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Abstract
The dry adiabatic lapse rate is a useful conceptual and analytical model for the comprehension and 
forecast, but it fails on some layers of the Earth's atmosphere. For this reason new conceptual and 
analytic  models  have  to  be  developed.  What  is  here  done,  remaining  in  the  realm of  adiabatic 
processes (ascent or descent) is to derive the vertical thermal gradient for Earth's atmosphere when 
moisture and condensation is introduced into the lifted (shrunk) parcel.  The results show a good 
agreement between observational data and the analytical model. In any case a right reproduction of 
the moist adiabatic lapse rate can be obtained only via numerical integration of the equation that 
describes the process.

The moist adiabatic lapse rate
The dry adiabatic lapse was obtained with the aid of the first principle of thermodynamics. The same 
should be done to derive the moista diabatic lapse rate. The conceptual model applied in solving this 
problem is that of the adiabatic ascent (descent) keeping into account the contribution coming from 
the water vapour into the ascending (descending) volume of air (i.e., parcel). Being adiabatic the 
entropy of the system must be conserved, then we can assume that

dS
dz

=0

We can split the total system entropy into the three components coming from the water vapor, dry air 
and liquid water, then

dS
dz

= d
dz

M v sv
d
dz

M d sd 
d
dz

M w sw =0

Being  the  process  assumed  as  adiabatic,  condensed  water  should  remain  inside  the  ascending 
(descending) parcel  1, moreover the total water mass M vM w=M water as well as the total dry air 
mass M d should be conserve, then

d
dz

M v=−
d
dz

M w   and d
dz

M d=0

Substituting all these assumptions into the conservation of entropy we will have

1We will see later a process which is not strictly adiabatic because condensed water is withdrawn 
from the parcel during the ascent. This process is called “pseudo-adiabatic”.



dS
dz

=sv
d
dz

M v M v
d
dz

sv M d
d
dz

 sd sw
d
dz

M w M w
d
dz

 sw =0  

then

dS
dz

=sv
d
dz

M v M v
d
dz

sv M d
d
dz

 sd−sw
d
dz

M vM w
d
dz

 sw=0

collecting the same vertical derivative of the vapour mass we obtaine

dS
dz

= sv−sw
d
dz

M vM v
d
dz

 svM d
d
dz

 sdM w
d
dz

 sw =0

Remembering that the entropy difference is related to the latent heat of condensation (see previous 

lectures) with the law   sv−sw =
l v

T
we obtain

dS
dz

=
l v

T
d
dz

M vM v
d
dz

sv M d
d
dz

 sd M w
d
dz

 sw=0

Remembering the form of entropy for liquid water, dry air and water vapor (assuming the last two as 
ideal gases), we have respectively

dsw

dz
=

cw

T
dT
dz

liquid water  ,

dsd

dz
=

c pd

T
dT
dz

−
Rd

pd

dpd

dz  dry air 

and

dsv

dz
=

c pv

T
dT
dz

−
Rv

e
de
dz

 water vapour 

Now we can simplify the above water vapour entropy vertical derivative assuming that the parcel has 
already reached saturation, then we can substitute the pressure e with the saturation vapour pressure 
es T  , which depends only from temperature (for pure water), then we can write

dsv

dz
=

c pv

T
dT
dz

−
Rv

es

des

dT
dT
dz

This formula is in a much more "easy to use" form, in fact we have the tools to manage the vertical 
derivative of the saturation vapor pressure (Clausius-Clapeyron equation de s/dT ) and the vertical 
derivative of dry pressure (hydrostatic assumption dp /dz  when pressure depends only from z).  
Substituting the entropy derivatives in the total entropy derivative we obtain 



dS
dz

=
l v

T
d
dz

M vM v c pvM w cwM d c pd 
1
T

dT
dz

−
M v Rv

e s

des

dT
dT
dz

−
M d Rd

pd

dpd

dz
=0

at this point we introduce a new quantity, that is the total water mass (sum of liquid water and water 
vapour  in the parcel)  M=M wM v . We can use this new variable to substitute the mass of liquid 
water in the entropy vertical derivative, that is

