Tioli

-SH gruppo solfidrilico

CH₃CH₂SH etantiolo CH₃CH₂CH₂SH 1-propantiolo CH₃
CH₃CHCH₂CH₂SH
3-metil-1-butantiolo

HSCH₂CH₂OH 2-mercaptoetanolo

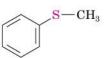
 Si seguono le regole della nomenclatura IUPAC usate per gli alcoli

Na⁺ -SH idrosolfuro di sodio

H₂S solfuro di idrogeno (acido solfidrico)

Solfuri

Nomenclatura IUPAC dei solfuri: Si segue il principio usato per gli eteri. Il gruppo etereo non ha mai priorità, è sempre considerato sostituente alcossialcano

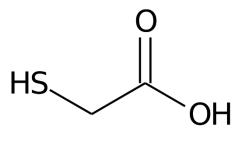

IUPAC

Metiltio metano

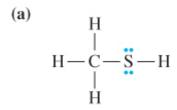
$$CH_3 - S - CH_3$$

Dimetil solfuro

Metiltio benzene



Metil fenil solfuro


NOMI COMUNI

Il gruppo -SH come sostituente

2-mercaptoetanolo

acido 2-mercaptoetanoico

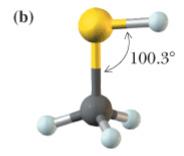


Figura 10.4

Metantiolo, CH₃SH.

- (a) Struttura di Lewis e
- (b) modello a sfere e bastoncini.

Tioli:

proprietà chimico fisiche

-SH gruppo solfidrile

Tioli: proprietà chimico fisiche

Tabella 10.3	Punti di ebollizione di tioli e alcoli con lo stesso numero di atomi di carbonio		
Tiolo	p.e. (°C)	Alcol	p.e. (°C)
Metantiolo	6	Metanolo	65
Etantiolo	35	Etanolo	78
1-Butantiolo	98	1-Butanolo	117

Interazioni intermolecolari più deboli rispetto agli alcoli (S meno elettronegativo, legami meno polari)

Tioli: acidità

I tioli sono acidi più forti degli alcol

$$CH_3CH_2OH + H_2O \Longrightarrow CH_3CH_2O^- + H_3O^+ \qquad pK_a = 15.9$$
 $CH_3CH_2SH + H_2O \Longrightarrow CH_3CH_2S^- + H_3O^+ \qquad pK_a = 8.5$

RS- più stabile degli ioni alcossidi: la carica negativa è distribuita su un volume maggiore date le dimensioni dell'atomo di S

Sintesi tioli (Sn2): vedi capitolo *alogenuri alchilici*

Nucleofilicità dei solfuri: Sn2 con formazione di Sali di solfonio

S-Adenosilmetionina (un sale di solfonio)

Ossidazione dei tioli: formazione di disolfuri

2 RSH +
$$\frac{1}{2}$$
O₂ → RSSR + H₂O

Un tiolo Un disolfuro

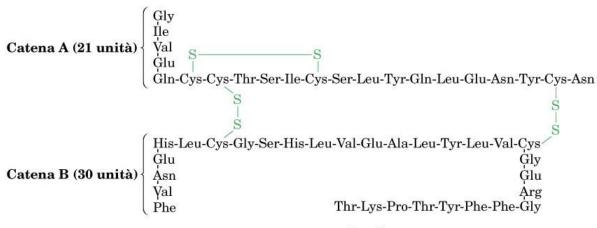
2 RSH + I₂ → RSSR + 2 HI

Un tiolo Un disolfuro

Formazione di ponti disolfuro: importanti nelle proteine

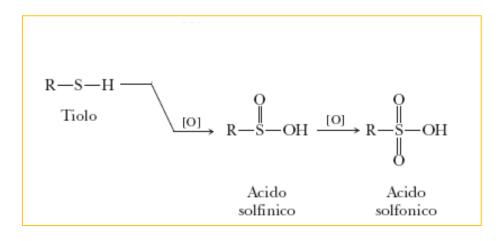
Ponti disolfuro tra cisteine.

Sono questi ponti che vengono manipolati nel processo della permanente (proteine dei capelli!).


$$\begin{array}{c} H H_2N \\ H \\ C \\ C \\ CH_2 \\ \end{array}$$

$$+ \\ C \\ CH_2 \\ C \\ H \\ NH_2 \\ H$$

$$+ \\ C \\ CH_2 \\ C \\ N \\ \end{array}$$


$$+ \\ C \\ CH_2 \\ CH_2$$

Ponti disolfuro nell'insulina

Insulina

Ossidazione dei tioli:

Solfonammidi: farmaci sulfammidici

• Farmaci di sintesi derivati dell'ammide dell'acido solfonico

• Usati in terapia contro i batteri

Ossidazione dei solfuri a solfossidi e solfoni

$$\begin{array}{c} O \\ \parallel \\ S \\ \text{CH}_3 \end{array} \qquad \begin{array}{c} \textbf{Dimetil solfossido} \\ \textbf{(solvente polare aprotico)} \end{array}$$

$$R - \ddot{S} - R \xrightarrow{ossidazione} \begin{bmatrix} :O: & :\ddot{O}:^{-} \\ R - \ddot{S} - R & \longrightarrow & R - \ddot{S} - R \\ & un solfossido \end{bmatrix} \xrightarrow{ossidazione} \begin{bmatrix} :O: & :\ddot{O}:^{-} \\ R - \ddot{S} - R & \longrightarrow & R - \ddot{S}^{2+} R \\ & \vdots O: & :\ddot{O}:^{-} \end{bmatrix}$$

un solfone