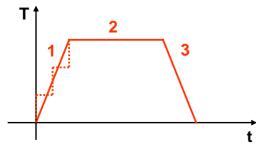
TRATTAMENTI TERMICI 1


CORSO DI METALLURGIA A.A. 2004/2005

TRATTAMENTI TERMICI 1

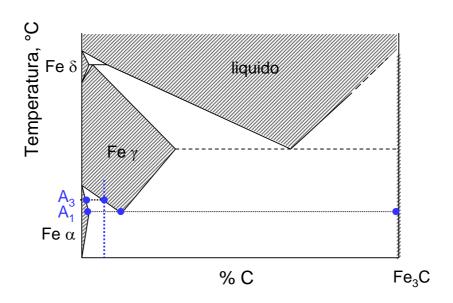
I trattamenti termici sono operazioni o successioni di operazioni termiche alle quali vengono sottoposti metalli o leghe metalliche allo stato solido, allo scopo di ottenere una determinata struttura e determinate proprietà finali

Effetti collaterali: cambiamento delle condizioni geometriche (distorsioni) e superficiali, e dello stato delle tensioni interne dei pezzi

Constano di tre fasi:

- 1. Fase di riscaldo a una certa T
- 2. Fase di mantenimento a quella T
- 3. Fase di raffreddamento con una determinata velocità

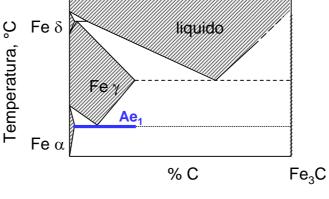
1


I PUNTI CRITICI

CORSO DI METALLURGIA A.A. 2004/2005

3

TRATTAMENTI TERMICI 1

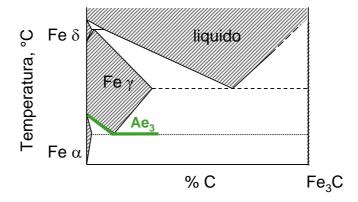


CORSO DI METALLURGIA A.A. 2004/2005

A₁: temperatura dell'equilibrio austenite ⇔ perlite

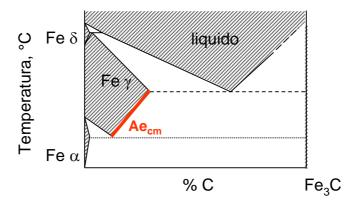
l'austenite si forma al riscaldo per contemporanea decomposizione della ferrite e della cementite nella perlite

o si trasforma al raffreddamento dando luogo alla perlite (eutettoide ferrite + cementite)


CORSO DI METALLURGIA A.A. 2004/2005

5

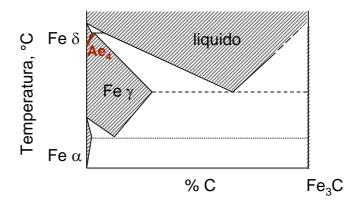
TRATTAMENTI TERMICI 1


A₃: temperatura d'equilibrio austenite \Leftrightarrow ferrite

nel caso di acciaio ipoeutettoide, al di sopra della quale è stabile solo l'austenite

A_{cm}: temperatura d'equilibrio austenite ⇔ cementite

per gli acciai ipereutettoidici, al di sopra della quale è stabile solo l'austenite



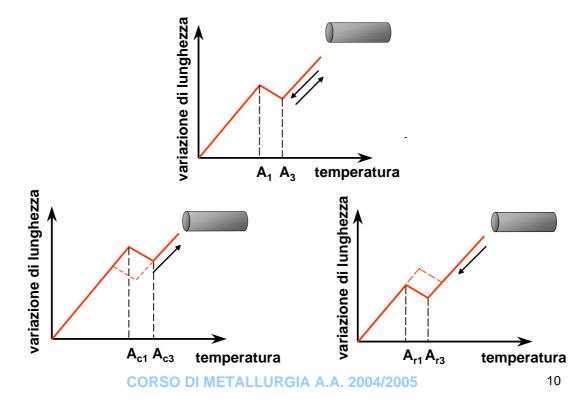
CORSO DI METALLURGIA A.A. 2004/2005

7

TRATTAMENTI TERMICI 1

A_4 : temperatura d'equilibrio austenite \Leftrightarrow ferrite δ al di sotto della quale è stabile solo l'austenite

I diagrammi di stato sono indispensabili per determinare le condizioni dei trattamenti termici, ma <u>non sufficienti</u> per comprendere tutti i fenomeni ad essi collegati


è necessario conoscere l'influenza della velocità di riscaldamento e di raffreddamento sulle trasformazioni indicate dai diagrammi di stato

CORSO DI METALLURGIA A.A. 2004/2005

9

TRATTAMENTI TERMICI 1

Tracciando la curva dilatometrica di un acciaio al C:

Considerata l'influenza della velocità di variazione della temperatura sulla posizione dei punti critici si fa distinzione tra il punto critico in condizioni di riscaldo o di raffreddamento

Per il punto critico A₁ si distinguono:

- Ae₁: temperatura d'equilibrio della trasformazione
- Ac₁: temperatura alla quale l'austenite eutettoide comincia a formarsi nelle condizioni di riscaldo
- Ar₁: temperatura alla quale la trasformazione dell'austenite eutettoide in ferrite + cementite (perlite) avviene nel corso del raffreddamento;

CORSO DI METALLURGIA A.A. 2004/2005

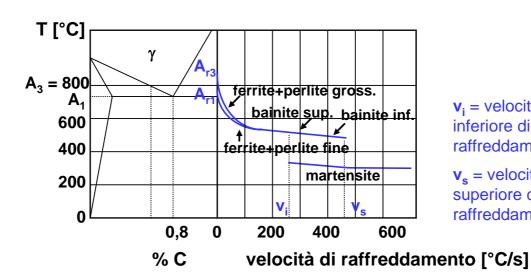
11

TRATTAMENTI TERMICI 1

Per il punto critico A₃ si indicano:

- Ae₃: temperatura d'equilibrio della trasformazione
- Ac₃: temperatura alla quale la trasformazione da ferrite ad austenite è completa in condizioni di riscaldo
- Ar₃: temperatura alla quale l'austenite inizia a trasformarsi in ferrite al raffreddamento;