dS
dz

=
l v

T
d
dz

M vM v c pvM−M vcwM d c pd 
1
T

dT
dz

−
M v Rv

es

des

dT
dT
dz

−
M d Rd

pd

dpd

dz
=0

then

dS
dz

=
l v

T
d
dz

M vM v c pv−cw M cvM d c pd 
1
T

dT
dz

−
M v Rv

es

des

dT
dT
dz

−
M d Rd

pd

dpd

dz
=0

Remembering  that  the  temperature  derivative  of  latent  heat  of  condensation  is  equal  to  the 
differences in the specific heats at constant pressure and of liquid water (look at the lectures on the 
Clausius-Clapeyron)

dl v

dT
=c pv−cw

we obtained

dS
dz

=
l v

T
d
dz

M vM v

dl v

dT
M cvM d c pd

1
T

dT
dz

−
M v Rv

es

des

dT
dT
dz

−
M d Rd

pd

dpd

dz
=0

Using  now  the  approximated  form  of  the  Clausius-Clapeyron  
des

dT
=e s l v /Rv T 2  to  describe  the 

saturation pressure temperature derivative and rearranging the terms we obtain

dS
dz

= d
dz

l v

M v

T
M cwM d c pd

1
T

dT
dz

−
M d Rd

pd

dpd

dz
=0

Dividing now all the terms for the dry air mass (remember that it is constant) we obtain

 1
M d

dS
dz

= d
dz  l v M v

M d T M cwM d c pd 
M d

1
T

dT
dz

−
Rd

pd

dpd

dz
=0

Remembering that  
M v

M d
=r  is the mixing ratio and defining  K≡

M cwM d c pd 
M d

 we obtain

1
M d

dS
dz

= d
dz  l v r

T  K
T

dT
dz

−
Rd

pd

dpd

dz
=0

Expliciting now the vertical derivative of the first term on the right we obtain



1
M d

dS
dz

= 1
T

d
dz l v r −

l v r 
T 2

dT
dz

 K
T

dT
dz

−
Rd

pd

dpd

dz
=0

Now two more assumptions are made: the first is based on the order of magnitude of the terms. In 
particular the second term on the right can be neglect because for the usual atmospheric conditions 
r~10−2 , moreover it is divided by T 2~7×104 K  (a more precise approach can be adopted but it 
brings to the same result), then

1
M d

dS
dz

= 1
T

d
dz l v r  K

T
dT
dz

−
Rd

pd

dpd

dz
=0

The second assumption is that of hydrostatic equilibrium2, then using the ideal gas law and confusing 
the dry pressure with the total pressure pd~ p≡pdes  we obtain

1
M d

dS
dz

= 1
T

d
dz l v r  K

T
dT
dz

 g
T
=0

then

dT
dz

=− g
K
− d

dz  l v r
K 

This is the moist adiabatic lapse rate and its form is extremely similar to the dry adiabatic lapse rate

 dT
dz


dry
=− g

c pd
.

The first difference relies on the fact that K≡
M cwM d c pd 

M d
≠c pd , nevertheless since the dry air 

mass is greater than the total water mass of the parcel their difference is not as huge as one might 
think.

The second difference relies in the extra term on the right, that is essentially the vertical derivative of 
the product of latent heat of condensation and mixing ratio, which takes into account the amount of 
heat  released  by  the  water  vapor  when  it  condenses.  Since  mixing  ratio  decreases  because  of 
condensation, the derivative is negative, then the lapse rate is higher (i.e., temperature decreases less 
than in the case of dry ascent) when condensation takes place.  
With further assumptions it is possible to give an order of magnitude for the moist adiabatic lapse 
rate, in particular assuming that the latent heat of condensation is constant with temperature (see 
lectures on Clausius-Clapeyron) we obtain

 dT
dz

~− g
K
−

l v

K
dr
dz

=− g
K 1 l v

g
dr
dz 

Because  of  the  condensation during ascent,  mixing ratio  decreases  with altitude,  then the  moist 
adiabatic lapse rate should be lower (in absolute value) than the dry adiabatic one, in other words 
2 The  hydrostatic  approximation  can  become  a  too  crude  approximation,  specially  dealing  with  strong  vertical 

accelerations that characterize thunderstorms. In these cases, as we will see, the hydrostatic approximation should be 
overcome.



during the moist adiabatic ascent temperature decreases less than in the dry case. Remembering that 
we assumed saturation for the parcel during its ascent (descent) we can now recall that  

r s~
Rd

Rv

es

p
=0.622

e s

p
which can be substituted into the moist adiabatic lapse rate to obtain an estimate of the extra term 
l v

g
dr
dz

. Using the usual atmospheric values you obtain a moist adiabatic lapse rate which is of the 

order of  
dT
dz


moist

~−5° C / km .

