

Chapters 3, 4, 10.2, 10.4 Organic Chemistry, 8 th Edition John E. McMurry

Hydrocarbons

Aliphatic (*áleiphar* = Ointment (unguento)).

- Alkanes (saturated hydrocarbons): hydrocarbons having only single C−C and C−H bonds.
	- o Linear (*normal* alkanes, *n*-alkanes)
	- o Branched
	- o Cyclic
- Alkenes (olefins): hydrocarbons having double bonds.
- Alkynes: hydrocarbons having triple bonds.

Aromatic

Alkanes

Empirical formula: C_nH_{2n+2}

Alkyl Groups

Root-Suffix (= yl)

Alkanes – Structural Isomerism

- \triangleright There are two hydrocarbons with empirical formula C_4H_{10} : butane and isobutane.
- Butane and isobutane are structural isomers: they have the same composition but different physico-chemical properties.

Examples

Nomenclature

$$
\begin{array}{c}\n\text{CH}_3\\
\text{CH}_3-\text{CH}-\text{CH}_2\text{CH}_3\n\end{array}
$$

2-metylbutane 2,2,3-trimethylpentane

3-methyl-6-propylnonane 5-(1-methylethyl)-3-methyloctane

Alkyl Groups

Physical Properties

C atoms

Physical Properties

Physical Properties

Physical state: C1-C4 gas /b.p. -160°-0° C5-C17 liq./m.p. -130°-20° >C17 solid

Solubility**:** soluble in organic solvents (apolar) insoluble in water

Natural Sources

Natural sources of alkanes are natural gas and oil.

Natural gas contains mainly methane: minor components are ethane, propane and butane.

Oil is a complex mixture of, mainly, C_1 - C_{40} hydrocarbons. Distillation of crude oil (refining) separates oil in fractions with different boiling point. The main fractions are:

gasoline: $C_5H_{12} - C_{12}H_{26}$ kerosene: $C_{12}H_{26} - C_{16}H_{34}$ diesel oil: $C_{15}H_{32} - C_{18}H_{38}$

Refining

 \rightarrow In the refining process, crude oil is heated and the volatile fractions distill first, followed by fractions with higher boiling points.

Industrial Treatments of Refined Oil

- → Cracking (kerosene, diesel oil)
	- **← Converts high MW hydrocarbons in lower MW hydrocarbons** (hydrocracking).
	- Converts alkanes in alkenes (intermediates for the fine chemical industry).
- \rightarrow Reforming
	- \bigstar Increases branching
	- Converts aliphatic hydrocarbons into aromatics (branched and aromatic hydrocarbons are better fuels for combustion engines).

Gasoline – Octane

heptane: 0 Isooctane: 100

Crude Oil

Conformational Isomerism

In the eclipsed conformation, all C−H bonds are alligned.

 In the staggered conformation, C−H bonds on each carbon bisect the H−C−H angles on the other carbon.

Ethane Conformations

 The H−C−C−H angle is called dihedral angle (0° in the eclipsed and 60° in the staggered conformation).

Newman Projection

 \rightarrow How to draw a Newman projection

[1] Look along the C-C bond and draw a circle (the back C atom) with a dot in the centre (the front C atom).

[2] Draw the bonds

[3] Add the atoms

Newman Projections of Ethane

Conformations of Ethane

Conformations of Propane

staggered conformation **example 3** eclipsed conformation

Conformations of Propane

Torsional Strain (3.3 kcal/mole) is higher than in ethane. The methyl group is bulkier than a hydrogen atom

Conformations of Butane

Conformations of Butane

Conformations of Butane

- *Staggered conformations*: Potential Energy **1** (anti) is the absolute minimum **3,5** (gauche) are relative minima *Eclipsed conformations:* $+4$ is the absolute maximum $(CH₃$ eclipsed)
	- **2,6** are relative maxima

Torsional Strain in Linear Alkanes

- \rightarrow A rotational barrier is the energy difference between two minima.
- \rightarrow The most stable conformation of linear hydrocarbons is staggered with the bulky groups in anti. Thus long chains are usually drawn with a zigzag.

Cycloalkanes

• Cycloalkanes have empirical formula **CnH2n** and contain carbon atoms arranged in a cyclic chain

Nomenclature: cyclo + name of the corresponding alkane

Stability: Angular Strain (Baeyer's Strain)

- \rightarrow Baeyer (1885): as carbon prefers 109° bond angles, rings other than five or six membered may be too strained to exist.
- \rightarrow Cycloalkanes from C₃ to C₃₀ do exist, but some of them are strained because of distorted bond angles and other interactions.

Cyclopropane C3H⁶

- \rightarrow Planar.
- → Angle strain: 60° CCC angles.
- \rightarrow Torsional strain: all H are eclipsed.
- \rightarrow May be described as sp3 hybridized with banana bonds.

Cyclobutane C4H⁸

- \rightarrow In planar cyclobutane all hydrogens would be eclipsed.
- \rightarrow To relieve torsional strain, cyclobutane is puckered by about 25°.
- \rightarrow In doing so the CCC bond angles decrease to 88 $^{\circ}$ and hydrogens on opposite carbons become closer.

