PENSION FUND

- The value at time t of the accumulated investments in the pension fund, given by

$$
F_{t}=P \sum_{j=0}^{\lceil t\rceil-1} \frac{S_{t}}{S_{j}}, 0<t \leq T
$$

depends not only on the current unit price but also on the unit prices at all past premium dates.

$$
\Downarrow
$$

This path-dependence will increase remarkably the computational complexity of our valuation procedure. In fact all the variables involved have now to be represented in a binomial tree with non-recombining nodes.

To see this with an over-simplified example, assume that

$$
T=3, \quad u=2, \quad d=1, \quad S_{0}=1, \quad P=1000 .
$$

The stochastic evolution of F_{t} from times 1 to 3 can be represented in the following binomial tree with non-recombining nodes. All the $2^{T}=8$ paths that the unit price can follow from time 0 to time T need now to be considered, even if the different final values for it (between brackets) are only $T+1=4$.