The above figure shows that the moist adiabatic lapse rate is a better approximation than the dry 
adiabatic lapse rate nearly above 1000 m. Even if the moist adiabat is a better approximation, to a 
critic  eye the  above figure  tells  that  the  real  environmental  temperature  lapse rate  is  something 
between the dry and the moist adiabatic. What is your interpretation of this observation?

A comparison between moist and dry adiabatic lapse rate can be shown trough the figure below, 
where a parcel at different temperatures but assumed as saturated at the level of 850 hPa is lifted 
adiabatically. The release of latent heat due to the condensation keeps temperature higher than in the 
case of dry adiabatic lift. The differences increase with altitude (decreasing of pressure) and can be 
of a few degrees. This difference is fundamental for the realization of instability and then for the the 
onset  of  self-sustaining  convection.  In  fact  once  condensation  occurs,  even  parcels  that  were 
otherwise stable can become buoyant.

F

Figure. Red line shows the atmospheric vertical profile over Udine (25 August 2005), the 
blue dashed lines are moist adiabats, the greed dashed lines the dry adiabats. 



The above picture is obtained using the definition of potential  temperature (dry adiabats) and of 
equivalent potential temperature (moist adiabats – see next lectures).

Moist lapse rate and conditional instability
The  moist  adiabatic  lapse  rate  gives  us  some  more  information  to  deal  with  the  problem  of 
atmospheric stability (parcel stability). In fact, remembering that we define as  absolutely stable a 
parcel when the environmental thermal lapse rate is lower than the dry adiabatic lapse rate which 

characterizes  the  dry  adiabatic  ascent  of  the  parcel,  in  formulas  dT
dz env

 dT
dz dry

.  When  this 

happens, slight parcel displacements from its current position are going to grow because the parcel is 
into  an  environment  which  is  cooler  (denser)  than  itself.  When  dealing  with  condensation  the 
absolute stability is not enough, because the moist adiabatic lapse rate is higher than the dry lapse 
rate. In other words an absolutely stable parcel slightly displaced is going to continue its ascent just 
because condensation is taking place, then its temperature (density) is higher than its surroundings. 
For  this  reason a  new definition of  stability  is  worth  to be introduced.  We say that  a  parcel  is 
conditionally unstable when the environmental thermal lapse rate is lower than the moist adiabatic 

adiabatic  lapse  rate:  in  formulas  dT
dz env

 dT
dz moist

.  In  other  words  the  parcel  might  become 

unstable  if  the  condition of  condensation  is  matched.  An  absolutely  unstable  parcel  is,  by 
construction, even conditionally unstable, the vice-versa is not true.

Looking at  the above figure we can say that the atmospheric  layer  between 100 and 1000 m is 

Figure. Thick lines represent the moist (saturated) adiabatic lapse rates for parcels at  
different temperatures and at the same condensation level (850 hPa). Thin lines represent  
dry adiabatic lapse rates for parcels with the same temperature at 850 hPa.



composed by parcels which are almost absolutely neutral (the environmental lapse rate is nearly dry 
adiabatic) but which are even conditionally unstable (the environmental lapse rate is lower than the 
moist adiabatic one). With a slight abuse of language then we say that the layer between 100 and 
1000 m is  conditionally  unstable.  Conditional instability explains why, even in absolutely stable 
layers, some small cumulus can develop. This happens because, by chance, some portions of air are 
moister than others, then these parcels can reach saturation, then they can buoy.

