Titanium and Titanium Alloys: Metallographic Techniques and Microstructures Rodney R. Boyer, Senior Research Engineer, Boeing Commercial Airplane Company

<Previous section in this article

Atlas of Microstructures for Titanium and Titanium Alloys

Fig. 2 High-purity (iodide-process) unalloyed titanium sheet, cold rolled, and annealed 1 h at 700 ° C (1290 °F). Equiaxed, recrystallized grains of α . Kroll's reagent (ASTM 192). 250 \times

Fig. 3 Commercial-purity unalloyed titanium, hydrogenated to 20 ppm H. Annealed 1 h at 850 °C (1560 °F), air cooled. TiH (black) in equiaxed grains of α . Kroll's reagent (ASTM 192). 250×

Fig. 4 Same as Fig. 3, except hydrogenated to 80 ppm H, producing a greater amount of TiH (black needles) at grain boundaries and in the α grains. Kroll's reagent (ASTM 192). 250 \times

Fig. 5 Same as **Fig. 3** and 4, except hydrogenated to 230 ppm H, producing needles of TiH (black) that are larger and more numerous than those shown in Fig. 3. Kroll's reagent (ASTM 192). 250×

Fig. 6 Commercial-purity (99.0%) unalloyed titanium sheet, as-rolled to 1.0 mm (0.040 in.) thick at 760 °C (1400 °F). Grains of α , which have been elongated by cold working. See also Fig. 7, 8, and 9. Kroll's reagent (ASTM 192). 250×

Fig. 7 Same as $Fig. 6$, but annealed 2 h at 700 °C (1290 °F) and air cooled. Recrystallized α grains; particles of TiH (black); and particles of β (also black) stabilized by impurities. Kroll's reagent (ASTM 192). 250×

Fig. 8 Same as $\underline{Fig. 6}$, but annealed 1 h at 900 °C (1650 °F)--just below the β transus--and air cooled. Recrystallized grains of "primary" α and transformed β containing acicular α Kroll's reagent

(ASTM 192). 250×

Fig. 9 Same as Fig. 6, but annealed 2 h at 1000 °C (1830 °F) and air cooled. Colonies of serrated α plates; particles of TiH and retained β (both black) between the plates of α . Kroll's reagent (ASTM 192). 250×

Fig. 10 Commercial-purity unalloyed titanium bar, annealed for 1 h at 705 °C (1300 °F). The structure consists of equiaxed α grains exhibiting same twin bands (parallel straight lines). 10 mL HF, 5 mL HNO₃, 85 mL H₂O. 250 \times

Fig. 11 Commercial-purity unalloyed titanium containing 0.14% C and 0.12% Fe. Annealed for 1 h at 1095 °C (2000 °F), water quenched. TiC particles (gray) in matrix of coarse, acicular α . Kroll's reagent (ASTM 192). 500×

Fig. 12 Ti-0.2Pd sheet, hot rolled with starting temperature of 760 °C (1400 °F), annealed for 2 h at 705 °C (1300 °F), and slowly cooled. Equiaxed grains of α ; iron-stabilized β (black dots). 2 mL HF, 10 mL HNO_3 , 88 mL $H₂O$. 250 \times

Fig. 13 Ti-8Al (with 1800 PPM O₂) sheet aged to precipitate the ordered α_2 phase. The dark-field transmission electron micrograph illustrates α_2 precipitates (light) in an α matrix. 105600×. (J.C. Williams)

Fig. 14 Ti-6Al-2Nb-1Ta-0.8Mo plate, hot rolled with starting temperature below the β transus of about 1000 °C (1830 °F), annealed for 30 min at 900 °C (1650 °F) and air cooled. Structure: slightly elongated α grains (light) and intergranular β (dark). 10 mL HF, 5 mL HNO₃, 85 mL H₂O. 100×

Fig. 15 Ti-6Al-2Nb-1Ta-0.8Mo plate, hot rolled with a starting temperature of 1150 °C (2100 °F), which is above the β transus. Structure: acicular α (light), intergranular β (dark), with boundaries of elongated β grains. 10 mL HF, 5 mL HNO $_3$, 85 mL H $_2$ O. 100 \times

