D 664
Carbon  residue (wt.%, max) 0.05 D 4530 0.30e EN 10370 0.35e D 524
Free  glycerin (wt.%, max.) 0.02 D 6584 0.02 EN 14105/14106
Total  glycerin (wt.%, max.) 0.24 D 6584 0.25 EN 14105
Mono  glyceride (wt.%, max) 0.80 EN 14105
Diglyceride (wt.%, max) 0.20 EN 14105
Triglyceride (wt.%, max) 0.20 EN 14105
Distillation (T90

◦C, max.) 36c D 1160 343 D 86
Copper  strip corrosion (3-h at 50◦ C, max.) No. 3 D 130 No. 1 EN 2160 No. 3 D 130
Oxidation Stability (h @ 110 ◦C, min) 3.0 EN 14112 6.0 EN 14112 6 EN 14112
Linolenic acid methyl ester (wt.%, max) 12.0 EN 14103
Polyunsaturated acid methyl esters (wt.%, max) 1.0 prEN 15799
Ester Content (wt.%, min) 96.5 EN 14103 6–20 vol.% D 7371
Iodine  Value (g l2/100 g, max.) 120 EN 14111
Density (kg/m3) 860–900 EN 3675
Lubricity @ 60 ◦C, WSD, microns (max.) 520 D 6079
Cold  Soak Filterability (seconds, max.) 360f D 7501

a Alternatively, flash point must be >130 ◦C.
b For blending with ULSD. For other fuels, higher sulfur levels are allowed.
c Atmospheric equivalent T-90 point.
d Low temperature properties are not strictly specified, but should be agreed upon by the fuel supplier or purchaser.
e This limit is based on the bottom 10% fraction of the fuel, not the entire fuel.
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f 200 s max. for use in diesel blends at low temperature (<−12 ◦C).
g Method EN 12937 measures total water (in units of �g/g), but not sediment.

easurements were made. In some references, the specific metric
eing reported was not indicated. In such cases, the authors’

udgment was used to assign the values as either LHV or HHV.
Two other “properties” of biodiesel shown in Table 9 were calcu-

ated based upon the average compositional profiles of the 12 FAME
ypes: (1) average chain length and (2) average degree of unsatura-
ion. Average chain length was computed by multiplying the mass
raction of each FA constituent times its associated carbon number,
hen summing over the entire profile. Similarly, average degree of
nsaturation was computed by multiplying the mass fraction of
ach FA constituent times the associated number of carbon–carbon
ouble bonds, then summing over the entire profile.

The average properties of the 12 biodiesel types considered are
hown graphically in Fig. S-3, along with confidence intervals of ±1
tandard deviation. These depictions provide insights into differ-
nces and similarities among the biodiesel fuels. For example, all
2 biodiesel types have very low sulfur contents, with no signifi-
ant differences among them. All these biodiesels are well below
he sulfur specification maximum in ASTM D6751 (15 ppm) and EN
4214 (10 ppm). Other properties are discussed below.

.1.1. Kinematic viscosity

The kinematic viscosity data show that 10 of the 12 biodiesel

ypes fall within a narrow range of 4–5 mm2/s. Biodiesel from
amelina has slightly lower viscosity at 3.8 mm2/s, while coconut-
erived biodiesel is substantially lower, at 2.75 mm2/s. The ASTM
D6751 viscosity specification of 1.9–6.0 mm2/s is satisfied by all
12 biodiesels. The more restrictive EN 14214 specification of
3.5–5.0 mm2/s would exclude biodiesel from coconut oil.

3.1.2. Specific gravity
Specific gravity varied within a narrow range of 0.873–0.883

for all 12 biodiesel types. Palm-derived and coconut-derived FAME
have the lowest specific gravity values of 0.873 and 0.874, respec-
tively. The EN 14214 standard includes a density specification of
860–900 kg/m3. (Note: specific gravity and density are used inter-
changeably in this report.) Biodiesel produced from all 12 of these
feedstocks would meet this specification. The ASTM D6751 stan-
dard does not include a specification for density.

3.1.3. Cold flow properties
All three low temperature properties considered [cloud point

(CP), pour point (PP), and cold filter plugging point (CFPP)] show
very similar patterns across the sets of 12 biodiesel types. In each
case, biodiesel from palm oil and tallow show the poorest perfor-
mance (highest temperature points), while biodiesel from rapeseed
generally shows the best performance (lowest temperature points).
Because of large seasonal and geographic temperature variability,

neither the U.S. nor European biodiesel standards have firm spec-
ifications for these low temperature properties, though they are
among the most important properties in determining the suitability
of biodiesel fuels in-use.
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Table 9
Physical/chemical properties of biodiesel (FAME) from fats and oils.
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Table  10
Literature sources used to determine physical/chemical properties of biodiesel from vegetable oils and animal fats.

Feedstock References

Camelina [138,139,235,236,141,142]
Canola [237,238,138,31,239,144,78,201,146,240,241,148,142,150,242]
Coconut [138,243,155,148,160,161,162]
Corn [138,163,240,86,242,95]
Jatropha [244,245,168,246,73,138,247,248,89,169,249,250,251,252,253,240,171,172,13,173,254,176,177]
Palm [186,255,256,257,258,245,48,259,168,260,73,261,138,163,262,263,264,79,76,265,169,266,267,268,155,269,75,96,270,271,189,272,273,274,176,86,

71,95,275,148,276,142,61,277]
Rapeseed [186,255,97,278,279,258,48,280,259,168,281,163,76,282,191,283,284,192,285,169,267,286,26,96,270,287,288,289,290,86,291,71,292,95,293,294,

276,295,277]
Safflower [289,86,71,296]
Soybean [196,186,297,298,257,299,258,237,198,300,199,73,51,301,238,138,31,79,200,302,262,163,76,201,303,304,305,306,202,192,265,285,169,267,50,75,

96,270,307,203,205,272,308,309,310,77,311,86,312,242,95,313,148,142,314,207,315,277,316]
Sunflower [257,245,317,73,208,138,318,163,265,285,272,210,176,86,242,95,319,320,321,322]

,138,3
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Tallow [257,237,168,138,79,201,265,272,212,207,323,211]
Yellow grease [97,324,299,258,245,325,326,237,317,327,328,208,215,216

335,316]

.1.4. Flash point
The flash point values for 11 of the 12 biodiesel types are well

bove the minimum specifications in the U.S. (93 ◦C) and European
101 ◦C) standards. Coconut-derived biodiesel has a significantly
ower flash point, although it is still just within the standard spec-
fications. The main purpose of the flash point specification is to
nsure that the manufactured FAME has been sufficiently purified
y removal of excess methanol. Even small amounts of residual
ethanol in FAME will cause a significantly depressed flash point.