Buoyancy and the “lifted parcel theory” (simple version)
The importance of vertical thermal gradients arises directly from the equation of motion, in particular 
from the inviscid and non rotating form. For simplicity we will consider just the vertical component 
of such equation, that is

ρ dw
dt

=−∂ p
∂ z

−gρ

If we subtract to this equation a reference state characterized by hydrostatic equilibrium

0=−
∂ p0

∂ z
−gρ0

we obtain

ρ dw
dt

=− ∂
∂ z

 p−p0−g  ρ− ρ0

then

dw
dt

=−1
ρ

∂
∂ z

 p− p0−g
 ρ− ρ0

ρ

The first term on the right is called vertical perturbation gradient force and it depends, apart from 
density, from a gradient in vertical pressure perturbations  p− p0  then both from non hydrostatic 
effects on pressure and from density anomalies, that can be even hydrostatic. The second term is 
called buoyancy force 

B=−g
 ρ−ρ0

ρ

and it depends only from density perturbations. The buoyancy term written in this way is not in a 
useful form because of the presence of perturbed density, for this reason the reference state of density 
is usually taken. Moreover the ideal gas law is introduced to substitute density with pressure and 
temperature, then we obtain

B≃−g
 ρ−ρ0

ρ0
=−g

 RT
p
−

RT 0

p0 
RT 0

p0



with some algebra this become

B≃−g1− T
T 0

p0

p 
Since for standard atmospheric conditions the perturbed pressure differs by a fee percent from its 
reference status usually we can write

B~−g1− T
T 0 =−gT 0−T

T 0  .

With this approximation of buoyancy force we can rewrite the vertical component of the inviscid, 
non-rotating Navier-Stokes equation, that is

dw
dt

≃− 1
ρ0

∂
∂ z

 p− p0−g
T 0−T 

T 0

Neglecting the pressure perturbation vertical gradient the above equation becomes

dw
dt

~−g
T 0−T 

T 0

which  is  the  usual  form  adopted  to  describe  the  lifted  parcel  theory,  in  fact  it  represents  the 
lagrangian acceleration acting on a parcel because of its temperature differences with a reference 
state, assumed as the environment. The neglecting of the vertical gradient of pressure perturbations 
 p− p0  (sometimes called aerodynamic  drag) is fundamental  for the applicability of the parcel 
theory and then it is worth to spend a few more words on it, at least qualitatively. In fact the vertical 
acceleration due to the buoyancy depends only form the difference in temperatures (reference state 
and parcel.) while the dynamic acceleration (downward directed for an upward movement) depends 
even  from  the  lateral  magnitude  of  the  parcel.  In  other  words  large  parcels  experience  huger 
downward  accelerations  than  smaller  ones  even  with  the  same  temperature  difference  with  the 
environment. For this reason parcel theory is a good approximation for reality when dealing with 
small parcels (but not too small, try to explain why), as usually happens at middle latitudes, but not 
as well dealing with large ones as usually happens at the tropics.

Convective available potential energy (CAPE) and convective inhibition (CIN)

The vertical integral of buoyancy is called CAPE, which stands for Convective Available Potential 
Energy. The origin of this name, as well as its physical interpretation springs from its analytical 
approach, in particular starting from the lifted parcel equation we have

dw
dt

w=−g
T 0−T 

T 0
w

then

1
2

dw2

dt
=−g

T 0−T 
T 0

dz
dt



integrating it from the point where the lifted parcel starts to be buoyant (level of free convection,  
LFC) up to the point where the parcel is no more buoyant we obtain 

1
2∫LFC

EL
dw2=−g∫LFC

EL T 0−T 
T 0

dz

Assuming that the vertical velocity at the lifting condensation level is null (w(LFC)=0), we obtain

w2EL=−2g∫LFC

EL T 0−T 
T 0

dz=2CAPE

This result, even if too crude as we will see, is nevertheless extremely important because it relates the 
vertical  velocity,  a  parameter  directly  related  to  the  severity  of  atmospheric  convection,  to  the 
thermodynamic vertical stratification. For this reason CAPE was in the past widely used. Nowadays 
CAPE is no more considered as important as in the past for several reasons.
The first reason is that the above maximum vertical velocity is by far a too large upper estimate of 
the real one. In fact the lifted parcel theory does not take into account the aerodynamic drag as well 
as  the  hydrometeor  loading which in deep moist  convection can become dominant.  The second 
reason is that sometimes CAPE is not uniquely determined, as can happen in cases of inversions,that 
is when the atmospheric stratification hosts layers where parcels are no more buoyant embedded in 
layers  where the parcel  is buoyant.  Moreover the choice of the starting parcel is  pivotal for the 
definition of   CAPE. The third reason is that even small CAPE values can  give rise to relatively 
high values of vertical velocities (100 J/kg correspond to nearly  15 m/s) and it does not give any 
information concerning the possibility of the effective CAPE release. In other words CAPE gives 
information  just concerning the fuel available for deep moist  convection and not concerning its 
onset, which is currently considered as one of the major research topics in atmospheric sciences.
Before to conclude the discussion on CAPE it is worth to spend a few more words concerning the 
integral of buoyancy from the ground (assumed as the starting point of the parcel) up to the level of 
free convection, in other words