Fig. 16 Ti-5Al-2.5Sn, forged with starting temperature of 1010 °C (1850 °F), which is below the β transus temperature, annealed for 1 h at 815 °C (1500 °F), and air cooled. Slightly elongated grains of "primary" α (light) in matrix of acicular α (mottled). Kroll's reagent (ASTM 192). 100×

Fig. 17 Ti-5Al-2.5Sn, hot worked below the α transus, annealed 30 min at 1175 °C (2150 °F), which is above the β transus, furnace cooled to 790 °C (1450 °F) in 6 h, and furnace cooled to room temperature in 2 h. Coarse, platelike α . See also Fig. 18 and 19. Kroll's reagent (ASTM 192). 100×

Fig. 18 Same as **Fig. 17**, but air cooled from the annealing temperature instead of furnace cooled. The faster cooling rate produced acicular α that is finer than the platelike α in Fig. 17. Prior- β grains are outlined by the α that was first to transform. Kroll's reagent (ASTM 192). 100 \times

Fig. 19 Same as **Fig. 17**, but water quenched from the annealing temperature instead of furnace cooled and shown at a higher magnification. The rapid cooling produced fine acicular α . A prior- β grain boundary can be seen near the center of the micrograph. Kroll's reagent (ASTM 192). 250×

Fig. 20 Stress-corrosion cracks (black) at the surface of a Ti-5Al-2.5Sn part. These transgranular cracks were caused by exposure to chlorides at 815 °C (1500 °F). Kroll's reagent (ASTM 192). 100×

Fig. 21 Strain-induced porosity near surface of a Ti-5Al-2.5Sn part. Pores (black), caused by severe forming, in equiaxed grains of α (few grain boundaries show). Kroll's reagent (ASTM 192). 100 \times

Sto caricando "ASM Handbooks Online" 31/05/2005 10:41 AM

Fig. 22 Lap, or fold, in the surface of a Ti-5Al-2.5Sn forging. Oxide (gray) on the surface and in the cracks of the white, brittle layer (case) of oxygen-stabilized α . Kroll's reagent (ASTM 192). 100 \times

Fig. 23 Ti-8Al-1Mo-1V, forged with a starting temperature of 900 °C (1650 °F), which is below the normal temperature range for forging this alloy. Structure: equiaxed α grains (light) in a matrix of transformed β (dark). See also Fig. 24 and 25. Kroll's reagent (ASTM 192). 250 \times

Fig. 24 Same as Fig. 23, but forged with starting temperature of 1005 °C (1840 °F), which is within the normal range, and air cooled. Equiaxed grains of "primary" α (light) in a matrix of transformed β (dark) containing fine acicular α . See also Fig. 25. Kroll's reagent (ASTM 192). 250×

Fig. 25 Same as **Fig. 23**, except the starting temperature for forging was 1095 °C (2000 °F), which is above the β -transus temperature, and the finished forging was rapidly air cooled. The structure consists of transformed β containing coarse and fine acicular α (light). Kroll's reagent (ASTM 192). 250×

Fig. 26 Ti-8Al-1Mo-1V sheet, duplex annealed by holding 8 h at 760 °C (1400 °F), furnace cooling to room temperature, holding 20 min at 790 °C (1450 °F), and air cooling. Equiaxed α grains and outlined intergranular β . 2 mL HF, 8 mL HNO₃, 90 mL H₂O. 850×

Fig. 27 Ti-8Al-1Mo-1V forging, solution treated 1 h at 1010 °C (1850 °F), oil quenched, aged 8 h at 595 °C (1100 °F), and air cooled. Structure: same as shown in Fig. 24 (effect of the aging treatment is not resolvable at this magnification). Kroll's reagent (ASTM 192). 100×

Fig. 28 Ti-8Al-1Mo-1V, as-forged. Ingot void (black), surrounded by a layer of oxygen-stabilized α (light). The remaining structure consists of elongated α grains in a dark matrix of transformed β . Kroll's reagent (ASTM 192). 25×