.1.5. Cetane number
Cetane number values for all 12 biodiesel types easily surpass

he ASTM minimum specification of 47, with the highest cetane val-
es being observed for palm-, coconut-, and tallow-derived FAME.
he European specification is more stringent, requiring a mini-
um cetane number of 51. On this basis, biodiesel produced from

amelina, safflower, soy, and sunflower are all borderline, and spe-
ific batches may  have difficulty in meeting the specification.

.1.6. Iodine value
Iodine value (IV) is a measure of unsaturation. ASTM D6751 does

ot include a specification for IV, while EN 14214 has a maximum
V specification of 120 mg  I2/100 g FAME. Rapeseed biodiesel is just
elow this value of 120, while biodiesel from soy and sunflower
re just over the limit. Biodiesel from camelina and safflower have
ven higher IV levels, and would clearly be “off-spec” with respect
o EN 14214, while all other biodiesel types investigated here are
ell below the 120 IV level. Coconut-derived biodiesel is highly

aturated, and has an exceptionally low IV of about 19.

.1.7. Heating value
Neither the U.S. nor European biodiesel standards include

 specification for heating value. Due to its substantial oxygen
ontent, it is generally accepted that biodiesel from all sources
as about 10% lower mass energy content (MJ/kg) than petroleum
iesel. However, there are some differences in heating value among
he 12 biodiesel types investigated here. Camelina was reported to
ave the highest HHV at 45.2 MJ/kg (based upon a single report),
ollowed by corn and safflower at 43.1 and 42.2 MJ/kg, respectively.
AME produced from soy, sunflower, tallow, and yellow grease
re all just below 40 MJ/kg, while FAME from coconut is much
ower at 38.1 MJ/kg. It should be emphasized that with several
iodiesel types, the data reported for heating values is very sparse.

n addition, confusion between LHV and HHV is likely in several
iterature reports.
1,239,217,218,201,200,163,192,146,268,329,75,219,330,273,331,216,332,333,334,

3.1.8. Other properties
The calculated properties of average chain length and aver-

age degree of unsaturation were also investigated. Eleven of the
12 biodiesel fuels have average chain lengths varying from 17 to
19, with camelina-derived fuel being the longest at 19.1. Coconut-
derived biodiesel has a considerably shorter average chain length of
13.4. The average degree of unsaturation varied substantially across
the range of 12 biodiesel types – from a low of 0.12 (for coconut)
to a high of 1.81 (for camelina). As discussed below, this variability
in unsaturation is one of the most important factors in explaining
many other differences in properties and performance among the
range of biodiesel types.

3.2. Properties of biodiesel from algal lipids

Despite the current emphasis on use of algal lipids as biodiesel
feedstocks, there are very few literature reports of actual biodiesel
samples produced from algae, and even fewer reports of rele-
vant fuel properties from such algal-derived materials. Miao et al.
reported the production of biodiesel from Chlorella protothecoides,
and showed that it satisfied several of the ASTM specifications for
biodiesel [38,39]. Also, Francisco et al. produced biodiesel samples
from six different algal species, and showed that they meet sev-
eral of the specifications for European biodiesel – including iodine
value (IV) [40]. Considering the high degree of unsaturation of
many algal FA profiles (see Table 5 and Fig. 3) it is surprising that
these biodiesels would meet the European IV specification. It is also
expected that such highly unsaturated materials would have diffi-
culty in meeting the oxidation stability requirements within either
the U.S. or European biodiesel standards. Assessing the suitability
of algal-derived FAME as a biodiesel fuel is clearly an area requiring
further study.

3.3. Relationships between composition and properties

The physical and chemical properties of biodiesel are largely
dictated by the specific compositional profile of the FAME mate-
rial. Several researchers have investigated relationships between
particular properties and compositional features by careful study
of pure compounds, or mixtures of pure compounds [41,42]. In
this study, considerable information has been compiled on prop-
erties and compositions of complete FAME products from many
feedstocks, enabling investigation of relationships across a range
of realistic biodiesel types.
As a first step, a simple correlation matrix utilizing the average
physical/chemical properties of the different biodiesel types
was developed. (Coconut-derived FAME was excluded from this
analysis because it differed from the other 11 FAME materials in
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any ways.) The derived correlation matrix is shown in Table 11.
ighlighting (by different shading colors) is used to indicate
orrelation values exceeding 0.70, 0.80, and 0.90. This clearly
emonstrates the important relationships between certain prop-
rties, and highlights the significance of the computed property,
average unsaturation,” which is highly correlated with several
ther properties.

The two compositional features of FAME generally regarded as
ost important in determining fuel properties are FA chain length

nd degree of unsaturation. To explore these relationships more
horoughly using this robust set of FAME data, a set of graphical
isplays was generated in which the average of 11 fuel properties
or the 12 biodiesel types are plotted against average chain length,
nd against average degree of unsaturation. Example graphs for 6
f the most important properties are shown in Fig. 4. Least-squares
egression fits are included on each of the “degree of unsaturation”
raphs, but not on the “average chain length” graphs, as these gen-
rally showed very low correlations. The results and implications
rom each case are discussed below.