Per il punto critico A_{cm} si fa distinzione tra:

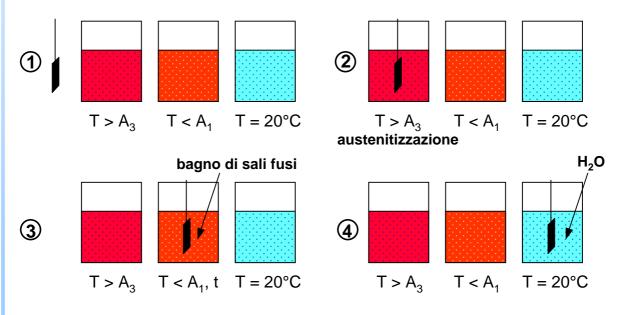

- A_{ecm}: temperatura d'equilibrio della trasformazione
- A_{ccm}: temperatura alla quale la dissoluzione della cementite nell'austenite è completa in condizioni di riscaldo
- \mathbf{A}_{rcm} : temperatura alla quale l'austenite satura inizia a smiscelare la cementite nel corso del raffreddamento

CORSO DI METALLURGIA A.A. 2004/2005

13

TRATTAMENTI TERMICI 1

INFLUENZA DELLA VELOCITA' DI RAFFREDDAMENTO SUI PUNTI **CRITICI**

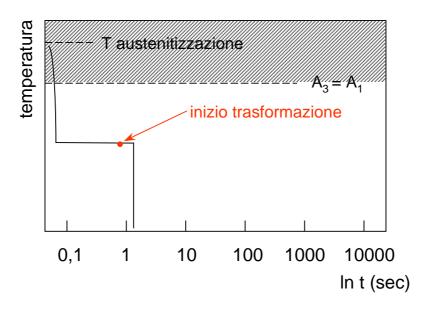

v_i = velocità critica inferiore di raffreddamento

v_s = velocità critica superiore di raffreddamento

Quali sono le ragioni che spiegano lo sdoppiamento dei punti critici?

CORSO DI METALLURGIA A.A. 2004/2005

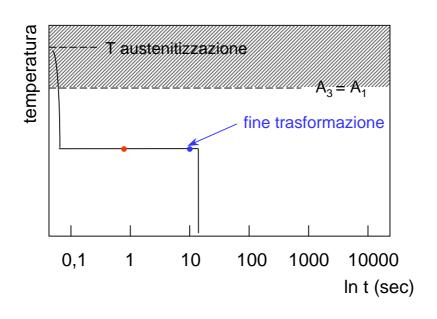
CURVE DI TRASFORMAZIONE ISOTERMA DELL'AUSTENITE (CURVE T.T.T. – *Time Temperature Trasformation*)

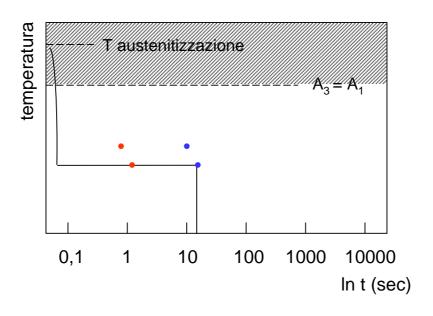


CORSO DI METALLURGIA A.A. 2004/2005

15

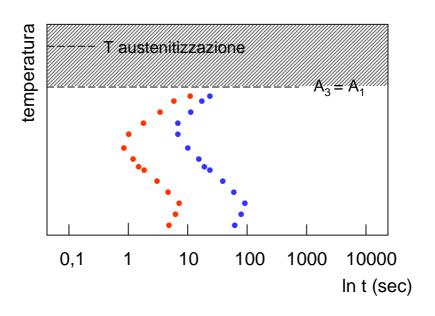
TRATTAMENTI TERMICI 1



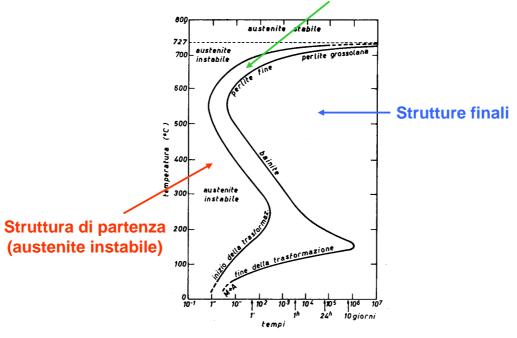

CORSO DI METALLURGIA A.A. 2004/2005

17

TRATTAMENTI TERMICI 1

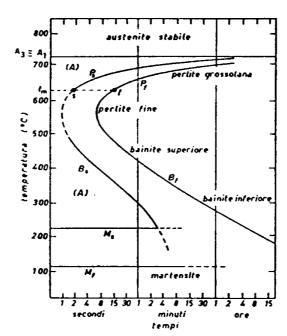

CORSO DI METALLURGIA A.A. 2004/2005

CORSO DI METALLURGIA A.A. 2004/2005

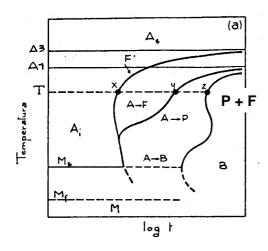

19

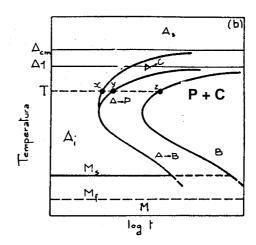
TRATTAMENTI TERMICI 1

CORSO DI METALLURGIA A.A. 2004/2005


Forma primitiva della curva di Bain per un acciaio eutettoidico

CORSO DI METALLURGIA A.A. 2004/2005


21


TRATTAMENTI TERMICI 1

Per tenere conto della trasformazione austenite ⇒ martensite, non isoterma:

Forma definitiva della curva di Bain per un acciaio eutettoidico

- a) curve di Bain per un acciaio ipoeutettoidico
- b) curve di Bain per un acciaio ipereutettoidico

CORSO DI METALLURGIA A.A. 2004/2005

23

TRATTAMENTI TERMICI 1

Sia la posizione che la forma delle curve T.T.T. sono influenzate dagli elementi di lega :

