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Abstract
This lecture deals with the phase changes. In particular, starting from heuristic considerations, a 
quantity  called Gibbs  free energy is  defined.  This  quantity  is  conserved during isothermal  and 
isobaric  transformations  and  is  used  to  determine  how  the  equilibrium  pressure  between  two 
different phases changes with temperature. This law is called the Clausius-Clapeyron equation and 
is one of the fundamental laws of cloud microphysics. The Clausius-Clapeyron equation for the 
three  different  phase  changes  is  represented  in  the  P-T diagram.   The  properties  of  these 
relationships are briefly described as well as some examples of their applications. Some preliminary 
considerations are done concerning the role of Clausius-Clapeyron equation on the precipitation 
formation.  The  Clausius-Clapeyron  equation  does  not  describe  the  most  general  possible 
relationship between the equilibrium pressure and temperature because it does not take into account 
the geometry of the system. A generalized form of the Gibbs free energy that takes into account 
even the energy needed to create a surface is developed. With this generalized form the dependency 
of equilibrium pressure in a spherical geometry is developed. This relationship is called Kelvin's 
law. The role of Kelvin's law in the occurrence of supersaturation, then in the formation of cloud 
droplets is discussed.

The Gibbs free energy

Water vapour can be considered as a perfect gas (i.e., described by the ideal gas law  e= ρRT  
where e is its partial pressure, R its constant and ρ its density) almost for all the real situations apart 
when condensation occurs. When condensation takes place, e.g., during an isothermal compression, 
what is observed is that even the vapour pressure remains constant up to the moment in which al the 
vapour is condensed. This fact cannot be explained nor by the ideal gas law, neither by the Van der 
Waals equation of state, moreover the pressure value at  which condensation begins is,  for pure 
water, function of temperature only. This value is called “saturation vapour pressure” and it should 
be extremely interesting to know in advance its value for a given temperature to realize how far we 
are,  in  terms  of  amount  of  vapour  pressure  from saturation.  To  know  how  saturation  vapour 
pressure changes as a function of temperature we cannot, obviously, use nor the ideal gas law, 
neither the van der Waals but we have to base our thoughts on more fundamental laws, in particular 
on the first law of thermodynamic.
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We apply the first  law to the idealized transformation above mentioned,  that  is  the isothermal 
compression at saturation on a system composed by liquid water and water vapour.

If we integrate the first law between the times t1 and t2  we obtain
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Because in  the above transformation (constant  temperature)  during  the  condensation  e remains 
constant, defining as  l the amount of heat released (absorbed) when a unitary mass of vapour is 
condensed (evaporated), we can write

l Δ M=U t 2−U t1e V t2−V t1

dividing by the total amount of water vapour ΔM condensed and introducing the specific variables 
for internal energy and volume (i.e., u and α) we have

l=u t 2−ut 1e α t 2−α t1 .

At this point it is useful to introduce the specific entropy s for unit mass defined as
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Because  in  the  above  transformation  temperature  T is  kept  constant,  integrating  the  specific 
temperature between the same times t1 and t2  we obtain
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or equivalently
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Equating the two specific latent heats we obtain the relationship

T  s t 2−s t 1=u t 2−ut 1e α t 2−αt 1  

that rearranged becomes

u t1e α t 1−T s t1=u t 2e α t2−T s t 2

which states that we can define a quantity (usually denoted by the g letter) which is constant during 
the phase transitions (in isobaric and isothermal transformations). This quantity is called Gibbs free 
energy (i.e., g = u + pα - Ts) and it is essentially the specific enthalpy (i.e., h = u + pα)  diminished 
by the product of temperature for specific entropy (i.e., Ts).

Thanks to its  constance during phase transitions, specific Gibbs internal energy can be used to 
describe how the saturation vapour pressure changes with temperature, in fact the specific Gibbs 
free energy is constant for the two phases (vapour and liquid), then we can write
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equation that, using the definition of Gibbs free energy, becomes 
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then applying the following form of the first law of thermodynamics
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and the following definition of entropy 
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both based on the fact that the only quantity we varies is temperature, the above equation becomes
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Since the vapour and liquid pressure are the same, i.e., the saturation vapour pressure ev=el≡e s , 
we obtain 
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=
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This equation solves formally our problem, because it gives a defined form for the variation of 
saturation vapour  pressure with temperature,  moreover  it  gives  us useful  hints  for  the physical 
interpretation of the saturation vapour pressure derivative. In fact we can say that the rate of change 
of saturation vapour pressure with temperature is the entropy rate of change for the given change in 
specific volume in the transition between the two phases. In other words we can say that saturation 
vapour  pressure  changes  (increases)  with  temperature  because  specific  entropy  increases  with 
temperature more in  vapour than in liquid phase. Apart from its interesting physical interpretation 
the  above  equation  is  still  in  a  poorly  useful  form.  A  better  form  can  be  easily  obtained 
remembering the result we obtained to define the Gibbs internal energy, i.e., the difference in the 
specific entropies of liquid and solid water during the phase transition is the specific latent heat of 