.3.1. Kinematic viscosity
Viscosity is a measure of resistance to flow of a liquid due to

nternal friction of one part of a fluid moving over another [43]. This
s a critical property because it affects the behavior of fuel injection.
n general, higher viscosity leads to poorer fuel atomization [44].
igh viscosity can cause larger droplet sizes, poorer vaporization,
arrower injection spray angle, and greater in-cylinder penetration
f the fuel spray [45–49].  This can lead to overall poorer combus-
ion, higher emissions, and increased oil dilution. The viscosity of
iodiesel is typically higher than that of petroleum diesel – often
y a factor of two. The viscosity of biodiesel blends increases as the
lend level (B-level) increases. (The viscosity of straight vegetable
il is much higher yet, and is the main reason why such oils are
nacceptable as diesel blendstocks.)

It has been shown that in a light-duty, common rail injec-
ion system, higher viscosity FAME resulted in increased delay in
tart of injection, reduced injection volume, and increased injec-
ion variability [50]. Viscosity is greatly affected by temperature
51]. Hence, many of the problems resulting from high viscosity
re most noticeable under low ambient temperature and cold-start
ngine conditions. A recent study has shown that as temperature
s reduced, the distribution of B100 fuel among individual injectors

ithin an injector assembly becomes very unequal [52]. This, in
urn, could lead to engine performance and emissions problems.

Viscosity of individual FAME molecules is known to increase
ith FA carbon number [43,51,53].  However, as shown in Fig. 4a,

he average carbon number of most common biodiesel types does
ot vary over a wide range. The effects of increased carbon number
ithin the alcohol used to produce FAME are smaller and less cer-

ain. Several researchers have reported slight increases in viscosity
pon changing the alcohol from methanol, to ethanol, to propanol
43,51,54–56].

A high degree of correlation between biodiesel density and
iscosity has been noted in the literature, with higher density
eading to lower viscosity [57]. However, the correlation between
ensity and specific gravity from our data set (shown in Table 11)

s not very high, with a value of −0.62. Viscosity correlates more
trongly with the degree of unsaturation, with higher unsaturation
eading to lower viscosity (although coconut-derived FAME is an
xception). Furthermore, the double bond configuration influences
iscosity, with trans configuration giving higher viscosity than cis

43,53]. Most natural oils are dominated by cis double bonds, but
ome yellow grease (waste cooking oils) can have substantial levels
f the trans configuration [53]. The location of the double bond
ithin the FA chain apparently has little influence on viscosity.
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Fig. 4. Relationships between biodiesel unsaturation/chain length and other fuel properties: (a) kinematic viscosity, (b) specific gravity, (c) cloud point, (d) cetane number,
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even when blended with conventional diesel [59,60].  In general, the
longer the carbon chain, the higher the melting point, and poorer
the low temperature performance [53,56,61,62].

Table 12
Low temperature performance tests for biodiesel.

Test Name Abbreviation Test method(s)

Cloud point CP EN 23015, ASTM D2500, ASTM
D5773

Pour point PP ASTM D97, ASTM D5949
e)  iodine value, and (f) higher heating value (HHV).
 Average unsaturation and chain length computed from compositional profiles in 

 Biodiesel feedstock abbreviations: Coco, coconut; Jat, Jatropha; Cam, camelina.

.3.2. Density
Fuel density is a key property that affects engine performance.

ecause fuel injection pumps meter fuel by volume, not by mass, a
reater or lesser mass of fuel is injected depending upon its density.
hus, the air–fuel ratio and energy content within the combustion
hamber are influenced by fuel density.

In general, densities of biodiesel fuels are slightly higher than
hose of petroleum diesel, and increasing the B-level of biodiesel
lends increases the blend’s density. As shown in Fig. 4b, FAME den-
ity is strongly affected by the degree of unsaturation, with higher
nsaturation leading to increased density [53]. (Note: in this study,
ensity and specific gravity are used interchangeably. Specific grav-

ty is most frequently reported in the literature, although density is
he specification metric.) Table 11 shows the correlation coefficient
etween specific gravity and average unsaturation to be 0.65.

It has been reported that biodiesel density is also affected by
hain length, with higher chain length leading to lower fuel density
53]. However, this does not appear to be the case for the set of 12
iodiesel fuels investigated here, as indicated by the data plotted

n Fig. 4b, or by the correlation coefficients shown in Table 11.  No
iterature information was  found regarding the effect of alcohol
ength or branching upon density.

.3.3. Cold flow properties
Low temperature performance is one of the most important

onsiderations for users of biodiesel. Just as with conventional

iesel fuel, precautions must be taken to ensure satisfactory low
emperature operability of biodiesel and its blends [31]. Poor low
emperature performance may  be exhibited in several ways, but
rincipally by filter plugging due to wax formation, and engine
3.

starving due to reduced fuel flow. There is no single best way
to assess low temperature performance, and the existing fuel
standards (both U.S. and European) do not include explicit specifi-
cations for cold flow properties – for either conventional diesel or
biodiesel. However, the fuel provider is generally required to give
an indication of the cold flow properties by reporting the cloud
point (CP) of the fuel. A number of other laboratory tests are com-
monly used to define low temperature properties of biodiesel (and
conventional diesel). These are listed in Table 12.