- producono uno spostamento delle curve di inizio e di fine trasformazione verso tempi più lunghi, quindi verso destra, rispetto agli acciai al solo C (fa eccezione al riguardo il Co)
- i vari elementi possono spostare a tempi più lunghi differentemente le trasformazioni ad alta temperatura (da austenite a ferrite e perlite per gli acciai con C < 0,77%) o quella a temperature intermedie (da austenite a bainite); la forma è molto variabile da caso a caso ed è sempre più complessa all'aumentare del numero e della concentrazione degli elementi di lega

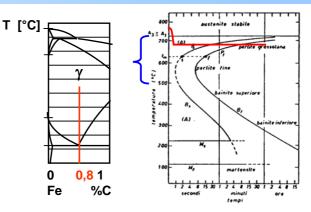
Anche le temperature M_s e M_f subiscono variazioni più o meno forti per effetto degli elementi di lega:

- \bullet oltre al C tutti gli elementi di lega, tranne il Co, spostano verso in basso $M_{\rm s}$
- analogamente può succedere ad $M_f \Rightarrow se$ scende sotto T_{amb} si può avere austenite residua

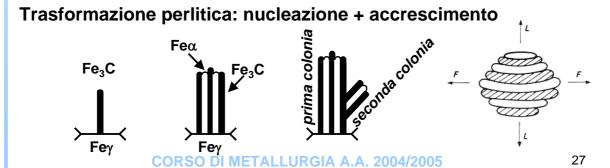
CORSO DI METALLURGIA A.A. 2004/2005

25

TRATTAMENTI TERMICI 1


Le curve T.T.T. sono influenzate anche dalla temperatura e dal tempo di austenitizzazione (quindi dalla dimensione del grano austenitico): un ingrossamento del grano austenitico ritarda la formazione della perlite

Infine risentono anche della presenza di carburi o inclusioni non metalliche in generale: le trasformazioni vengono rese più veloci


TRASFORMAZIONE PERLITICA

Nell'intervallo [$T_e \div 500^{\circ}$ C] la trasformazione isoterma di un acciaio eutettoidico:

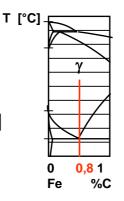
austenite ⇒ perlite

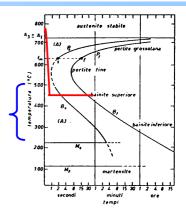
PERLITE = aggregato di ferrite + cementite, costituito da grani (colonie) che sono insiemi di lamelle alternate di ferrite e cementite

TRATTAMENTI TERMICI 1

EFFETTO DELLA TEMPERATURA:

- al diminuire della T di trasformazione la velocità di nucleazione N [nuclei/(mm³⋅s)] aumenta ⇒ noduli di perlite sempre più piccoli
- al diminuire della T di trasformazione diminuisce anche la distanza interlamellare \Rightarrow perliti sempre più fini


cementite ferrite


EFFETTO DEGLI ELEMENTI DI LEGA:

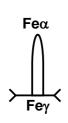
Gli elementi di lega (tutti tranne il Co) fanno crescere la distanza interlamellare

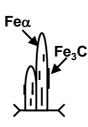
TRASFORMAZIONE BAINITICA

Nell'intervallo [500°C ÷ M_s=230°C] la trasformazione isoterma di un acciaio eutettoidico:

austenite ⇒ bainite (superiore o inferiore)

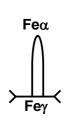
BAINITE = aggregato di ferrite + cementite a forme aciculari

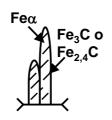

Trasformazione bainitica: nucleazione + accrescimento

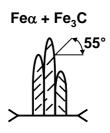

CORSO DI METALLURGIA A.A. 2004/2005

29

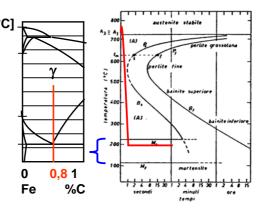
TRATTAMENTI TERMICI 1


BAINITE SUPERIORE: si forma a T più alte





BAINITE INFERIORE: si forma a T più basse



CORSO DI METALLURGIA A.A. 2004/2005

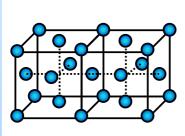
TRASFORMAZIONE MARTENSITICA T [°C]

Al di sotto di M_s non si ha più trasformazione isoterma di un acciaio eutettoidico:

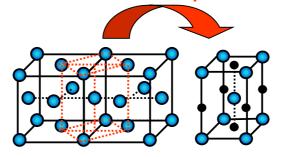
austenite ⇒ martensite

MARTENSITE = soluzione solida omogenea sovrassatura di C

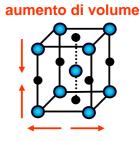
Trasformazione martensitica: trasformazione "a scatto" dell'austenite, cioè mediante movimento coordinato di atomi e senza fenomeni diffusivi ⇒ la composizione chimica della martensite è identica a quella dell'austenite di partenza


CORSO DI METALLURGIA A.A. 2004/2005

31

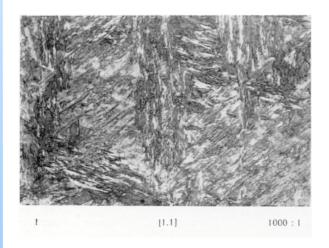

TRATTAMENTI TERMICI 1

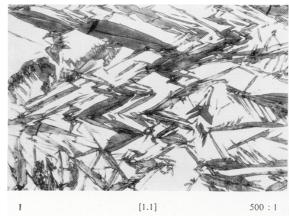
- o atomo di Fe
- atomo di C


evidenziando anche le posizioni degli atomi di C

2 celle c.f.c. dell'austenite

cella t.c.c.


cella t.c.c. della martensite

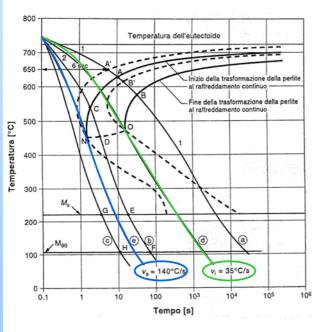

per ottenere la struttura finale della martensite si devono considerare anche ulteriori deformazioni e rotazioni rigide del reticolo t.c.c.