Fig. 29 Ti-8Al-1Mo-1V sheet, solution treated 10 min at 1010 °C (1850 °F), air cooled, aged 20 min at 745 °C (1375 °F), then exposed to cadmium plate (top) for 1000 h at 260 °C (500 °F) while stressed at 620 MPa (90 ksi). Intergranular stress-corrosion cracks. 2 mL HF, 8 mL HNO₃, 90 mL H₂O. 200 \times

Fig. 30 Ti-8Al-1Mo-1V sheet, annealed for 8 h at 790 °C (1450 °F) and furnace cooled. Transgranular stress-corrosion cracks, which occurred in a salt-water environment. The microstructure consists of equiaxed grains of α and small, outlined particles of β . Kroll's reagent (ASTM 192). 500×

Fig. 31 Ti-6Al-5Zr-0.5Mo-0.5Si, forged with a starting temperature of 1040 °C (1900 °F), solution treated 1 h at 980 °C (11800 °F), oil quenched, aged 24 h at 495 °C (920 °F), and air cooled. Structure: slightly elongated light α grains in a dark matrix of transformed β . Kroll's reagent (ASTM 192). 100×

Fig. 32 Ti-6Al-2Sn-4Zr-2Mo forged ingot, held 1 h at 1010 °C (1850 °F), air cooled, heated to 970 °C (1775 °F), and immediately air cooled. Acicular α (transformed β); prior β grain boundaries. See also Fig. 33. Kroll's reagent (ASTM 192). 100×

Fig. 33 Same as Fig. 32, but reduced 15% by upset forging while at 970 °C (1775 °F). The structure consists of slightly deformed acicular α (transformed β); boundaries of elongated prior- β grains. Kroll's reagent (ASTM 192). 100×

Fig. 34 Ti-5Al-6Sn-2Zr-1Mo-2.5Si, reduced 75% by upset forging starting at 980 °C (1800 °F), annealed 1 h at 980 °C (1800 °F), air cooled, and stabilized 2 h at 595 °C (1100 °F). Fine α grains (light); intergranular β . See also Fig. 35. HF, HNO₃, HCl, glycerol (ASTM 193). 100×

http://products.asminternational.org/hbk/index.jsp Pagina 10 di 39

Fig. 35 Same as Fig. 34, except upset forged starting at 1150 °C (2100 °F), which is above the β transus temperature. Distorted acicular α (light constituent); intergranular β ; and boundaries of elongated prior- β grains. HF, HNO₃, HCl, glycerol (ASTM 193). 100×

Fig. 36 Ti-6Al-2Sn-4Zr-2Mo α - β forged billet macroslice illustrating "tree rings," which represent minor compositional fluctuations. The slices are from two ingot locations. Etchant not known. 0.63×. (W. Reinsch)

[graphic] **Fig. 39** Held at 980 °C (1800 °F). A few small "primary" α grains (light) in a matrix of α ' (martensite) [graphic]

Fig. 40 Held at 995 °C (1825 °F), the β -transus temperature. The microstructure consists entirely of α' .

Ti-6Al-25n-4Zr-2Mo forgings, finish forged starting at 970 °C (775 °F), air cooled, machined to 13 mm (0.5-in.) diam test bars, reheated to the four temperatures indicated, held for 1 h, and air cooled. All etched with Kroll's reagent (ASTM 192). 100×

Fig. 41 Ti-7Al-2Mo-1V plate, solution treated at 995 °C (1825 °F), which is below the β transus. A replica electron micrograph. Structure: equiaxed α , acicular α and β (outlined). 2 mL HF, 8 mL HNO₃, 90 mL H₂O. 3000 \times

Sto caricando "ASM Handbooks Online" 31/05/2005 10:41 AM

Fig. 42 Ti-7Al-2Mo-IV plate, heated to 1010 °C (1850 °F), which is above the β transus. Surface layer of white, oxygen-stabilized α (α case); the remainder of the structure is acicular (transformed β). 2 mL HF, 8 mL HNO₃, 90 mL H₂O. 450×

Fig. 43 Ti-6Al-5Zr-4Mo-lCu-O.2Si, as-cast. Microstructure: transformed β containing acicular α (light platelets). A thin film of α phase (light) is evident at the prior- β grain boundaries. See Fig. $\frac{44}{10}$ for effects of solution treating. 10 mL HF, 30 mL HNO₃, 50 mL H₂O (ASTM 187). 500×