A good review of low temperature properties and performance
of biodiesel is available in the literature [58]. In addition, a recent
NREL publication provides useful guidance for addressing low tem-
perature operability issues, as well as other in-use handling issues
[31]. Poor cold flow properties result from the presence of long-
chain, saturated FA esters present in biodiesel. Saturated methyl
esters longer than C12 significantly increase CP and pour point (PP),
Cold filter plugging point CFPP EN 116, IP 309, ASTM D6371
Low temp filterability test LTFT ASTM D4539
Wax  appearance point WAP  ASTM D3117
Cold soak filterability – ASTM D7501
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Feedstocks with highly saturated FA structures (such as palm oil
nd tallow) produce biodiesel fuels with poor cold flow properties;
hereas feedstocks with highly unsaturated fatty acid structures

such as rapeseed and safflower oil) produce fuels having bet-
er performance. Although the relationship between carbon chain
ength and low temperature properties is quite strong for pure
AME compounds, the effects appear more subtle when consid-
ring complex mixtures of FAME in actual biodiesel samples. For
xample, the CP results plotted in Fig. 4c do not reveal any signifi-
ant correlation with average chain length. Very similar results are
bserved when using PP and cold filter plugging point (CFPP) as
ndicators of low-temperature performance. In fact, the three met-
ics of CP, PP, and CFPP are highly correlated amongst themselves,
uggesting that any one could be used as an indicator of the others.

This analysis of complex FAME materials does not indicate a
tronger relationship between chain length and low temperature
roperties because the metric of average chain length does not dis-
inguish between saturated and unsaturated FA chains. Also, degree
f unsaturation has a strong effect on low temperature properties,
ith higher unsaturation leading to greatly improved low temper-

ture performance. Thus, the effect of unsaturation masks the effect
f chain length in these FAME materials. More sophisticated data
nalysis techniques would be required to properly determine the
eparate effects of multiple variables upon fuel property relation-
hips.

The relationship between CP and unsaturation is shown in
ig. 4c. Nearly identical results are observed when using PP or CFPP
s indicators. Of these three low-temperature properties, only CP
an be defined thermodynamically, as it is governed by solid–liquid
quilibrium as a function of temperature. (True equilibrium con-
itions may  not actually be achieved during the relatively rapid
ool-down tests used to measure CP.) CP is the temperature at
hich the least soluble biodiesel component crystallizes from solu-

ion. Thus, in pure biodiesel, CP is determined by the type and
mount of saturated fatty acid esters, with other components of
iodiesel having little effect. Several researchers have developed
redictive models for CP, based upon these thermodynamic rela-
ionships [63–65]. In general, these models show good agreement
ith laboratory measurements.

Wax  crystallization is initiated by “close packing” of molecules.
hus, factors that disrupt or inhibit close packing of highly ordered
olecules will decrease CP. Such structural disorder is increased
ith branching in either the FA chain or the alcohol portion of

AME [55,66].  Replacing methanol with ethanol to produce FAEE
esults in slightly improved low temperature performance, as ethyl
sters typically have melting points 5–10 ◦C lower than the compa-
able methyl esters [65,67–70].  Introduction of a double bond also
isrupts the close packing of molecules [53,62]. Furthermore, dif-
erences in double bond orientation have been noted, with the cis
onfiguration providing better low temperature test performance
han trans [71].

Increasing B-level of biodiesel typically leads to worsening
f low temperature performance. However, blending of different
omponents often results in non-linear effects with respect to low
emperature properties [72]. For example, it has been reported
hat the very poor low temperature performance of palm-based
iodiesel can be improved by blending with jatropha-based fuel
73,74].

In recent years, another low temperature operability problem
as been recognized, resulting from the formation of insoluble
articles upon storage at cool temperatures – though generally
bove the CP. These insolubles arise from precipitation of trace-

evel non-FAME impurities, not from the major FAME components
hemselves. Because of these operability problems, ASTM has
dopted a new Cold Soak Filterability test within the biodiesel
tandard, D6751. The two major families of impurities identified as
ble Energy Reviews 16 (2012) 143– 169 159

causing such precipitation problems are saturated mono-
glycerides and sterol glucosides [32,75–79].  Fig. 5 shows
representative structures of these compounds.

3.3.4. Cetane number
Cetane number (CN) is a measure of a fuel’s autoignition qual-

ity characteristics. Since biodiesel is largely composed of long-chain
hydrocarbon groups (with virtually no branching or aromatic struc-
tures) it typically has a higher CN than petroleum diesel, and
increasing the B-level of biodiesel blends increases the CN of the
blend [80,81]. There are exceptions, however, when a relatively
low CN biodiesel is blended with a relatively high CN petroleum
diesel. In such cases, increasing B-level results in decreasing CN of
the blend.

Biodiesel produced from feedstocks rich in saturated fatty acids
(such as tallow and palm) have higher CN than fuels produced from
less saturated feedstocks (such as soy and rapeseed). The effect
upon CN of branching in the alcohol used to produce the biodiesel
is very small, and difficult to discern [66,82]. The CN of pure FAME
molecules increases with chain length, but this effect is masked
when considering complex mixtures of FAME fuels. On the other
hand, the CN of FAME fuels clearly varies with average degree of
unsaturation (see Fig. 4d). The literature also reports that increasing
degree of unsaturation leads to decreasing CN [53,66,81].  Lapuerta
et al. have recently proposed a predictive equation for FAME CN
that is largely driven by the number of double bonds in the FAME
(as well as the FAME’s carbon number) [83]. These authors also
noted the high correlation between CN and iodine value (IV). This
relationship is evident from the high correlation coefficient (−0.97)
for CN and IV shown in Table 11.

It is noteworthy that no correlation between CN and cetane
index (CI) is apparent. In addition, CI has no meaningful correla-
tion with average unsaturation or IV. These observations suggest
that CI values reported in the literature are not reliable, and high-
light the problem that at present, a valid method for computing CI
for biodiesel does not exist.

3.3.5. Iodine value
Iodine value (IV) is determined by measuring the amount of

I2 that reacts by addition to carbon–carbon double bonds; thus,
IV is directly related to FAME unsaturation. This is clearly seen in
Fig. 4e, and by the high correlation coefficient (0.96) in Table 11.  IV
was originally included as a specification in the European biodiesel
standard, EN 14214, to ensure satisfactory oxidative stability of the
fuel. However, IV is simply a measure of total unsaturation, while
oxidative stability is more strongly influenced by the amount of
FAME molecules having multiple double bonds (see Section 3.3.9).
For this reason, there is some controversy about the need for an IV
standard at all, and certainly about the rather restrictive maximum
IV value of 120 g I2/100 g biodiesel set by EN 14214.