La trasformazione martensitica è accompagnata da un sensibile aumento di volume ⇒ tensioni interne (strutturali) ⇒ rischi di distorsioni e cricche nel componente

CORSO DI METALLURGIA A.A. 2004/2005

All'osservazione metallografica si presenta costituita da aghetti finissimi disposti gli uni rispetto agli altri con gli assi a $\sim 60^{\circ}$

Martensite in acciaio ipoeutettoidico

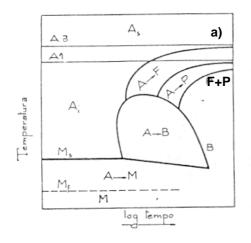

Martensite in acciaio ipereutettoidico

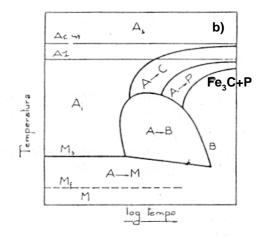
CORSO DI METALLURGIA A.A. 2004/2005

33

TRATTAMENTI TERMICI 1

CURVE DI TRASFORMAZIONE ANISOTERMA DELL'AUSTENITE (CURVE C.C.T. – Continuous Cooling Trasformation)




Le curve CCT si ottengono segnando su ogni traiettoria di raffreddamento i punti di inizio e di fine trasformazione dell'austenite

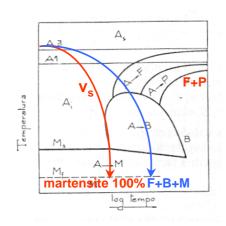
Sono spostate in basso (temperature inferiori) e a destra (tempi maggiori) rispetto alle rispettive TTT

v_i = velocità critica inferiore di raffreddamento (minima v_{raffreddamento} che consente di avere tracce di martensite)
 v_s = velocità critica superiore di raffreddamento (minima v_{raffreddamento} che consente di avere 100% di martensite)

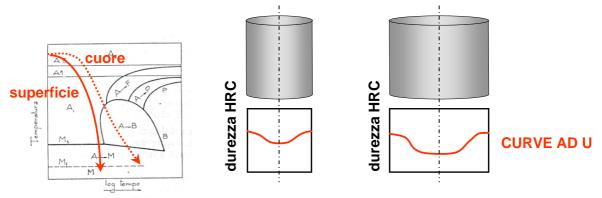
CORSO DI METALLURGIA A.A. 2004/2005

- a) curve C.C.T. per un acciaio ipoeutettoidico
- b) curve C.C.T. per un acciaio ipereutettoidico

Valgono per le curve anisoterme le stesse considerazioni fatte per le isoterme sui fattori che ne influenzano forma e posizione (lucidi n° 22 - 24)


CORSO DI METALLURGIA A.A. 2004/2005

35


TRATTAMENTI TERMICI 1

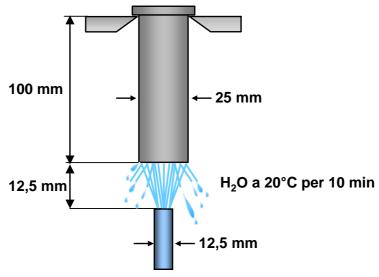
ESERCIZIO

Riportare sulle curve CCT di un acciaio ipoeutettoidico le traiettorie di raffreddamento dalla condizione di completa austenitizzazione, che corrispondono ad una struttura finale pari al 100% di martensite e ad una struttura finale costituita da ferrite + bainite + martensite

TEMPRABILITÀ

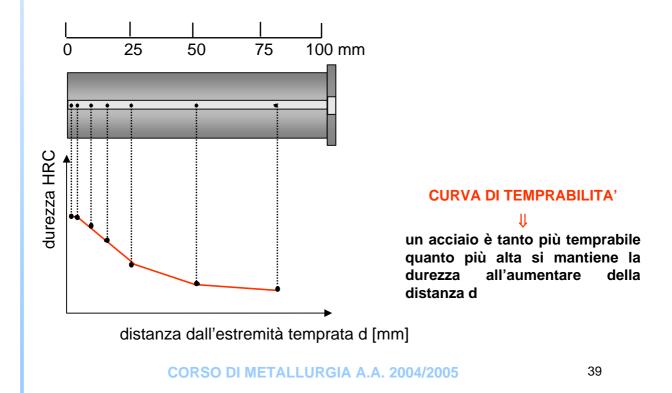
Scelta del mezzo di tempra \Rightarrow curve TTT o CCT + temprabilità acciaio Temprabilità = attitudine di un acciaio a dare luogo ad una trasformazione più o meno completa in struttura martensitica in un pezzo di determinate geometria e dimensioni

Non dipende dalla durezza superficiale, ma dagli elementi di lega e dalla drasticità del mezzo di tempra

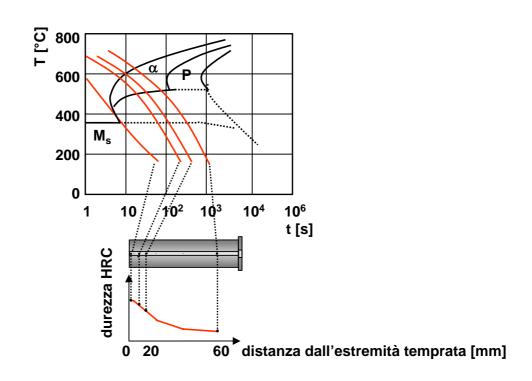

CORSO DI METALLURGIA A.A. 2004/2005

37

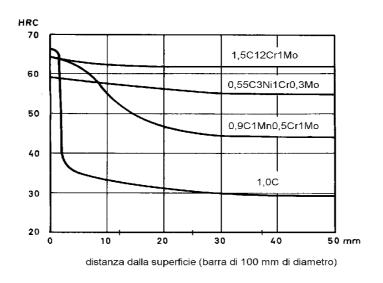
TRATTAMENTI TERMICI 1


Per determinare la temprabilità ⇒ PROVA JOMINY

Il campione viene mantenuto per 30 min alla T_{tempra} e posizionato in 5 sec sull'attrezzatura di tempra



CORSO DI METALLURGIA A.A. 2004/2005


Si eseguono misure di durezza lungo una generatrice del cilindro:

TRATTAMENTI TERMICI 1

La temprabilità di un acciaio dipende dagli elementi di lega presenti:

CORSO DI METALLURGIA A.A. 2004/2005

41

TRATTAMENTI TERMICI 1

TRATTAMENTI TERMICI INDUSTRIALI

I principali trattamenti termici degli acciai possono essere suddivisi in:

- t.t. per i quali si esegue un riscaldamento dell'acciaio a $T > A_3$ (ricottura completa, normalizzazione, tempra)
- t.t. per i quali si esegue un riscaldamento dell'acciaio a $T < A_1$ (rinvenimento, ricottura di addolcimento)
- t.t. eseguiti per ottenere risultati particolari (*ricottura di globulizzazione, tempra superficiale, solubilizzazione* degli acciai austenitici)

RICOTTURA

Esistono molti tipi di ricottura a seconda degli obiettivi che si vogliono raggiungere:

- EQUILIBRIO CHIMICO (ad es. in presenza di segregazioni minori)
- EQUILIBRIO STRUTTURALE (ad es. in presenza di strutture metastabili)
- ANNULLAMENTO DELLO STATO TENSIONALE (ad es. in presenza di tensioni interne originate da diversa velocità di raffreddamento della superficie rispetto al cuore del pezzo, o da una lavorazione plastica a freddo o da trasformazioni in fase solida che sono accompagnate da variazioni di volume in tempi successivi)

CORSO DI METALLURGIA A.A. 2004/2005

43

TRATTAMENTI TERMICI 1

Molteplici sono i parametri del trattamento:

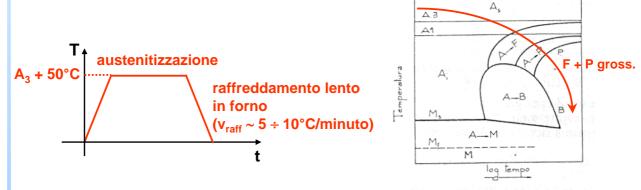
- AMBIENTE DI TRATTAMENTO ⇒ forni la cui atmosfera generalmente è aria (se l'atmosfera è ossidante provoca la formazione di uno strato più o meno spesso di ossido ossidazione che deturpa o assottiglia i pezzi nonché un impoverimento superficiale di carbonio
- decarburazione; se è riducente può causare l'innalzamento del %C
- carburazione)
- VELOCITA' DI RISCALDAMENTO ⇒ riscaldo graduale per evitare gradienti termici tra superficie e cuore del pezzo ⇒ distorsioni o microfessurazioni

TEMPERATURA DI RICOTTURA ⇒ in funzione dello scopo:

equilibrio chimico \Rightarrow T piuttosto alta per facilitare la diffusione (anche 200°C oltre $T_{trasformazione}$, oppure 0,75 \div 0,8 volte T_f)

equilibrio strutturale \Rightarrow è suff. T ~ (20 ÷ 50)°C oltre $T_{trasformazione}$, oppure (0,55 ÷ 0,6) volte T_f

attenuazione delle tensioni ⇒ T più bassa (anche poche centinaia di gradi se i tempi si mantengono lunghi)


- DURATA ⇒ varia a seconda dello scopo:
- equilibrio chimico ⇒ t lungo (ore o decine di ore)
- equilibrio strutturale ⇒ è suff. un t più breve (da una a poche ore)
- attenuazione delle tensioni ⇒ servono a seconda della T da pochi secondi a giorni
- VELOCITA' DI RAFFREDDAMENTO ⇒ molto lenta (da 5 -10 °C/min per acciai al C a valori minori per acciai legati)

CORSO DI METALLURGIA A.A. 2004/2005

45

TRATTAMENTI TERMICI 1

RICOTTURA COMPLETA (FULL ANNEALING)

C.C.T. per acciaio ipoeutettoidico con curva di raffreddamento da ricottura

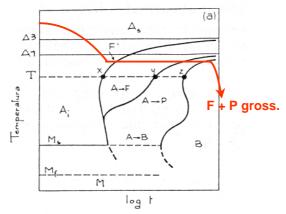
Scopo: addolcire l'acciaio con eliminazione di tensioni interne e di effetti di incrudimento, aumentarne la lavorabilità a freddo, omogeneizzarne la composizione chimica

Distrugge ogni effetto di qualsiasi trattamento termico o meccanico precedente

Fornisce una struttura finale corrispondente alle condizioni di equilibrio del diagramma Fe-C

Eseguita su getti o lingotti \Rightarrow distrugge le differenze morfologiche di cristallizzazione (orientamenti preferenziali, strutture dendritiche...)

Problemi:


- per t_{mantenimento} lunghi ⇒ ingrossamento del grano austenitico ⇒ strutture finali a grano grosso ⇒ bassa tenacità (elevata fragilità)
 costi elevati (raggiungimento T > A₃, immobilizzo dei forni per
- costi elevati (raggiungimento T > A₃, immobilizzo dei forni per raffreddamento) ⇒ RICOTTURA ISOTERMICA

CORSO DI METALLURGIA A.A. 2004/2005

47

TRATTAMENTI TERMICI 1

RICOTTURA ISOTERMICA

T.T.T. per acciaio ipoeutettoidico con curva di raffreddamento da ricottura isotermica

Vantaggi:

- cambio del forno a T basse ⇒ si riduce il tempo di immobilizzo del forno ⇒ minori costi
- migliore lavorabilità alle macchine utensili