Fig. 44 Same as Fig. 43, but solution treated 1 h in argon at 845 °C (1550 °F), air cooled, and aged 24 h at 500 °C (930 °F). Acicular α (light) and aged β ; α platelets at prior- β grain boundaries. 10 mL HF, 30 mL HNO₃, 50 mL H₂O (ASTM 187). 500 \times

Fig. 45 Ti-6Al-5Zr-4Mo-1Cu-0.2Si forging, annealed 2 h at 705 °C (1300 °F), and air cooled. The structure consists of slightly elongated grains of α (light) and transformed β (dark) containing some acicular α . 10 mL HF, 30 mL HNO₃, 50 mL H₂O (ASTM 187). 500 \times

Fig. 46 Ti-6Al-4V, as-cast. The structure consists of transformed β containing acicular α ; α is at prior- β grain boundaries. Keller's reagent. 100 \times

Fig. 47 Ti-6Al-4V sheet, rolled starting at 925 °C (1700 °F), annealed for 8 h at 730 °C (1350 °F), and furnace cooled. Structure consists of slightly elongated grains of α (light) and intergranular β (gray). See also Fig. 48. 2 mL HF, 10 mL HNO₃, 88 mL H₂O. 250 \times

Fig. 48 Ti-6Al-4V plate, rolled starting at 900 °C (1650 °F), annealed for 1 h at 720 °C (1325 °F), and air cooled. The structure consists of elongated α grains (light) in a matrix of transformed β . See also Fig. 47 and 49. 2 mL HF, 10 mL HNO₃, 88 mL H₂O. 250 \times

Fig. 49 Same alloy and processing as in Fig. 48, but a specimen taken from an area of the plate that shows more banding of the structure, which consists of elongated grains of α (light) in a matrix of transformed β . 2 mL HF, 10 mL HNO₃, 88 mL H₂O. 250×

Fig. 50 Ti-6Al-4V plate, recrystallize-annealed at 925 °C (1700 °F) 1 h, cooled to 760 °C (1400 °F) at 50 to 55 °C/h (90 to 100 °F/h), then air cooled. Equiaxed α with intergranular β . The α - α boundaries are not defined. 50 mL oxalic acid in H₂O, 50 mL 1% HF in H₂O. 500×. (J.C. Chesnutt)

Fig. 51 Ti-6Al-4V plate diffusion-bonded joint (bonded at 925 °C, or 1700 °F) illustrating bond-line contamination. The white horizontal band is an area of O₂ and/or N₂ enrichment. An α case is also observable on the exterior surface. 50 mL H₂O, 50 mL 10% oxalic acid, 1 mL HF. 58 \times . (J.C. Chesnutt)

Fig. 52 Ti-6Al-4V extrusion, heated for 30 min at 1010 °C (1850 °F), air cooled, then heated for 1 h at 675 °C (1250 °F), and air cooled. Structure: acicular α (transformed β); α at prior- β grain boundaries. 2 mL HF, 8 mL HNO₃, 90 mL H₂O. 200 \times

Fig. 53 Ti-6Al-4V bar, 25 mm (1 in.) diam, annealed 2 h at 705 °C (1300 °F), and air cooled. Elongated grains of α (light) and intergranular β (mottled or outlined). See also Fig. 54, 55, 56, 57, 58, and 59. 2 mL HF, 8 mL HNO₃, 90 mL H₂O. 200 \times

Fig. 54 Ti-6Al-4V bar, held for 1 h at 955 °C (1750 °F), below the β transus, and furnace cooled. Equiaxed α grains (light); intergranular β (dark). See also <u>Fig. 55</u> and <u>56</u>. 10 mL HF, 5 mL HNO₃, 85 mL H₂O. 250×

Fig. 55 Same as $Fig. 54$, but air cooled instead of furnace cooled. Grains of "Primary" α (light) in a matrix of transformed $\overline{\beta}$ containing acicular α . See also Fig. 56. 10 mL HF, 5 mL HNO₃, 85 mL H₂O. 250×

Fig. 56 Same as $Fig. 54$, but water quenched instead of furnace cooled. Equiaxed "Primary" α grains (light) in a matrix of α' (martensite). See also Fig. 57, 58, and 59. 10 mL HF, 5 mL HNO₃, 85 mL H₂O. 250×