The Worldwide Fuel Charter – established by a collection of U.S.,
European, and Japanese automobile manufacturer associations –
also recommends an IV specification, but with a less restrictive
allowable maximum of 130 g I2/100 g biodiesel [84]. Some soy-
derived biodiesel is likely to fail the European IV specification, but
would more easily satisfy the higher IV recommendation by the
Worldwide Fuel Charter. The ASTM biodiesel standard does not
include an IV specification, believing that oxidative stability is bet-
ter addressed by the Rancimat oxidative stability test (method EN
14112). Others have argued that there is no need for an IV speci-
fication because the cetane number specification effectively limits
unsaturation [83].
3.3.6. Flash point
Flash point is inversely related to fuel volatility. The biofuel spec-

ifications for flash point are meant to guard against contamination
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Fig. 5. Typical structures of compounds responsible for poor col

y highly volatile impurities – principally excess methanol remain-
ng after product stripping processes. Of the 12 biodiesel materials
nvestigated in this study, coconut-derived FAME showed the low-
st inherent flash point, as expected, since its composition includes
ore light constituents (≤C12) than the other 11 FAMEs. Overall,

ur dataset does not indicate a high degree of correlation between
ash point and any other property.

.3.7. Heating value
Due to its high oxygen content, biodiesel has lower mass energy

alues than petroleum diesel. Therefore, increasing the B-level of
iodiesel blends results in decreasing energy content. (The same
elationships exist whether HHV or LHV is being considered.) As
he FA carbon chain increases (for a constant unsaturation level) the

ass fraction of oxygen decreases, so the heating value increases
85,86]. However, this increase in heating value with chain length is
ot readily apparent in the graph of Fig. 4f or the correlation matrix
f Table 11.

Unsaturation level has a somewhat stronger influence upon
eating values. Compared to saturated esters, unsaturated esters
ave lower mass energy content (MJ/kg), but higher volumetric
nergy content (MJ/gal.) [53]. This can be confusing, since mass
nergy content is typically measured in the laboratory, while fuel
s metered and sold on a volumetric basis. The heating values plot-
ed in Fig. 4f are on a mass basis (MJ/kg), and therefore might be
xpected to show a decrease with increasing unsaturation. In fact,
o significant relationship is observed. Another point to remem-
er is the confusing and inconsistent reporting of heating values in
he literature. Further evidence of these problems is the rather low
egree of correlation between LHV and HHV seen in the correlation
atrix of Table 11.

.3.8. Lubricity
Lubricity refers to the reduction of friction between solid sur-

aces in relative motion [30]. Two general mechanisms contribute
o overall lubricity: (1) hydrodynamic lubrication and (2) bound-
ry lubrication. In hydrodynamic lubrication, a liquid layer (such as
iesel fuel within a fuel injector) prevents contact between oppos-

ng surfaces. Boundary lubricants are compounds that adhere to
he metallic surfaces, forming a thin, protective anti-wear layer.
oundary lubrication becomes important when the hydrodynamic

ubricant has been squeezed out or otherwise removed from
etween the opposing surfaces.

Good lubricity in diesel fuel is critical to protect fuel injection
ystems. In many cases, the fuel itself is the only lubricant within

 fuel injector. With increasing operational demands of modern
njection systems – due to higher pressures, injection rate shaping,

ultiple injections per cycle, and other features – maintaining ade-
uate lubricity is more critical than ever. However, as the need for
mproved lubricity has increased, the natural lubricity of petroleum
iesel fuels has decreased. The high degree of hydrotreatment
ecessary to produce ULSD effectively removes all hetero-atom
ontaining molecules (O, N, and S) which have improved lubricity
 filtration: (a) sterol glucosides; (b) saturated mono-glycerides.

compared to hydrocarbons. In general, lubricity effectiveness
decreases in the order of O > N > S > C [87].

Biodiesel from all feedstocks is generally regarded as having
excellent lubricity, and the lubricity of ULSD can be improved by
blending with biodiesel. Because of its naturally high lubricity,
there is no lubricity specification for B-100 within either the U.S.
or European biodiesel standards. However, the U.S. standard for
B6–B20 blends (ASTM D7467) does include a lubricity specification,
as does the conventional diesel fuel standard, ASTM D975. Low B-
levels (often just 1–2%) typically provide satisfactory lubricity to
ULSD [31,87].

In part, biodiesel’s good lubricity can be attributed to the ester
group within the FAME molecules, but a higher degree of lubricity
is due to trace impurities in the biodiesel. In particular, free fatty
acids and monoglycerides are highly effective lubricants [87,88]. It
has been noted that purification of biodiesel by means of distilla-
tion reduces its lubricity because these impurities are removed.
The effect of unsaturation upon lubricity is unclear, with some
researchers reporting positive effects of carbon–carbon double
bonds [87] while others report no effect [89].

The positive impact of biodiesel impurities upon lubricity is
particularly noteworthy, as some of the same impurities (such as
monoglycerides) are responsible for poor low temperature oper-
ability problems. Efforts to reduce these impurities (to improve low
temperature properties) could have the unintended consequence
of worsening lubricity.

3.3.9. Oxidative stability
Oxidative stability is one of the most important fuel properties

with respect to in-use performance of biodiesel. Unstable fuel can
lead to increased viscosity, as well as formation of gums, sediment,
and other deposits. Further insights into these degradation pro-
cesses are provided in recent literature reviews on the topic [90,91].
Despite this importance, oxidative stability is not included in the
tabular or graphical summaries of FAME properties in Table 9 and
Fig. 4, respectively. The reason for this omission is that oxidative
stability is determined not only by FAME compositional proper-
ties, but also by the age of the biodiesel and the conditions under
which it has been stored. Furthermore, many biodiesel samples
contain additives that improve stability without affecting the gross
composition.