Applicazioni tipiche

Coltelleria

Descrizione del pezzo Forchetta

Materiale XC38

Requisiti metallurgici Miglioramento della lavorabilità meccanica per una più

facile sbavatura

Processo Ricottura

CORSO DI METALLURGIA A.A. 2004/2005

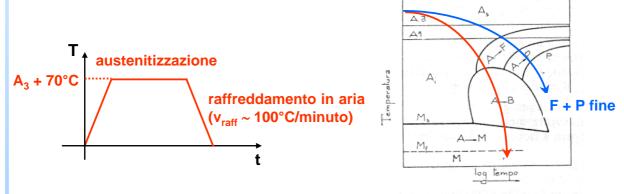
49

TRATTAMENTI TERMICI 1

Monete

Descrizione del pezzo Monete

Materiale X8Cr17


Requisiti metallurgici

Durezza superficiale HB2,5/62,5 125~135

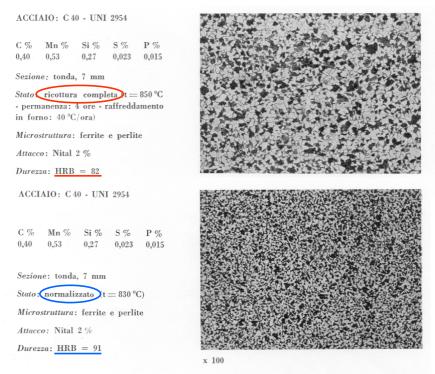
Processo Ricottura

CORSO DI METALLURGIA A.A. 2004/2005

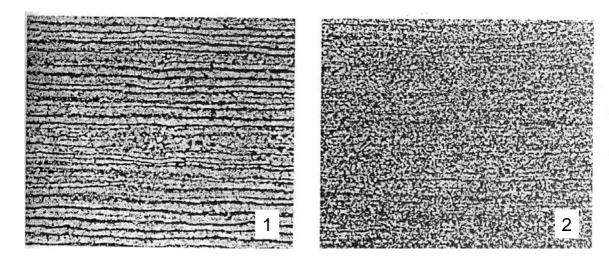
NORMALIZZAZIONE (NORMALIZING)

C.C.T. per acciaio ipoeutettoidico con curve di raffreddamento da normalizzazione

Scopo: ottenere una struttura simile a quella di un acciaio ricotto ma più fine ⇒ maggiore durezza e resistenza a trazione


CORSO DI METALLURGIA A.A. 2004/2005

51


TRATTAMENTI TERMICI 1

La normalizzazione si prefigge di ottenere una microstruttura:

a) fine

b) dimensionalmente e microstrutturalmente uniforme

Microstruttura dell'acciaio C60:
1) laminato a caldo con struttura "a bande" 2) dopo normalizzazione

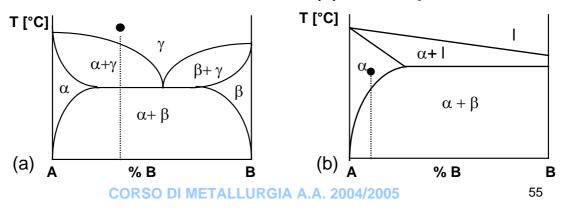
c) chimicamente omogenea

CORSO DI METALLURGIA A.A. 2004/2005

53

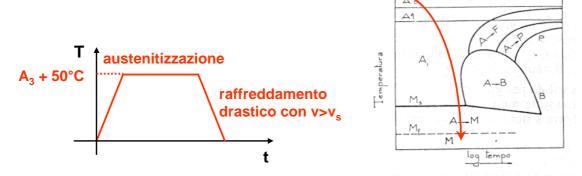
TRATTAMENTI TERMICI 1

Distrugge ogni effetto di qualsiasi trattamento termico o meccanico precedente


Acciai per carpenteria e profilati per costruzioni metalliche vengono messi in opera solamente normalizzati

TEMPRA

Scopo: ottenere, mediante brusco raffreddamento, a T_{ambiente} uno stato che termodinamicamente compete ad una T più elevata


Fra i vari tipi di tempra i più importanti sono quelli che agiscono attraverso la soppressione di una trasformazione di fase:

- di una trasformazione eutettoidica (a) ⇒ tempra di durezza
- di una soluzione solida sovrassatura (b) ⇒ tempra di soluzione

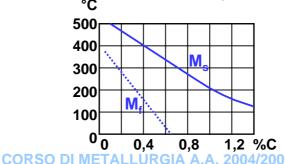
TRATTAMENTI TERMICI 1

TEMPRA di durezza (QUENCHING)

C.C.T. per acciaio ipoeutettoidico con curva di raffreddamento da tempra

Α,

Scopo: ottenere una struttura con elevata durezza (fino a 700 HV) e resistenza a trazione (fino a 2000 MPa) a scapito però di resilienza e tenacità del pezzo


 $T_{riscaldo} = A_3 + 50$ °C:

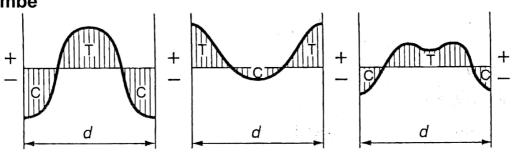
- per contenere i costi
- per limitare i rischi di ingrossamento del grano
- per evitare surriscaldamenti e bruciature negli acciai ipereutettoidici

Mezzo di spegnimento ⇒ f(composizione chimica dell'acciaio):

- H₂O per acciai con C < 0,4% e senza elementi di lega
- olio per acciai con C > 0,4% con elementi di lega
- aria per acciai con C + Cr + Ni > 5% (autotempranti)

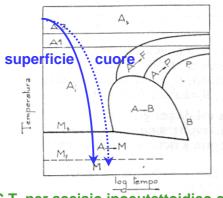
All'aumentare della % C si abbassano M_s e M_f:

CORSO DI METALLURGIA A.A. 2004/2005

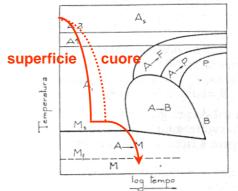

57

TRATTAMENTI TERMICI 1

Trattamento molto drastico ⇒ tensioni interne per pezzi di grosse dimensioni o per acciai con bassa conducibilità termica:


- tensioni termiche \Rightarrow si sviluppano come conseguenza delle contrazioni dimensionali dei pezzi durante il raffreddamento
- tensioni strutturali \Rightarrow derivanti dalle variazioni volumetriche associate alla trasformazione dell'austenite in martensite

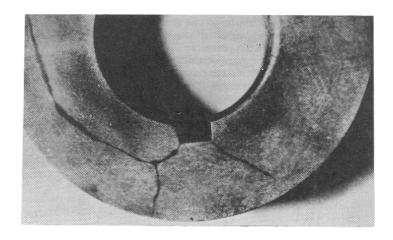
Lo stato tensionale residuo complessivo è dato dalla somma di entrambe



a) Schematizzazione delle tensioni residue (t = trazione, c = compressione): a) termiche, b) strutturali, c) totali

Le tensioni interne prodotte possono portare a deformazioni o rotture dei pezzi (*cricche di tempra*) \Rightarrow scegliere sempre il mezzo di tempra meno drastico possibile oppure la TEMPRA DIFFERITA MARTENSITICA (*MARTEMPERING*)