Fig. 57 Ti-6Al-4V, thin foil transmission electron micrograph illustrating same microstructure as in Fig. 56, but at higher magnification. The large light grains are primary α ; the darker region is acicular α' martensite in a β matrix. 5880×. (J.C. Williams)

Fig. 58 Ti-6Al-4V bar, held for 1 h at 1065 °C (1950 °F), above the β transus, and furnace cooled. Platelike α (light) and intergranular β (dark). See also Fig. 59. 10 mL HF, 5mL HNO₃, 85 mL H₂O. 250×

Fig. 59 Same as Fig. 58, but air cooled instead of furnace cooled. The structure consists of acicular (transformed β); prior- β grain boundaries. 10 mL HF, 5 mL HNO₃, 85 mL H₂O. 250×

Fig. 60 Ti-6Al-4V, as-forged at 955 °C (1750 °F), below the β transus. Elongated α (light), caused by low reduction (20%) of a billet that had coarse, platelike α , in a matrix of transformed β containing acicular α . Kroll's reagent (ASTM 192). 250×

Fig. 61 Ti-6Al-4V forging, annealed for 2 h at 705 °C (1300 °F), and air cooled. The structure consists of equiaxed grains of α (light) and intergranular β (dark or outlined). See also Fig. 62 and 63. Keller's reagent. 250×

Fig. 62 Ti-6Al-4V, forged at 815 °C (1500 °F), annealed 2 h at 705 °C (1300 °F), and air cooled. Thin-foil transmission electron micrograph. Structure: equiaxed α containing dislocations; some intergranular β . See also Fig. 63. 23,000 \times

Fig. 63 Ti-6Al-4V, forged at 955 °C (1750 °F), annealed 2 h at 705 °C (1300 °F), and air cooled. A thin-foil electron micrograph, showing equiaxed α in matrix of alternate β (dark) and acicular α (light). See also $Fig. 62. 4500 \times$

Fig. 64 Ti-6Al-4V press forging, reduced 50% at 1040 °C (1900 °F), above the β transus, then right of the state of transus, annealed 2 h at 705 °C (1300 °F), reduced 5% more at 970 °C (1775 °F), below the β transus, annealed 2 h at 705 °C (1300 °F), and air cooled. Slightly distorted, coarse, platelike α grains (light) and intergranular β phase (dark). See also Fig. 65 and 66. 2 mL HF, 8 mL HNO₃, 90 mL H₂O. 200 \times

Fig. 65 Same as Fig. 64, except reduced 21% at 970 °C (1775 °F). The structure is similar to Fig. 64, but the higher reduction below the β -transus temperature has resulted in some breakup of the coarse, platelike α grains that were still present after forging above the β transus. See also Fig. 66. 2 mL HF, 8 mL HNO₃, 90 mL H₂O. 200 \times

Fig. 66 Same as Fig. 64 and 65, except reduced 47% at 970 °C (1775 °F). The structure is similar to <u>Fig. 65</u>, but the still higher reduction below the β -transus temperature has resulted in elongated grains of α (complete breakup of the coarse, platelike α grains that were present after forging above the β transus). 2 mL HF, 8 mL HNO₃, 90 mL H₂O. 200×

Fig. 67 Ti-6Al-4V, forged at 1040 °C (1900 °F), which is above the β transus, air cooled, annealed 2 h at 705 °C (1300 °F), and air cooled. Thin-foil transmission electron micrograph illustrates alternate layers of light, platelike α grains and dark intergranular β . 8500 \times

Fig. 68 Ti-6Al-4V forging solution treated 1 h at 955 °C (1750 °F), air cooled, and annealed 2 h at 705 °C (1300 °F). Equiaxed α grains (light) in transformed β matrix (dark) containing coarse, acicular α . See also Fig. 69. Kroll's reagent (ASTM 192). 500 \times

Fig. 69 Same as **Fig. 68**, except water quenched from the solution treatment (before the anneal) instead of air cooled. Structure is similar to Fig. 68, but the faster cooling resulted in finer acicular α in the transformed β . Kroll's reagent (ASTM 192). 500 \times