Ring Strain

Stability of cycloalkanes depend on ring strain:

- \triangle angle strain: distorted bond angles.
- \triangle torsional strain: eclipsing of C-H bonds.
- VdW or steric strain: repulsions between non bonded atoms.

Cyclopentane C5H¹⁰

envelope and *half-chair* conformations have similar energies and rapidly interconvert into one another

Cyclohexane C6H¹²

 \rightarrow Planar cyclohexane.

→ Chair conformation.

Strain Energies of Cycloalkanes

Strain Energies of Cycloalkanes

- \rightarrow Heats of combustion are used to calculate strain energies of cycloalkanes.
- \rightarrow Heats of combustion increase with the number of C atoms.
- \rightarrow Cyclohexane is taken as reference (Strain = 0).

How to Draw Chair Cyclohexane

Chair Conformation of Cyclohexane

- \rightarrow There are two types of hydrogens:
	- Axial: perpendicular to the ring's mid-plane, above and below the ring.
	- Equatorial: in the ring's mid-plane, all around the ring.

 \rightarrow There are 6 axial and 6 equatorial hydrogens in cyclohexane.

Ring Flipping

- \rightarrow Ring flipping is the interconversion between two chair conformations of cyclohexane.
- \rightarrow Upwards C become dawnwards and viceversa.
- \rightarrow Axial H become equatorial and viceversa.

Ring Flipping

Conformations of Cyclohexane

- \rightarrow Chair conformations are 7 kcal/mol more stable than boat conformations.
- \rightarrow Torsional strain. In the boat conformation the H on the base are eclipsed.
- \rightarrow Steric strain. Flag pole H are forced in close proximity.

Conformations of Cyclohexane

Conformations of Cyclohexane

no ring strain (99.99% at 25°C)

boat

- torsional strain
- steric strain ring strain: \sim 7 kcal

twist-boat

~ 1.5 kcal more stable than the boat (0.01% at 25°C)

Substitued Cyclohexanes

 \rightarrow The chair conformations are no longer equivalent: they have different energies.

- \rightarrow The axial conformer is destabilized by 1,3-diaxial interactions (VdW interactions) between the substituent an axial hydrogens.
- \rightarrow The larger the substituent, the less stable the axial conformation.

Methylcyclohexane

Each CH_3 / H interaction destabilizes the axial conformer by 0.9 kcal/mol

*tert***-Butylcyclohexane**

→ The *tert*-butyl group is so bulky that there is no axial conformer at the equilibrium.

The *tert*-butyl group freezes the conformational equilibrium.

Disubstitued Cyclohexanes. Geometrical Stereoisomerism

 \rightarrow There are two isomers of 1,4-dimethylcyclohexane.

 \rightarrow Each geometrical isomer has two possible chair conformations.

1,4-Dimethylcyclohexane

*cis***-1-***t***-Butyl-4-methylcyclohexane**

 \rightarrow The conformational equilibrium is frozen by the bulky t-butyl group.

Polycyclic compounds

- One bond is shared by two rings.
- The shared C's are adjacent.

A bridged bicyclic system

• Two non-adjacent atoms are shared by both rings.

• One atom is shared by two rings

Polycyclic compounds

spiro[4,5]decane

bicyclo[2.2.2]octane

bicyclo[3.2.0]heptane

Polycyclic Hydrocarbons

trans-decaline

C5H8 Isomers

Reactions of Alkanes

Alkanes react only at high temperatures, with radical mechanisms.

Halogenation of Alkanes

Chapt. 10 Organic Chemistry, 8 th Edition John E. McMurry

Halogenation of Alkanes

 \rightarrow In the presence of heat or light, alkanes react with halogens, with a radical mechanism, to give alkyl halides.

$$
R-H + X_2 \stackrel{\otimes \text{or } h'}{\sim} R-X + HX
$$

radical substitution

 \rightarrow Halogenation of alkanes is carried out with Cl₂ o Br₂. The reaction with F_2 is too violent and the reaction with I_2 is too slow.

Halogenation of Methane

Initiation

Stage [1]: formation of CI radicals

$$
\therefore \ddot{C} \vert - \ddot{C} \vert: \xrightarrow[h \lor 0 \Delta]{} 2 \cdot \ddot{C} \vert:
$$

Propagation

Stages [2] and [3]: A new radical is formed for each reacting radical

$$
CH_3 - H + \frac{?}{ }C! : \longrightarrow CH_3 + H - \frac{?}{C!} ::
$$
\n
$$
CH_3 + \frac{?}{ }C! - \frac{?}{C!} :: \longrightarrow CH_3 - \frac{?}{C!} :: + \frac{?}{ }C! ::
$$
\n
$$
CH_4 + Cl_2 \longrightarrow CH_3Cl + HCl
$$

thousands of cycles. Chain reaction

Termination

Stage [4]: Two radicals recombine forming a \int bond.

$$
2 \text{ CI} \cdot \longrightarrow \text{CI}_2
$$
\n
$$
\begin{array}{ccc}\n\text{CH}_3 & + & \text{CH}_3 \longrightarrow & \text{CH}_3\text{CH}_3 \\
\text{CH}_3 & + & \text{CI} \cdot & \longrightarrow & \text{CH}_3\text{Cl}\n\end{array}
$$

Structure of Radicals

- \rightarrow Alkyl radicals are sp² hybridized with a trigonal planar geometry.
- \rightarrow The p orbital contains an unpaired electron.