vaporization (condensation) divided by the temperature at which the transition takes place. With 
this in mind we obtain 
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which is the usually adopted functional dependence of saturation vapour pressure from absolute 
temperature, universally known as Clausius-Clapeyron equation. This equation  mutatis mutandis 
can be used to describe all the change of phase from vapour to liquid, from vapour to solid and from 
liquid to solid. In the latter cases latent heats of sublimation and solidification (i.e., sublimation 
minus condensation) have to be used instead of latent heat of condensation. This equation can be 
integrated in principle but practically this can be done only assuming a functional dependency from 
temperature of latent heats and specific volumes. Some considerations, however, can be done even 
without  the  integration.  In  particular  usually,  being latent  heats  positive defined,  the  saturation 
pressure increases or decreases with temperature according to the interplay between the specific 
volumes of the two phases. In other words, usually saturation pressure for vapour and liquid phases 
increases with temperature because vapour density is lower than liquid density. The same happens 
for many liquid and solid phases, apart from water because its density is lower for ice than for 
liquid   

As told before, the water Clausius-Clapeyron equation for the usual atmospheric conditions can be 
quite easily integrated with a few simple assumptions. The simplest possible situation is that of 
vapour  and  liquid  phases.  We start  assuming that  latent  heat  of  condensation  is  constant  with 
temperature  and  that  liquid  water  specific  volume (inverse  of  density)  can  be  neglected  when 
compared with vapour specific volume. Water latent heat of condensation changes by about 6% 
from its  l=2501 J / g  at 0 °C . We can go a step further just using one more assumption, that is the 
ideal gas law for the water vapour to describe the functional dependence of αv from temperature, 

i.e., eαv=RT . With these assumptions the Clausius-Clapeyron equation becomes

 

des

dT
≃ 1

T
l
αv

≃ 1
T

l es

RT
=

l es

RT 2

which can be easily integrated giving an exponential dependence of es from temperature. A greater 
accuracy (i.e., ability of reproducing reality) can be obtained introducing into the above equation 
the dependence of latent heat from temperature. This can be easily done using the first  law of 
thermodynamics  and  in  particular  a  result  we  obtained  in  defining  the  Gibbs  free  energy  to 
determine the latent heat of condensation, that is

l=u t 2−ut 1e α t 2−α t1

where the index  t1 is referring to the liquid phase while  t2 to the vapour one (in this  way  l is 

positive). This equation can be simplified remembering that  α2≫α1  and confusing again water 
vapour with an ideal gas, then

l=u t 2−ut 1eαt 1=ut 2−u t1RT

Differentiating the above equation with respect to temperature, we obtain 
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remembering that u(t2) and u(t1) are the internal energies of liquid water and water vapour, by 



definition their  derivatives represent the specific heats  of water vapour at  constant volume  cvv  

(remember that we still consider vapour as an ideal gas) and the specific heat of water cw . Then we 
obtain 

dl
dT

=cvv−cwR

or, remembering that  R=c pv−cvv

dl
dT

=c pv−cw

which states us that if you do not want to consider constant with temperature the latent heat of 
condensation,  you can at least  consider constant with temperature its derivative.  Then, fixing a 
reference status l 0 , T 0 , we can obtain the functional dependence of latent heat from temperature 

l=c pv−cw T−T 0l0

that can be used into the Clausius-Clapeyron equation to obtain a preciser dependency of saturation 
vapour pressure from temperature. Apart from this specific use, the above equation tells us that 

Δl=c pv ΔT−cw ΔT=ΔQ pv−ΔQw

  
which means that when temperature changes the variations in latent heat of condensation is equal to 
the difference in the amount of heat absorbed (released) by two unitary masses of vapour and liquid 
water at constant pressure. This is not surprising, since that difference in heats has to be released 
(absorbed)  when  water  vapour  is  made  to  condense  (evaporate)  keeping  constant  temperature 
(remember that condensation is a constant pressure process).