[graphic]

Fig. 70 Large oxide inclusion (gray band) in a Ti-6Al-4V forging that was annealed 2 h at 705 °C (1300 °F) and air cooled. Structure: grains of α (light) in a matrix of transformed β containing acicular α . Keller's reagent. 500 \times

Fig. 71 Transgranular stress-corrosion cracks in a Ti-6Al-4V forging annealed same as Fig. 70. The cracks resulted from fingerprint contamination followed by bending and stress relieving for 1 h at 540 °C (1000 °F). Keller's reagent. 250×

Fig. 72 Fusion zone of a gas tungsten arc weld in a Ti-6Al-4V forging showing transgranular stresscorrosion cracks caused by contamination with soap before the weld was stress relieved for 1 h at 540 °C (1000 °F). Keller's reagent. 500×

[graphic]

Fig. 73 Gas tungsten arc butt weld joining Ti-6Al-4V forgings that had been solution treated for 1 h at 955 °C (1750 °F), water quenched, aged 4 h at 540 °C (1000 °F), and air cooled. The forgings were welded using extra-low-interstitial unalloyed titanium filler metal, and the finished weldment was stress relieved for 1 h at 540 °C (1000 °F) and air cooled. See Fig. 74, 75, and 76 for details of the adjacent base metal, the weld bead, and the heat-affected zone. Keller's reagent. 8×

Fig. 74 Section of the base metal adjacent to the gas tungsten arc butt weld shown in Fig. 73. The structure consists of grains of "primary" α (light) in a matrix of transformed β containing acicular α . Keller's reagent. 250×

Fig. 75 Bead of the weld shown in **Fig. 73**. Structure: serrated α (outlined), acicular α (light), and a small amount of β (dark). See also Fig. 74 and 76. Keller's reagent. 250 \times

[graphic]

Fig. 76 Heat-affected zone of the weld shown in Fig. 73. Serrated α (outlined) and transformed β containing acicular α . See also Fig. 74 and 75. Keller's reagent. 250 \times

Fig. 77 Gas tungsten arc weld, which had been stress relieved 1 h at 540 °C (1000 °F), in a Ti-6Al-4V forging, showing needles of titanium hydride at the edge of the fusion zone. 10 mL HF, 30 mL HNO₃, 50 mL H₂O (ASTM 187), then light polish. $100 \times$

Fig. 78 Ti-6Al-4V α - β processed billet illustrating macroscopic appearance of a high interstitial defect. See also Fig. 79. Actual size

Fig. 79 Same as Fig. 78. The high oxygen content results in a region of coarser and more brittle oxygen-stabilized α than observed in the bulk material. 100 \times

Fig. 80 Ti-6Al-4V α - β processed billet illustrating the macroscopic appearance of a high aluminum defect. See also Fig. 81. 1.25×. (C. Scholl)

Fig. 81 Same as Fig. 80. There is a higher volume fraction of more elongated α in the area of high aluminum content. 50×. (C. Scholl)

Fig. 82 Ti-6Al-4V alloy. A replica electron fractograph. Cleavage facets typical of salt-water stresscorrosion cracking. Cleavage occurs in the α phase. 6500 \times

Fig. 83 Ti-6Al-4V β -annealed fatigued plate specimen. Scanning electron micrograph at the polished and etched/unetched fracture topography interface showing microstructure/fracture topography

correlation. Secondary cracks are a result of intense slip bands. Kroll's reagent. 2000×. (R. Boyer)

Fig. 84 Same as Fig. 83. This scanning electron micrograph illustrates that the "furrows" or "troughs" down which the striations propagate are defined by the lamellar α plates. These furrows link up as the crack progresses. Kroll's reagent. 2000×. (R. Boyer)

[graphic]

Fig. 86

Ti-6Al-4V powder metallurgy compact, hot isostatically pressed at 925 °C (1700 °F), 103 MPa (15 ksi), for 2 h. This fatigue specimen had an internal origin at point A, which initiated at an iron inclusion, as determined in $Fig. 86$ by precision sectioning. The cleavage zone at point C in $Fig. 85$ is due to the TiFe₂ zone seen at point C in Fig. 86. Below the TiFe₂, the structure consists of transformed Widmanstätten α . The section (Fig. 86) was taken at line B in Fig. 85. Fig. 85: scanning electron micrograph. No etch. 80×. Fig. 86: optical micrograph. Kroll's reagent. 16×. (D. Eylon)