Oxidative stability is influenced by unsaturation. In general,
higher unsaturation leads to poorer stability, although the autoxi-
dation of unsaturated fatty compounds proceeds at different rates
depending upon the number and position of the double bonds [90].
Oxidative degradation processes are initiated by extraction of a
hydrogen atom from a carbon adjacent to a double bond – the so-
called allylic position [53,92]. Following removal of this hydrogen,
rapid reaction with molecular oxygen leads to formation of allylic

hydroperoxides. Subsequent reactions involving isomerization and
radical chain propagation produce numerous secondary oxidation
products such as aldehydes, alcohols, and carboxylic acids. FAME
molecules containing a carbon that is adjacent to two  double bonds
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a bis-allylic group) are particularly susceptible to this type of
xidative instability. It is for this reason that the European biodiesel
tandard (EN 14214) includes a separate specification for linolenic
cid methyl ester, which contains two bis-allylic groups (Table 2).
hen using purified methyl esters of oleic acid (18:1), linoleic acid

18:2), and linolenic acid (18:3), the relative rates of autoxidation
ere measured to be 1:41:98 [93,94].

The importance of polyunsaturated FAME (as opposed to
onounsaturated FAME) with respect to fuel stability has been

ecognized by many researchers. Ramos et al. defined a param-
ter called degree of unsaturation (DU), similar to the calculated
average unsaturation” property discussed above, but weighted di-
nd tri-unsaturated species twice as much as mono-unsaturated
pecies [95]. Park et al. developed a predictive equation for biofuel
tability that is based upon the concentrations of just two FAME
pecies: linoleic FAME (18:2) and linolenic FAME (18:3) [96].

The relative amounts of saturated and unsaturated constituents
hown in Fig. 3 are instructive in gauging the inherent oxidative
tability of the biodiesel fuels produced from these feedstocks.
or instance, very high oxidative stability would be expected for
oconut-derived FAME, since it contains only about 2% polyun-
aturated species (di- and tri- unsaturates). Biodiesel feedstocks
aving over 50% polyunsaturated FAME include camelina, corn,
afflower, soy, and sunflower; thus, these would be expected to
ave poor inherent oxidative stability. Camelina-derived biodiesel

s particularly noteworthy, as it contains about 35% tri-unsaturated
AME. Consequently, camelina biodiesel may  be expected to have
specially poor oxidative stability, though we are not aware of any
eports of significant stability problems with this material.

The algal lipid profiles shown in Fig. 3 are strikingly different
rom the vegetable oil profiles. The significant levels of polyun-
aturated constituents seen in many algal profiles certainly raise
uestions about the oxidative stability of biodiesel produced from
hese materials. This is an area requiring further investigation.

The carbon–carbon double bond orientation is important with
espect to oxidative stability. Generally, the trans configuration is
ore stable than cis [94,97]. The practical impact of this is limited,

owever, as all natural fats and oils are dominated by cis configu-
ation. Of greater practical value in improving biodiesel stability is
he blending of two feedstocks having different levels of inherent
xidative stability. Reported examples of this include blending high
tability palm FAME with poorer stability jatropha FAME [73] and
oy FAME [98].

Another reliable method for improving biodiesel stability
nvolves utilization of anti-oxidant additives [99,100]. Although
aw fats and oils usually contain natural anti-oxidants such as toco-
herols and carotenoids, synthetic anti-oxidants have generally
een found to be more effective [91,101–104].

.4. Optimal properties for biodiesel

As seen from the discussion above, changes in compositional
eatures of FAME have significant impacts on the physical/chemical
roperties of biodiesel. Furthermore, changes in a single com-
ositional feature (such as chain length, chain branching, and
nsaturation) generally produce both desirable and undesirable
hanges in FAME properties. To a certain degree, this is unavoidable,
s some properties have antagonistic relationships. For example,
ompositional features that favor good oxidative stability (high
aturation and low unsaturation) lead to poor low temperature
erformance.

The most significant relationships between FAME compositions

nd properties are summarized graphically in Table 13.  This table
ses arrows of different thickness and length to characterize the
hanges in FAME properties resulting from an increase in value of
ach compositional feature. Long arrows indicate relatively large
ble Energy Reviews 16 (2012) 143– 169 161

effects (likely to be noticeable to a perceptive user), while shorter
arrows indicate relatively small effects. Thick arrows indicate rela-
tionships that seem certain, based upon consistency of literature
reports, while narrow arrows are less certain. A “–” symbol indi-
cates that the literature is inconsistent regarding this effect. A blank
cell indicates that little (or no) literature information was found
pertaining to this effect. It should be emphasized that Table 13 only
represents the best judgment of this paper’s authors, based upon
their literature review and analyses of reported data.

Due to the conflicting impacts of certain FAME compositional
features upon fuel properties, it is not possible to define a spe-
cific FA composition that is optimum with respect to all important
properties. When considering properties that define the suitabil-
ity of FAME as a fuel blendstock, those that are most important
include cetane number, viscosity, cold flow, oxidative stability, and
lubricity [105]. Of these five, the two properties that are generally
regarded as most critical – and which vary the most with changes
in biodiesel feedstock – are cold flow and oxidative stability.

Several researchers have investigated design of preferred FAME
components to optimize biodiesel’s performance with respect to
cold flow and oxidative stability [95,106,107]. The consensus view
is that an optimum composition would have relatively low levels
of saturated FA (to minimize cold flow problems), low levels of
poly-unsaturated FA (to minimize oxidative instability), and high
levels of mono-unsaturated FA. Some have concluded that palmi-
toleic acid (16:1) and oleic acid (18:1) provide the best compromise
between oxidative stability and cold flow, without excessive reduc-
tion of cetane number [105,106].  Efforts are underway in several
laboratories to genetically modify the natural FA composition of
vegetable oils (and algal lipids) to improve their suitability as
biodiesel feedstocks [108–110]. Much of this work is focused on
soybeans, with the goal of increasing oleic acid (18:1) and decreas-
ing linoleic acid (18:2) and linolenic acid (18:3).