C.C.T. per acciaio ipoeutettoidico con curva di raffreddamento da tempra



C.C.T. per acciaio ipoeutettoidico con curva di raffreddamento da tempra differita martensitica

CORSO DI METALLURGIA A.A. 2004/2005

59

TRATTAMENTI TERMICI 1

Cricche di tempra in un acciaio al C

Applicazioni tipiche

Coltelleria

Descrizione del pezzoColtello uso professionale

Materiale X45CrMov15

Requisiti metallurgici

Durezza dopo il trattamento HRC 56~58

Processo Tempra

CORSO DI METALLURGIA A.A. 2004/2005

61

TRATTAMENTI TERMICI 1

Elementi di fissaggio

Descrizione del pezzo Bullone di fissaggio ruote autoveicoli

Materiale CF53

Requisiti metallurgici

Durezza dopo il trattamento HV10 250~300

Processo Tempra

CORSO DI METALLURGIA A.A. 2004/2005

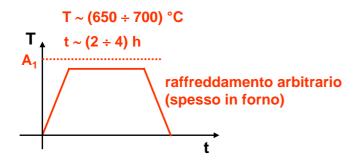
Utensileria

Descrizione del pezzo Utensile a mano (lima)

Materiale X46Cr13

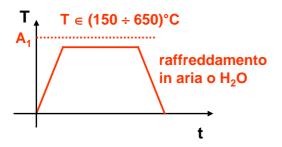
Requisiti metallurgici

Durezza superficiale HV0,5 640~720


Processo Tempra

CORSO DI METALLURGIA A.A. 2004/2005

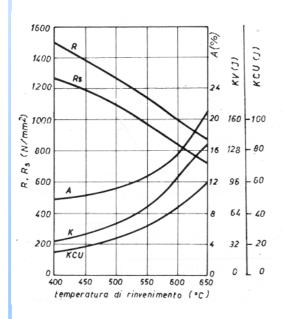
63

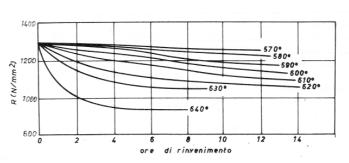

TRATTAMENTI TERMICI 1

RICOTTURA DI ADDOLCIMENTO O DI LAVORABILITA'

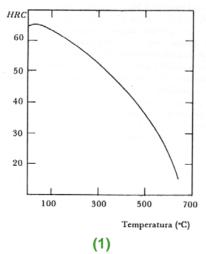
Scopo: uniformare le caratteristiche meccaniche, eliminare le tensioni, comporta una diminuzione di durezza dell'acciaio per effetto della coalescenza dei carburi \Rightarrow ne aumenta la lavorabilità

RINVENIMENTO (TEMPERING)

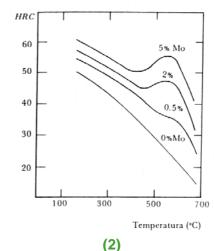

Scopo: effettuato su strutture martensitiche consente di ottenere strutture con una migliore combinazione tra durezza e tenacità e di ridurre le tensioni interne al pezzo


CORSO DI METALLURGIA A.A. 2004/2005

65


TRATTAMENTI TERMICI 1

La temperatura e la durata del rinvenimento influiscono sulle proprietà meccaniche finali dell'acciaio:



Rinvenimento di acciai al C (1) e di acciai legati (2):

Influenza di un rinvenimento di 1h a varie T per un acciaio con 0,62 % C

Influenza del Mo sulla curva HRC-T nel rinvenimento di un acciaio con 0,35 % C

CORSO DI METALLURGIA A.A. 2004/2005

67

TRATTAMENTI TERMICI 1

(1) Il rinvenimento degli acciai al C avviene in 3 stadi distinti :

I° STADIO (80 ÷ 160°C) \Rightarrow precipitazione carburo Fe_{2,4}C (carburo ε) \Rightarrow martensite a più bassa %C (~ 0,25%) \Rightarrow aumento di durezza per effetto del rafforzamento dovuto ai precipitati coerenti del carburo ε, nonostante la perdita di rafforzamento per soluzione solida

II° STADIO (230 ÷ 280°C) \Rightarrow se è presente austenite residua (per acciai con $M_f < T_{amb}$) si trasforma in ferrite + cementite \Rightarrow aumento di durezza difficilmente avvertibile

III° STADIO (260 \div 360°C) \Rightarrow il carburo ϵ si ridiscioglie nella matrice e precipita il carburo di equilibrio Fe₃C \Rightarrow la martensite espelle tutto il C e diventa cubica (ferrite) \Rightarrow diminuzione di durezza \Rightarrow miglior compromesso tra durezza e tenacità

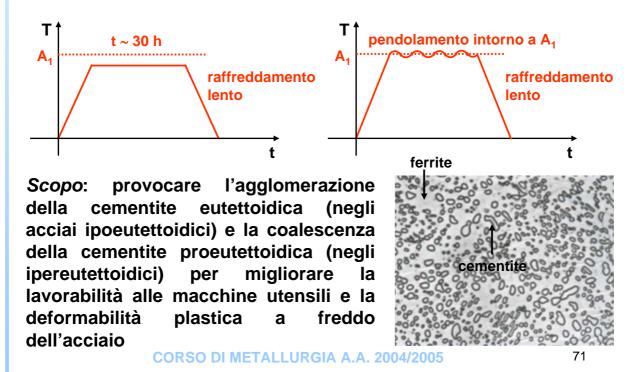
(2) Il rinvenimento degli acciai legati presenta i 3 stadi visti oltre al

IV° STADIO (T > 400°C) \Rightarrow se sono presenti elementi carburigeni \Rightarrow sostituzione del Fe₃C con i carburi degli elementi carburigeni secondo due modalità:

- il carburo dell'elemento di lega (*Mo, W, V, Nb e Ti*) si nuclea direttamente dalla matrice mentre il Fe_3C si scioglie in essa \Rightarrow aumento di durezza (T = 450°C $\div 550$ °C) \Rightarrow *Indurimento secondario*
- l'elemento di lega (*Cr*) si discioglie nel Fe₃C e si trasforma "in situ" nel carburo dell'elemento carburigeno