Fig. 87 Ti-6Al-2Sn-4Zr-6Mo, 100-mm (4-in.) thick forged billet, annealed 2 h at 730 °C (1350 °F). The microstructure consists of a matrix of transformed β (dark) containing various sizes of a grains (light), which are elongated in the direction of working. 2 mL HF, 8 mL HNO₃, 90 mL H₂O. 200 \times

Fig. 88 Ti-6Al-2Sn-4Zr-6Mo, forged at 870 °C (1600 °F), solution treated 2 h at 870 °C (1600 °F), water quenched, and aged 8 h at 595 °C (1100 °F), and air cooled. Elongated "primary" α grains (light) in aged transformed β matrix containing acicular α . See also Fig. 89, 90, 91, and 92. Kroll's reagent (ASTM 192). 500×

Fig. 89 Ti-6Al-2Sn-4Zr-6Mo bar, forged at 870 °C (1600 °F), solution treated 1 h at 870 °C (1600 ° F), water quenched, and aged 8 h at 595 °C (1100 F). The structure is similar to that in Fig. 88, except that, as the result of water quenching, no acicular α is visible. 2 mL HF, 10 mL HNO₃, 88 mL H₂O. 250 \times

Fig. 90 Same as Fig. 88, except solution treated at 915 °C (1675 °F) instead of at 870 °C (1600 ° F), which reduced the amount of "primary" α grains in the $\alpha + \beta$ matrix. See also Fig. 91 and 92. Kroll's reagent (ASTM 192). 500×

Fig. 91 Same as Fig. 90, except solution treated at 930 °C (1710 °F) instead of at 915 °C (1675 ° F), which reduced the amount of α grains and coarsened the acicular α in the matrix. See also Fig. 92. Kroll's reagent (ASTM 192). 500×

Fig. 92 Same as Fig. 90 and 91, but solution treated at 955 °C (1750 °F), which is above the β transus. The resulting structure is coarse, acicular α (light) and aged transformed β (dark). Kroll's reagent (ASTM 192). 500×

Fig. 93 Ti-6Al-2Sn-AZr-6Mo forging, solution treated 2 h at 955 °C (1750 °F), above the β transus, and quenched in water. The structure consists entirely of α' (martensite). Kroll's reagent (ASTM 192). 500×

Fig. 94 Ti-6Al-6V-2Sn as-extruded, 8 mm ($\frac{1}{16}$ -in.) thick. The microstructure consists of transformed β containing acicular α ; light α is also evident at the prior- β grain boundaries. 2 mL HF, 8 mL HNO $_3$, 90 mL H $_2$ O. 200 \times

Fig. 95 Ti-6Al-6V-2Sn billet, 100 mm (4 in.) thick, forged below the β transus of 945 °C (1730 °F), annealed 2 h at 705 °C (1300 °F), and air cooled. Light α in transformed β matrix containing acicular α . 2 mL HF, 8 mL HNO₃, 90 mL H₂O. 200×

[graphic]

Fig. 96 Ti-6Al-6V-2Sn hand forging, forged at 925 °C (1700 °F), solution treated for 2 h at 870 °C (1600 °F), water quenched, aged 4 h at 595 °C (1100 °F), and air cooled. Structure: "primary" grains (light) in a matrix of transformed β containing acicular α . Kroll's reagent (ASTM 192). 150×

Fig. 97 Ti-6Al-6V-2Sn forging, solution treated, quenched, and aged same as in Fig. 96. The structure is the same as in Fig. 96, except that alloy segregation has resulted in a dark " β fleck" (center of micrograph) that shows no light "primary" α . See also Fig. 98 and 102. Kroll's reagent (ASTM 192). 75×

Fig. 98 Ti-6Al-6V-2Sn forging, solution treated for 1 $\frac{1}{4}$ h at 870 °C (1600 °F), water quenched, and aged 4 h at 575 °C (1070 °F). Structure: same as in Fig. 97, but higher magnification shows a small amount of light, acicular α in the dark " β fleck." See also <u>Fig. 102</u>. 2 mL HF, 8 mL HNO₃, 90 mL H₂O. $200 \times$