1
2∫GRD

LFC
dw2=−g∫GRD

LFC T 0−T 
T 0

dz=CIN

This quantity is called convective inhibition and it represents the amount of kinetic energy that you 
should give to the parcel to reach its level of free convection, then the level at which CAPE start to 
be released. CIN represents the inhibition to convection (then its name) and represents as well a 
lower threshold for the strength of the forcing mechanism for convection. CIN, as well as CAPE, are 
always referred to a specific parcel, then different parcels can have (and usually it is so) different 
CAPEs and CINs.

Equivalent potential temperature and saturated equivalent potential temperatures

Potential temperature was derived as a generalization of  the concept of dry adiabatic lapse rate. 
Equivalent potential temperature is a conserved quantity for dry adiabatic ascents (descents) and it is 
related to the entropy conservation. Introducing moisture and condensation potential temperature is 
no more conserved but you can guess that a similar quantity can be derived with similar properties 
(conserved during an adiabatic ascent). To determine this quantity we start from the moist lapse rate 
equation, that is



d
dt

l v rv

T
r t c

w−c p
d  1

T
dT
dt

−
Rd

p
dp
dt

=0

At  this  point  using  the  differentiation  rules  and defining  the  constant  c p
t =r t c

w−c p
d

,  the  above 
equation can be written in the more compact form

d
dt

l v rv

T
c p

t d
dt
ln T −Rd

d
dt

 ln  p=0

that builds a relationship between temperature and pressure in the case of an adiabatic, reversible and 
saturated  process.  Now  we  have  to  remember  that  our  aim  is  that  of  obtaining  a  potential 
temperature, that is a temperature independent from the pressure. To describe this process we should 
eliminate the explicit dependence from pressure in the first therm. This can be done defining the 
following potential temperature

Θ=T 
p0

p 
Rd

c p
t

This potential temperature is not exactly the potential temperature for dry air, because c p
v ≠c p

d
 and 

c p
t ≠r v c p

v c p
d=c p ,  but  these  two  potential  temperatures  slightly  differ  because  in  the  usual 

meteorological conditions r t≪1  and c p
t ≃r v c p

v c p
d≃c p

d
.

Taking the logarithm and differentiating the above potential temperature we will have

d
dt
 ln Θ = d

dt
ln T −

Rd

c p
t

d
dt

ln  p

that  can  be  used  to  substitute  the  pressure  and  temperature  terms  in  the  entropy  conservation 
equation, that is

d
dt

l v rv

T
c p

t d
dt
ln Θ =0

This equation can be easily solved integrating from the initial state characterized by r vi , T  and Θ  
to the final state characterized by r v f=0 , T f  and Θ f . After the integration we obtain

c p
t ln 

Θ f

Θ i


l v r v f

T f
−

l v r vi

T i
=0

then

c p
t ln 

Θ f

Θ i
=

l v r vi

T i




The quantity Θ f  is the final value of the potential temperature once the air parcel had been brought 
up to an altitude where all its water vapor is condensed, keeping the result of condensation (liquid 
water) into the air parcel during the ascent. This quantity, for the above reasons, is called equivalent 
potential temperature and has the form

Θe=Θ exp c p
t 

l v r v

T


where  T ,  r v and  Θ  are,  respectively,  the  current  parcel  temperature,  vapor  mixing  ratio  and 
potential temperature (but pay attention that this is just an approximation as told above). This form of 
the equivalent potential temperature is not the most general, because, as you probably remember, it 
was determined assuming that the initial parcel was saturated, i.e., its vapor pressure was that of 
saturation for its  temperature.  A more general  form, useful  even for unsaturated parcels,  can be 
obtained  assuming  that  the  unsaturated  parcel  is  lifted  adiabatically  up  to  the  level  at  which 
condensation occurs (usually called Lifting Condensation Level – LCL). Then, when condensation 
occurs and the parcel becomes saturated, we can obtain its equivalent potential temperature using the 
already  obtained  equation  for  saturated  processes.  In  other  words  the  equivalent  potential 
temperature of an unsaturated parcel is the equivalent potential temperature obtained starting from its 
lifting  condensation  level  (LCL)  which,  in  turn,  is  function  of  the  current  parcel  pressure, 
temperature and vapor mixing ratio. In its compact form the equivalent potential temperature for an 
unsaturated parcel becomes