4. Regional fuel specifications and quality

4.1. Biodiesel standard specifications

One of the principal means of ensuring satisfactory in-use
biodiesel fuel quality is establishment of a rigorous set of fuel spec-
ifications, such as ASTM D6751 (in the U.S.) and EN 14214 (in the
European Union). Numerous other countries have defined their
own standards, which in many cases are derived from either ASTM
D6751 or EN 14214. Some countries have also worked together to
define guidelines for regional biodiesel standards. For example, a
group called the Asia-Pacific Economic Cooperation (APEC) issued a
report in 2007 that addressed guidelines for standardizing biodiesel
standards within the APEC region [111].

A detailed summary showing 17 different biodiesel standards
pertaining to numerous countries around the world is provided
in Supplemental Information Table S-1, along with the sources
of information used to generate this table. In many countries,
biodiesel standards are evolving, with modifications occurring fre-
quently. Thus, some of these specifications may  no longer be
current. Also, some countries directly link their standards to ASTM
D6751 or EN 14214, though it is not always clear whether updates
to these standards occur automatically as the ASTM and EN stan-
dards change.

4.2. Quality control/quality assurance
Another means of ensuring satisfactory biodiesel product
quality involves establishment and enforcement of quality con-
trol/quality assurance (QC/QA) programs. As early as 1999, the Ger-
man  Association for Quality Management of Biodiesel (abbreviated
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Table  13
Typical relationships between FAME level/composition and fuel properties. Arrows indicate change in FAME properties resulting from increases in compositional items.a

a Notes: Length of arrow indicates relative magnitude of effect.
Thickness of arrow indicates certainty/consistency of effect.
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ymbol “–” indicates highly uncertain, or conflicting information.
lank box indicates that no relevant information was  found.

mpact of FAME blend level on Cetane Number depends upon the base fuel’s CN.

GQM in German) was established to deal with in-use fuel quality
112]. In the U.S., the National Biodiesel Board has addressed the
ssue of QC/QA by establishing the National Biodiesel Accreditation
ommission that oversees and directs the BQ-9000 Quality Man-
gement System [113]. This Commission has issued three sets of
equirements: one for biodiesel producers [114], one for biodiesel
arketers [115], and one for biodiesel laboratories [116]. The BQ-

000 Program includes a combination of ASTM standards and a
uality systems program that includes storage, sampling, testing,
lending, shipping, distribution, and fuel management practices. By
ollowing these requirements, the company – not the fuel – receives
ccreditation.

.3. In-use handling guidelines

Several organizations have defined in-use handling guidelines
o help ensure satisfactory biodiesel quality in the marketplace. For
xample, NREL has issued a number of guidelines, with the latest
dition being released in early 2009 [31]. More recently, CONCAWE
ssued a set of guidelines for handling and blending FAME in the
uropean situation [32]. This report discusses the following major
uel quality concerns, and offers suggestions for mitigating each
ne:

Stability and deposit formation.
Cold temperature handling and operability.
Solvency.
Microbial contaminants.
Water separation.
Material compatibility.

.4. Fuel quality surveys

Another aspect of ensuring overall product quality is application
f in-use surveys. The first systematic field survey in the U.S. was
onducted by NREL in 2004, who collected and analyzed 27 samples
f B100 and 50 samples of B20 [117]. Results showed that 85% of
he B100 samples met  all ASTM D6751-03 standard specifications.
owever, it was noted that only 4 of the 27 samples would meet a
inimum inhibition period of 3 h as measured by the Rancimat oxi-
ation test. (The Rancimat test was not yet included in ASTM D6751
t the time of this study.) Similar problems with oxidative stability
f the B20 samples were noted. This survey also highlighted blend-
ng problems in producing B20, as 18 of the 50 samples tested had
biodiesel concentrations outside the accepted range of B18–B22 –
with 7 being considerably higher and 11 being considerably lower
than this range.

NREL conducted another nationwide fuel quality survey of B100
in 2006 [118]. Specification testing of 37 samples showed that
59% failed to meet the ASTM D6751 requirements applicable at
this time. The main reasons for failures were excessive levels of
total glycerine and low flash point. Such problems suggest insuf-
ficient quality control in the production and clean-up of FAME.
These results were disturbing because they suggested a worsening
of B100 quality between 2004 and 2006 survey periods. Oxidative
stability was again pointed out as an area of concern. Although still
not a standard specification at the time of this survey, the Rancimat
test was  conducted on 10 of the 37 B100 samples. Only 3 of these 10
had an induction period in excess of 3 h (the current specification).

The most recent nationwide B100 quality survey was conducted
by NREL in 2007 [119]. In this case, all known biodiesel producers in
the U.S. were approached, with 56 of the 107 producers supplying
samples for testing and evaluation. These 56 samples were binned
according to producer size, with 25 samples coming from small
producers (<0.1 mg/y), 16 samples from medium-sized producers
(0.1–1.0 mg/y) and 15 samples from large producers (>1.0 mg/y).
Results from laboratory specification testing showed that the large
producers nearly always met  ASTM D6751 specifications. Biodiesel
from small and medium-sized producers still had significant fail-
ures, with oxidative stability having the highest failure rate at 30%.
(The Rancimat oxidative stability test was  included in ASTM D6751
by this time.) It was also noted that B100 produced from used veg-
etable oils failed the specifications more often than B100 produced
from other feedstocks. Based upon certain assumptions regarding
production volumes, NREL concluded that 90% of B100 produced
in the U.S. in 2007 met  all specifications; a significant improve-
ment over previous survey results. However, an important point to
remember is that all B100 samples in the 2007 survey were volun-
tarily provided by willing producers. In the earlier surveys, samples
were obtained from blenders and distributors, not from producers.
This change in procedure could raise questions about sampling bias.