CORSO DI METALLURGIA A.A. 2004/2005

69


TRATTAMENTI TERMICI 1

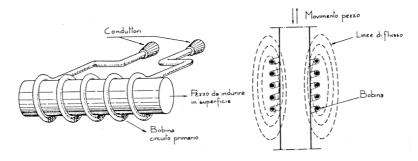
BONIFICA = Tempra + Rinvenimento

DISTENSIONE (STRESS RELIEVING)

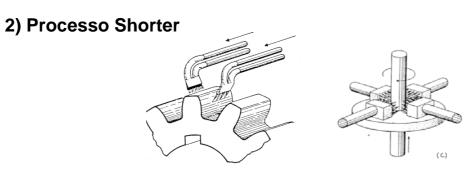
Rinvenimento a bassa temperatura (150°C ÷ 180°C) per ridurre le tensioni interne senza diminuire troppo la durezza e la resistenza a trazione dell'acciaio

RICOTTURA DI GLOBULIZZAZIONE O SFEROIDIZZAZIONE (SPHEROIDIZING) E RICOTTURA PENDOLARE

TRATTAMENTI TERMICI 1


TEMPRA SUPERFICIALE

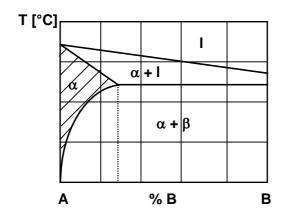
Riscaldamento della sola superficie a $T > A_3$, mantenimento per un tempo sufficiente e raffreddamento drastico in modo da ottenere indurimento dello strato superficiale lasciando il cuore inalterato (riscaldato a $T < A_1$)


Si effettua su acciai precedentemente trattati (es. da bonifica)

Scopo: ottenere elevata durezza superficiale + buona tenacità a cuore

1) Metodo ad induzione

profondità di indurimento f(potenza elettrica e tempo)


CORSO DI METALLURGIA A.A. 2004/2005

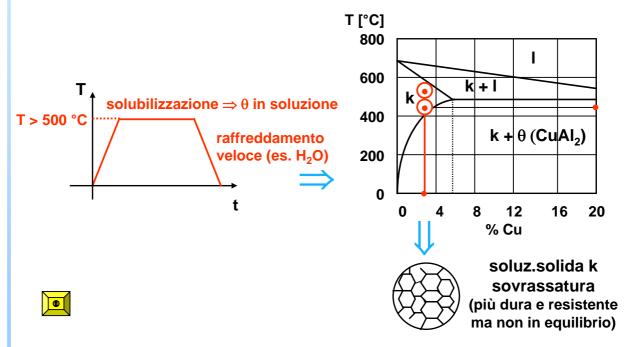
73

TRATTAMENTI TERMICI 1

TEMPRA DI SOLUZIONE + INVECCHIAMENTO

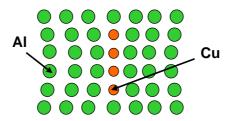
Applicabile a tutte le leghe che presentano una soluzione solida stabile a temperatura elevata ma con diminuzione di solubilità al diminuire dalla temperatura (es. leghe Al- Cu fino al 5%Cu)

Es. lega Al-3%Cu: T [°C] 800 600 k + l solubilizzazione $\Rightarrow \theta$ in soluzione 400 T > 500 °C $k + \theta (CuAl_2)$ raffreddamento **lento** 200 AI 0 8 12 16 20 % Cu soluz. solida k particelle incoerenti θ (grossolane e disposte 1 prevalentemente sui


TRATTAMENTI TERMICI 1

bordi dei grani)

75


Se invece di un raffreddamento lento si esegue una tempra di soluzione:

CORSO DI METALLURGIA A.A. 2004/2005

La tempra di soluzione precede un successivo invecchiamento:

- naturale (mantenimento a T_{amb}) \Rightarrow espulsione atomi di Cu con formazione di particelle θ (tempi dell'ordine di anni)
- artificiale (rinvenimento tra 100°C ÷ 200°C) ⇒ iniziale formazione, per nucleazione omogenea, di addensamenti di atomi di Cu nel reticolo c.f.c. dell'Al (zone di Guinier-Preston o G.P.1) ⇒ zone coerenti con la matrice (cioè c'è continuità cristallografica tra i due reticoli), in elevato numero e di piccole dimensioni ⇒ distorsione elastica locale del reticolo della matrice ⇒ aumento di durezza

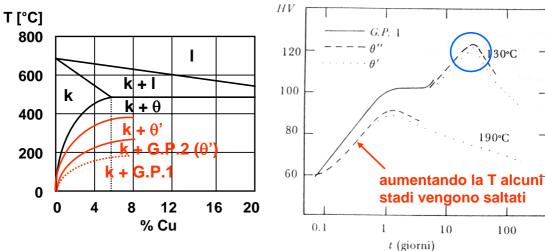
CORSO DI METALLURGIA A.A. 2004/2005

77

TRATTAMENTI TERMICI 1

per t più lunghi \Rightarrow le zone G.P.1 si trasformano nelle G.P.2, o θ ", ⇒ precipitati metastabili coerenti con la matrice ⇒ forte distorsione elastica locale del reticolo della matrice ⇒ aumento di durezza

per t ulteriormente più lunghi ⇒ le zone G.P.2 si trasformano nella fase θ ', semicoerente con la matrice \Rightarrow massimo di durezza e sua successiva diminuzione (precipitati in elevato numero e di piccole dimensioni, distribuiti all'interno dei grani)


per t ulteriormente più lunghi \Rightarrow le particelle θ ' sono i veri nuclei di cristallizzazione della fase di equilibrio θ , cioè dei precipitati CuAl₂ ⇒ precipitati incoerenti, in numero limitato e di dimensioni elevate (lega sovrainvecchiata - condizione da evitare) ⇒ ulteriore diminuzione di durezza

 $k_{sovrassatura} \Rightarrow k + G.P.1 \Rightarrow k + G.P.2 (\theta'') \Rightarrow k + \theta' \Rightarrow k + \theta$

La formazione di zone e di precipitati coerenti ha una grande importanza nei confronti delle proprietà meccaniche delle leghe perché rappresenta uno dei principali meccanismi di rafforzamento

CORSO DI METALLURGIA A.A. 2004/2005