Θe=ΘLCL  p ,T , rv ⋅expc p
t 

l v r v

T LCL


The determination of the lifting condensation potential temperature  ΘLCL  is not a real problem, in 
fact because during the adiabatic ascent the potential temperature Θ  is conserved, we can say that 
Θ≡ΘLCL .  The  only  problem,  approximations  apart,  is  the  determination  of  T LCL ,  that  is  the 
temperature at the LCL. This can be done using the Γ dew  and Γ dry  vertical lapse rates or recursively 
(more precise). 
Just  taking  the  analytical  approach  we  can  write  T dew z =Γ dew⋅zT dew 0  and 
T dry  z =Γ dry⋅zT dry 0 ,  because  at  the  LCL  temperature  and  dew  point  temperature  must 
coincide, we should have T dry  z ≡T dew  z   then

zlcl=
T dry0−T dew0

Γ dew−Γ dry

inserting the so far obtained z lcl  in one of the equations that describe the vertical temperature trends, 
we will have

T lcl=Γ dry⋅
T dry 0−T dew 0

Γ dew−Γ dry
T dry 0

which gives us the temperature at the lifting condensation level once are known the dew point and 
thermal vertical lapse rates as well as the current temperature of the parcel. This T lcl  can be used in 
the equivalent potential temperature equation



Θe=Θ⋅expc p
t 

l v rv

T LCL
 .

Equivalent  potential  temperature  is,  by  construction,  conserved  during  moist  and  dry  adiabatic 
ascents and it plays the same role of potential temperature for dry air when condensation occurs. In 
other words the criteria for conditional instability is that the equivalent potential temperature is lower 
than zero provided that the parcel is saturated, in other words

 ∂Θ e

∂ z saturated
0

means that a parcel is unstable in the layer characterized by the above negative equivalent potential 
temperature lapse rate. 
But what happens if we are not in a saturated layer? In that case another quantity is used, that is the 
saturated equivalent potential temperature  Θes , defined as the equivalent potential temperature is 
the parcel (layer) is assumed saturated at its temperature.  Saturated equivalent potential temperature 
is simply derived by the following formula

Θes=Θ⋅expc p
t 

lv r s

T


where  r s  is the saturated mixing ratio at the parcel temperature  T. Using the saturated equivalent 
potential temperature a general criteria for the conditional instability,  valid both for saturated and 
unsaturated parcels, is

∂Θes

∂ z
0  

Equivalent potential temperature and convective (potential) instability
All the so far discussed instabilities (absolute and conditional) are referred to a parcel and only with a 
slight abuse, since layers are defined as portions of atmosphere with the same thermal lapse rate, 
these instabilities are referred to a whole layer. In atmospheric physics, however, there is another 
kind of instability which is,  by construction, referred to a whole layer  and not to a parcel.  This 
instability is called convective instability or, equivalently, potential instability. A layer is defined as 
convectively (potentially) unstable when if lifted its bottom reaches saturation before than is top, 
then during the further adiabatic ascent the layer bottom cools slowly than the layer top and the layer 
is then conditionally unstable. Conditionally unstable layers are, by construction, even convectively 
unstable but even absolutely stable layers can become conditionally unstable when the equivalent 
potential temperature lapse rate is negative, then the condition for convective (potential) instability is

∂Θe

∂ z
0 .

This can be easily understood remembering that equivalent potential temperature is conserved during 
the  adiabatic  ascents,  then  if  the  layer,  at  a  certain  time  t during  its  displacement  becomes 
conditionally unstable (e.g.,  shows negative saturated equivalent potential  temperature lapse rate) 
this means that at time t 0  (at the beginning of its displacement) its equivalent potential temperature 
(which is conserved during the ascent, then equal to the saturated equivalent potential temperature at 



time t) should show a similar behavior, then a negative lapse rate.

The hidden concept of convective instability is that of layer displacement. Even hidden, this concept 
is  extremely important  and sustain all  the convective (potential)  instability idea.  Without such a 
displacement, conditional instability will not take place even if the equivalent potential temperature 
has a negative lapse rate.  Then even if  a proper forcing is  going to occur for the realization of 
conditional instability no free buoyancy is going to be reached.