The 2004 biodiesel quality survey conducted by NREL included
B20 samples, while the 2006 and 2007 surveys did not. Results from
the 2004 survey raised questions about quality control in blending

operations, as 36% of the samples had biodiesel contents outside
the acceptable range of B18–B22. Other organizations have also
highlighted concerns about blending problems. One study involv-
ing analysis of B20 obtained from retail fueling stations in 2007
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howed that of the 19 samples tested, 8 were actually <B17, with 4
eing <B5 [120]. This study also reinforced concerns about oxida-
ive stability, as 45% of the samples failed to meet the Rancimat test
pecification. Very recently, NREL conducted a field quality survey
f 40 biodiesel blends (mostly B6–B20) collected in the winter of
009–2010 [121]. The results are encouraging, showing improved
uel quality compared to previous surveys.

Measurement of biodiesel blend concentrations has been an
rea of investigation for many years. Excellent reviews of analyti-
al methods have been published recently [122,123].  Commonly
sed methods include chromatographic, spectroscopic, and wet
hemical methods. However, many of these methods are expen-
ive and time consuming. The new U.S. standard for B6–B20 blends
ASTM D7467-08) specifies use of method D7371, which utilizes

id-infrared spectroscopy [34]. Other spectroscopic methods uti-
izing near IR [124], UV [125], and visible light [126] have also
een used with some success. Although not widely practiced, it
ppears possible to include an on-board vehicle fuel sensor for
eal-time determination of biodiesel content. It has been demon-
trated that the same type of dielectric-based sensor used for
asoline/ethanol blends provides reasonably accurate measure-
ents of biodiesel/diesel blends [127,128].

. Summary and conclusions

Although the literature indicates considerable variability, there
s growing consensus regarding the fatty acid (FA) profiles of veg-
table oils and animal fats commonly used to produce fatty acid
ethyl esters (FAME). Clear differences in carbon chain length and

egree of unsaturation are apparent from one feedstock to the
ext. These differences influence the properties and performance
f biodiesel (FAME) and biodiesel blends. The compositional pro-
les of common vegetable oils are dominated by five fatty acid
pecies: palmitic (16:0), stearic (18:0), oleic (18:1), linoleic (18:2),
nd linolenic (18:3). Coconut oil is significantly different, contain-
ng large fractions of lighter fatty acid species – especially lauric
12:0) and myristic (14:0). Camelina is also somewhat different
rom most other vegetable oils, with linolenic acid (18:3) being
ts largest single constituent, along with smaller amounts of the
eavier species, 20:1 and 22:1.

Compared to vegetable oils, relatively little detailed composi-
ional information is available for algal lipids. FA compositional
rofiles have been determined for very few of the over 40,000

dentified algal species. However, it is clear that compositional vari-
bility across different algal species can be extreme. Some species
ave much higher levels of unsaturation – and especially multi-
nsaturation – than is typical for vegetable oils.

The physical and chemical properties of a biodiesel are deter-
ined by its chemical composition. Due to its considerable oxygen

ontent (typically about 11%), biodiesel has lower carbon and
ydrogen contents compared to petroleum diesel. This results in

 reduction in mass energy content of about 10%, but a reduction
n volumetric energy of only 5–7%. Two properties that greatly
nfluence the overall behavior and suitability of FAME as a diesel
lendstock are: (1) the size distribution of the fatty acid (FA)
hains and (2) the degree of unsaturation within these FA chains.
ariations in biodiesel produced from different feedstocks can be
xplained largely by these two properties.

The two most common sets of regulatory standards for biodiesel
lendstocks are ASTM D6751 in the U.S. and EN 14214 in Europe.
ome of the specifications comprising these standards are directly

elated to the chemical composition of the FAME – such as vis-
osity, cetane number, cloud point, distillation, and iodine value.
ther specifications relate to the purity of the FAME product, and
ddress issues pertaining to production processes, transport, and
ble Energy Reviews 16 (2012) 143– 169 163

storage – such as flash point, methanol content, metals content,
sulfur level, acid number, and cold soak filterability. Oxidative sta-
bility is an important property of biodiesel that is influenced by both
FAME chemical composition and by storage and handling condi-
tions. Fuel oxidation is related to unsaturation within the FA chain,
and is especially promoted by multiple units of unsaturation. For
this reason, the oxidative stability of camelina-based FAME and
some algal-based FAME may  be of concern.

Based upon an extensive review of published information, sev-
eral important physical and chemical properties were compiled and
compared for biodiesel fuels produced from 12 different vegetable
oil and animal fat feedstocks. A computed fuel property, called
“average unsaturation,” was highly correlated with several other
properties, including viscosity, specific gravity, low temperature
performance metrics, cetane number, and iodine value. An increase
in average unsaturation leads to lower cetane number and poorer
oxidation stability, but improved low temperature performance.
Another computed property, “average chain length,” was  not highly
correlated with most other properties.

An increasingly recognized problem with some biodiesel fuels
is their propensity to form insoluble precipitates upon storage at
low temperature. In large part, this problem is believed to be due to
the presence of trace impurities – particularly sterol glucosides and
saturated monoglycerides. These same impurities impart favorable
lubricity performance to biodiesel; thus efforts to eliminate them
could have an unintended consequence of worsening lubricity.

Due to the conflicting effects certain FAME compositional fea-
tures upon different fuel properties, it is not possible to define a
single composition that is optimum with respect to all important
properties. However, useful formulation guidelines can be offered
with respect to two critical biodiesel fuel properties: (1) low tem-
perature performance and (2) oxidative stability. For good low
temperature performance, biodiesel should have low concentra-
tions of long-chain saturated FAME. For good oxidative stability,
biodiesel should have high concentrations of saturated and mono-
unsaturated FAME, but low concentrations of multi-unsaturated
FAME.
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