Non-Arc Welding Processes

- Resistive heating, chemical reactions, focused light and electrons, sound waves, and friction can also be used to join materials
 - Resistance welding
 - Oxy-Fuel Welding
 - Friction welding (&Solid State)
 - Laser and electron beam welding
 - Brazing and soldering
 - Plastics joining
- ➡ Adhesive bonding

Adhesives

- Thermosets form long polymer chains by chemical reaction (curing)
 - Heat is the most common means of curing
 - Ultraviolet light, oxygen acrylics
 - Moisture cyanoacrylates
- Thermoplastics (hotmelts)
 - Adhesive is heated until it softens, then hardens on cooling -Polyethylene, PVC

Adhesive Bonding

Curing of Adhesives

- Thermosets form long polymer chains by chemical reaction (curing)
 - Heat (epoxy)
 - Ultraviolet light, oxygen (acrylics)
 - Moisture (superglue)

Stress Modes - Best to Worst

Why Adhesive Bonding?

Dissimilar materials

Plastic to metal

- Materials that can be damaged by mechanical attachments
- Shock absorption or mechanical dampening
- Laminate structures
 - Skin to honeycomb structure

Adhesive Selection

- Adhesive selection is based primarily on
 - Type of substrate
 - Strength requirements, type of loading, impact requirements
 - Temperature resistance, if required
- Epoxy
- Cyanoacrylates
- Anaerobics metals
- Urethanes
- Silicones
- Pressure sensitive adhesives (PSAs)

Advantages

- Joining dissimilar materials plastic to metal
- Materials that can be damaged by mechanical attachments
- Blind joints
- Shock absorption or mechanical dampening
- Temporary alignment
- Laminated structures
- Thin substrates skin-to-honeycomb construction
- Stress distribution

Limitations

- Adhesives don't *do* work, they *distribute* work; they are not structural materials
- Environmental degradation
 - Temperature
 - Oxidation
- Difficult to repair
- Curing or setting time
- Surface preparation