Energetics

Halogenation of Alkanes

 \rightarrow Monohalogenation is only possible with an excess of substrate, otherwise polyhalogenation predominates.

$$
\begin{array}{ccccccc}\n\text{CH}_4 & \xrightarrow{\text{Cl}_2} & \text{CH}_3\text{Cl} & \xrightarrow{\text{Cl}_2} & \text{CH}_2\text{Cl}_2 & \xrightarrow{\text{Cl}_2} & \text{CHCl}_3 & \xrightarrow{\text{Cl}_2} & \text{Cl}_4 \\
+ & & + & & + & + \\
\text{HCl} & & & \text{HCl} & & & \text{HCl} & & & \text{HCl}\n\end{array}
$$

- → Problem: mixture of halogenated products.
- \rightarrow Solution: CH₄ in large excess and recycled.

Regioselectivity

 \rightarrow Isomers are formed in the halogenation of propane and higher hydrocarbons:

Regioselectivity

- \rightarrow Radical stability: $\frac{ry}{s} > 2\frac{ry}{s} > 1\frac{ry}{s}$.
- \rightarrow Strength of C-H bonds: $3^{ry} < 2^{ry} < 1^{ry}$.

C−H Bond Dissociation Energies

$$
\mathsf{R}\text{-}\mathsf{H} \; \square \; \mathsf{R} \bullet \; \text{+} \; \mathsf{H} \bullet
$$

D*H* **= BDE bond dissociation energy**

Reactivity of C−H bonds: 3 ry > 2ry > 1ry > CH3−H

Reactivity and Selectivity

Chlorination of alkanes is faster than bromination.

 \rightarrow Bromination of alkanes is more selective.

$$
CH_3CH_2CH_3
$$
 + Cl_2 $\overrightarrow{hv \perp \Delta}$ $CH_3CH_2CH_2Cl$ + $CH_3-CH-CH_3$
\n 43% 57%
\n $CH_3CH_2CH_3$ + Br_2 $\overrightarrow{hv \perp \Delta}$ $CH_3CH_2CH_2Br$ + $CH_3-CH-CH_3$
\n Br 1%

Regioselectivity

- \rightarrow Allylic carbons are sp³ carbons adjacent to a double bond.
- \rightarrow A resonance-stabilized allylic radical is obtained by omolysis of an allylic C−H bond.

 $CH_2=CH-CH_2-H$ \longrightarrow $CH_2=CH-CH_2$ + $\cdot H$ $\Delta H^{\circ} = +87$ kcal/mol **allylic radical**

- BDEs of allylic C−H bonds are approximately 4 kcal/mol lower than BDE for 3ry C−H bonds.
- \rightarrow The delocalized allylic radical is more stable than a 3ry radical.

$$
\begin{array}{cccc}\n\dot{C}H_3 & R\dot{C}H_2 & R_2\dot{C}H & R_3\dot{C} & CH_2=CH-\dot{C}H_2 \\
\hline\n& 1^\circ & 2^\circ & 3^\circ & \text{radicale allilico} \\
&\text{radical stability}\n\end{array}
$$

The Allylic Radical

- \rightarrow Allylic carbons can be selectively brominated with NBS and UV irradiation or a radical initiator.
- \rightarrow Breaking of the weak N-Br bond of NBS initiates the radical chain reaction.

Combustion

- \rightarrow Combustion is a redox reaction. C is oxidized and O is reduced.
- \rightarrow All hydrocarbons burn giving carbon dioxide, water and heat $(\otimes H < 0)$.
- C−C e C−H bonds are converted into C-O and H-O bonds.

$$
CH_4 + 2O_2 \longrightarrow CO_2 + 2H_2O + heat
$$

$$
(CH3)3 CCH2 CH(CH3)2 + (25/2) O2 \longrightarrow 8 CO2 + 9 H2O + heatisoottano
$$

$$
C_nH_{2n+2} + \frac{3n+1}{2}O_2
$$
 \longrightarrow n CO₂ + (n+1)H₂O + (heat

Every C atom is converted into $CO₂$
Strain Energies of Cycloalkanes

- \rightarrow Heats of combustion are used to calculate strain energies of cycloalkanes.
- \rightarrow Heats of combustion increase with the number of C atoms.
- \rightarrow Cyclohexane is taken as reference (Strain = 0).

Stability of Isomers

 \rightarrow Heats of combustion are used to compare the stability of isomers. E.g.: C_8H_{18}

Branched isomers are more stable than linear ones.