Usually  the  concept  of  potential  (convective)  instability  is  found  to  be  extremely  useful  as  a 
forecasting criteria on the plains in the neighborhood of mountain ridges. In these cases the layer 
displacement, as well as the forcing for the realization of the conditional instability, is represented by 
the orographic lifting. Other situations where the determination of convective instability is found to 
be useful for the forecasting of the onset of deep moist convection is represented by fronts (large 
scale dynamic lifting).  

The adiabatic liquid water content

Before to conclude it is worth to spend a few words concerning the amount of water condensed 
during the adiabatic ascent. Far to be negligible the result of condensation continues to play a major 
role in the dynamics of the systems. In particular part of the condensation is going to constitute the 
precipitations, moreover even if this amount of water is no more exerting a pressure as during its 
vapor phase, nevertheless the liquid loading can and does represent an important source of pressure . 
In particular, remembering that due to the drag the water droplets reach quite soon their terminal 
velocity (specially when small and with a diameter of the order of a few tenths of mm), they exert a 
loading which is exactly equal to their weight. This weight, called the hydrometeor loading, gives 
rise  to  a  non  hydrostatic  pressure  perturbation  term which  gives  rise  to  the  downdrafts  always 
associated to deep moist convection and it is measurable even at the ground.To estimate the amount 
of  liquid  water  due  to  condensation  is  quite  easily  done  in  the  frame  of  adiabatic  ascent, 
remembering the saturation mixing ratio or the saturation vapor pressure form. In fact, knowing the 
amount of water vapor at the lifting condensation level, the amount of condensed water w (per unit 
mass of dry air) withdrawn at a given point (temperature T and pressure p) of the ascent is exactly 
equal to the difference  w=rs T LCL , pLCL−r sT , p  , where  r s  represents the saturation mixing 
ratio (function of pressure and temperature). This estimate is an upper limit of the real liquid water 
amount due to condensation because the above estimate does not take into account the entrainment 
and other mechanisms that usually take place in real ascents.  

Pressure nose associated to the hydrometeors loading (5th August 2004 Cormons)



 

Pseudo equivalent potential temperature

Before to conclude a few words concerning pseudo equivalent potential temperature are needed. The 
equivalent potential temperature has been obtained by the following differential equation

d
dt

l v rv

T
r t c

w−c p
d  1

T
dT
dt

−
Rd

p
dp
dt

=0

where r t  is the total water mixing ratio (liquid plus vapor) which is considered constant during the 
ascent. But we can imagine that liquid water is removed after condensation, then the total mixing 
ratio is no more constant and, if we assume that all the condensed water is removed, we have to 
substitute  r t   with  r sT , p ,  the  saturation  mixing  ratio  for  vapor  only,  which  is  function  of 
temperature and pressure. The above equation becomes

d
dt

l v rv

T
r sT , pcw−c p

d  1
T

dT
dt

−
Rd

p
dp
dt

=0

which can be solved only numerically.  However  some naive considerations can be done on the 
potential temperature which is conserved in this kind of pseudo-adiabatic ascent (no more adiabatic, 
in fact a part of the water is lost) and is called pseudo-equivalent potential temperature. Looking at 
the form of equivalent potential temperature 

Θe=Θ⋅expc p
t 

l v rv

T LCL


we have to remember that c p
t =r t c

w−c p
d , then being r t c

w−c p
dr s cw−c p

d  and being this inequality 
growing with the ascent (more and more water vapor is lost as the parcel is lifted), the exponential in 
the  pseudo-equivalent  potential  temperature  should be  smaller  than in  the case  of  its  equivalent 
potential case, then pseudo-equivalent potential temperature is smaller than the equivalent potential 
one and their difference is higher for larger displacements.  In other words in a pseudo-adiabatic 
ascent a parcel becomes cooler than in an adiabatic ascent as it is obvious, loosing matter (then heat).



All done for the equivalent potential temperature can be done as well for the pseudo-equivalent one. 
Usually, dealing with deep-moist convection, pseudo-equivalent potential temperature is found to be 
more useful since precipitation does occur in deep moist convection, then we need a variable which 
can be able to comprehend the formation of precipitations.   