Before to conclude the discussion on the Clausius-Clapeyron equation it is just worth to spend a 
few more words on the liquid and solid transitions of phase. For them the equation assumes the 
form  

des

dT
= 1

T
l

αl−αi

where l in this case is the latent heat of solidification and es in this case is the pressure exerted by 
liquid over solid phase when they are in equilibrium (i.e., nor increasing of liquid part neither solid 
one for a closed system). It is interesting to apply this equation to water because, since T and l are 
positive defined, the sign of the derivative (i.e., the slope of es in the PT diagram) is that of (α_l  -  
α_i). For water this is negative since ice density is lower than liquid one. With this in mind we can 
produce the PT diagram for the three phases (liquid, solid and vapour) of water.



From the above picture it is quite clear that equilibrium pressure over liquid is slightly higher over 
liquid than over ice. From the molecular point of view this means that water molecules escape 
easily from water than from ice, then reaching farther (i.e, for higher pressures) the equilibrium with 
the vapour. 

Concerning the equilibrium pressure between liquid and solid, as described above, it decreases with 
increasing temperature.  According to  our  naïve  interpretation,  we can imagine that  for  a  fixed 
negative  temperature  you  have  to  compress  a  lot  ice  to  reduce  its  density  -then  reducing  the 
intramolecular distances- making a little bit easy their escape from the ice phase in favour of the 
liquid one. The slope of equilibrium pressure between solid and liquid phase in the P-T diagram is 

pretty steep (almost vertical) of the order of  de s/dT~−105 hPa K−1

, inverting it we can see that 
freezing level decreases by nearly ΔT ~ 0.01 K when we increase pressure by one atmosphere (1013 
hPa).  This  means  that  you  can  find  liquid  water  even  below the  classical  freezing  level  just 
increasing (a lot) pressure. However the sensitivity of melting point from pressure is so low that 
only in systems characterized by high pressures  can take advantage from this  mechanism. The 
classical  example  is  represented by  glaciers,  whose  base  can  host  a  thin liquid  layer  even for 
negative Celsius temperatures. Of course, dealing with glaciers composed by other substances, e.g. 
C02, as can happen in other planets, this effect might not take place when the solid phase of the 
specific substance has a higher density than the liquid one. 

All the three equilibrium pressures for all the substances intersect on a point (called triple point) that 
for water coincides with the zero Celsius (i.e., 273.15 K). At the triple point all the three phases can 
coexist. The triple point is the key quantity when dealing with changes of phase, in fact as shown in 
the previous lectures, even if at standard atmospheric pressures both water and carbon dioxide are 
vapours, their behaviour is quite different. We have to take care of water vapour for the change of 
phase, while we can almost forget carbon dioxide. The reason why this happens is that the triple 
point for carbon dioxide (~216.5 K, -56 ºC) is lower than for water. Is the distance from the triple 
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Figure. Water equilibrium pressures of liquid over solid (solid blue line), of vapour over liquid 
(dashed red line) and of vapour over solid (solid green). 



point that makes impossible the phase transition of the carbon dioxide, otherwise we should take 
care even of its latent heat of evaporation (lv ~ 574 J/kg) and of solidification (ls ~ 184 J/kg) to 
understand and forecast the atmospheric behaviour.

The dependence of saturation vapour pressure from geometry

Obtaining  the  Clausius-Clapeyron  equation  and  the  dependence  of  equilibrium  pressure  from 
temperature  we  use  the  free  energy  of  Gibbs.  This  free  energy  is  conserved  during  the  bulk 
transition between vapour and liquid as demonstrated above. However, in some circumstances (very 
often observed in nature), dealing with bulk phases is not enough, in fact geometry may play a 
major role. We can tackle the problem just with some heuristic considerations, in fact if we want to 
split a water droplet in two parts we have to spend energy. This expenditure of energy is needed to 
break the links between water molecules to produce two distinct parts. But we can consider this 
energy expenditure as due to the formation of a greater surface enveloping water. Even if this can 
seem counter-intuitive, it is particularly convenient under the analytical point of view.

Returning back to our initial problem, defining as gv and gw  the Gibbs free energies for unit mass of 
water vapour and liquid water respectively, assuming that the energy required to produce a unit 
surface of liquid phase is σ, the conservation of total energy requires

d
dt

 M v gvM w gwσ A =0

where  A is the surface of liquid phase and Mw and  Mv are respectively the masses of liquid and 
vapour phases.

Mass conservation during phase transition requires that 

Table. Saturation vapour pressure over liquid water, ice and the corresponding latent heats. Reproduced 
from the Smithsonian Meteorological Tables (List, 1951).

T °C e_s (Pa) e _i  (Pa) L_v->l (J/kg) L_v->s (J/kg) L_l->s(J/kg)

-40 19.5 12.85 2603 2839 236
-35 31.54 22.36 - - -
-30 51.06 38.02 2575 2839 264
-25 80.9 63.3 - - -
-20 125.63 103.28 2549 2838 289
-15 191.44 165.32 - - -
-10 286.57 259.92 2525 2837 312
-5 421.84 401.78 - - -
0 611.21 611.15 2501 2834 333
5 872.47 2489

10 1227.94 2477
15 1705.32 2466
20 2338.54 2453
25 3168.74 2442
30 4245.2 2430
35 5626.45 2418
40 7381.27 2406



d
dt
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d
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then expanding the above derivative we obtain
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Assuming a spherical geometry we can express the water mass as a function of water density ρ and 
of the droplet radius r. Moreover we can rewrite even the droplet surface obtaining 

 g w−gv  ρw
4
3
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σ 4π 2r
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=0

where we assumed constant both the surface energy for unit surface and the density. Simplifying we 
obtain

gw−gv
2σ
rρw

 dr
dt

=0

Since  energy  has  to  be  conserved  independently  from the  radius  variation  with  time,  we  can 
conclude that

gv=gw
2σ
rρw

This equation means that not all the bulk Gibbs free energy of vapour transfers into the liquid phase 
(per unit mass): an amount of it is spent in producing the surface. If the droplet radius diverge 
(infinite curvature, e.g., a “plane” droplet), we return back to what we used at the beginning of this 
lecture. To obtain the equilibrium pressure dependence from the geometry (radius in this case), we 
will now use the above generalize version of the Gibbs free energy conservation. In particular we 
will differentiate with respect to the radius r. 
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To expand this derivative we have to remember that Gibbs free energy depend only from pressure p 
and temperature T (which we consider not dependent from radius), then
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from the functional dependency of specific Gibbs free energy we have
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Remembering that at ordinary atmospheric conditions water vapour can be considered an ideal gas, 
we can write vapour density as a function of pressure and temperature, that is

ρv=
p

Rv T

With relatively simple algebra we obtain the following differential equation

 ρw Rv T −p 
p

dp
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=−2σ
r 2

which can be solved integrating it from a generic radius r up to an infinite radius, giving

ln  p
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r ρw R v T


ρv
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 p− p∞
p

Since water density is higher than vapour density we can delete the last term on the right member 
obtaining the so called Kelvin law for the equilibrium pressure: 

p= p∞e
2σ

r ρw R vT

The interpretation of p∞  is quite straightforward, remembering that the infinite radius corresponds 
to a flat surface. In other words it is the bulk equilibrium pressure we obtained with the Clausius 
Clapeyron equation.

Using the values normally observed in atmospheric conditions for the above Kelvin's law (Rv = 461 
J/kg K ; σ = 0.0073 N m and ρw = 103 kg/m3 ) we obtain

p= p∞e
0.001

r

where r is measured in microns. 

From the above law it is clear that differences in the saturation (equilibrium) vapour pressure over 
water is really a weak function of radius. Nevertheless this dependence is extremely important foe 
the development of cloud droplets and then the formation of precipitations. In particular it is clear 
that the saturation vapour pressure required to admit the formation of droplets of the order of a few 
hundredths of micron is extremely high, more than twice the maximum observed in nature. This 
means that condensation of water vapour is extremely difficult. Very small droplets can form easily 
under the statistical point of view, but they are stable only for very high pressures. On the contrary 
the pressure required for the equilibrium of large droplets (a few microns) is not so high, but they 
are  statistically  disadvantaged.  This  is  the  reason  why  condensation  of  pure  water  vapour 
(homogeneous condensation or nucleation) is quite rare in nature and the formation of clouds has to 
take place for different reasons, in particular we need what is called  heterogeneous condensation 
which requires the presence of condensation nuclei. The same is true for the solid phase formation.



Figure. The ratio between equilibrium pressure for water over a spherical and flat surface as a 
function of the sphere radius.  
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