Sto caricando "ASM Handbooks Online" 31/05/2005 10:41 AM

Fig. 99 Ti-6Al-4V-2Sn alloy; fracture surface of a tension-test bar showing a shiny area of alloy segregation that caused low ductility. See also Fig. 100 and 101. Not polished, Kroll's reagent (ASTM 192). 10×

Fig. 100 Same as Fig. 99, except a section normal to the fracture surface, polished down to a stringer of boride compound (light needle) in the area of segregation. See also Fig. 101. Polished, Kroll's reagent (ASTM 192). 400×

Fig. 101 Same as Fig. 99, except a replica transmission electron fractograph of the etched surface, which shows the stringer of boride compound as parallel platelets. Not polished, Kroll's reagent (ASTM 192). 1500×

Fig. 102 Ti-6Al-6V-2Sn α + β forged billet illustrating macroscopic appearance of β flecks that appear as dark spots. See also <u>Fig. 97</u> and <u>98</u>. 8 mL HF, 10 mL HF, 82 mL H₂O, then 18 g/L (2.4 oz/gal) of NH_4HF_2 in H₂O. Less than 1×. (C. Scholl)

Fig. 103 Ti-3Al-2.5V tube, vacuum annealed for 2 h at 760 °C (1400 °F). Structure is equiaxed grains of α (light) and small, spheroidal grains of β (outlined). See also Fig. 104. 10 mL HF, 5 mL $HNO₃$, 85 mL $H₂O$. 500 \times

Fig. 104 Ti-3Al-2.5V tube that was cold drawn, then stress relieved for 1 h at 425 °C (800 °F). Yield strength, 724 MPa (105 ksi); elongation, 15%. Elongated α grains; intergranular β . Kroll's reagent (ASTM 192). 500×

Fig. 105 Ti-11.5Mo-6Zr-4.5Sn sheet, 2 mm (0.080 in.) thick, solution treated 2 h at 760 °C (1400 ^oF), and water quenched. Elongated grains of β (light) containing some α (outlined or dark). See also Fig. 106. Kroll's reagent. 150×

Fig. 106 Same as Fig. 105, except aged for 8 h at 565 °C (1050 °F) after the water quench following solution treating. Most of the β shown in Fig. 105 has changed to dark α ; some β phase (light) has been retained. Kroll's reagent. 150×

Fig. 107 Ti-5Al-2Sn-2Zr-4Cr-4Mo (Ti-17) β -processed forging with heat treatment at 800 °C (1475 °F), 4 h, water quench, + 620 °C (1150 °F). Consists of lamellar α structure in a β matrix with some grain-boundary α . 95 mL H₂O, 4 mL HNO₃, 1 mL HF. 100×. (T. Redden)

Fig. 108 Same as *Fig. 107*, but a higher magnification better illustrating lamellar α structure in an aged β matrix. Acicular secondary α due to aging not resolvable at this magnification. 95 mL H₂O, 4 mL HNO3, 1 mL HF. 500×. (T. Redden)

Fig. 109 Ti-3Al-8V-6Cr-4Zr-4Mo rod, solution treated 15 min at 815 °C (1500 °F), air cooled, and aged 6 h at 565 °C (1050 °F). Precipitated α (dark) in β grains. 30 mL H₂O₂, 3 drops HF. 250×.

Fig. 110 Ti-3Al-8V-6Cr-4Zr-4Mo rod, cold drawn, solution treated 30 min at 815 °C (1500 °F), and aged 6 h at 675 °C (1250 °F). Precipitated α (dark) in grains of β . Kroll's reagent (ASTM 192). 250×

Fig. 111 Ti-13V-11Cr-3Al sheet, rolled starting at 790 °C (1450 °F), solution treated 10 min at 790 °C (1450 °F), air cooled. Equiaxed grains of metastable β . See also Fig. 112. 2 mL HF, 10 mL HNO₃, 88 mL H₂O. 250 \times .

Fig. 112 Same as Fig. 111, except aged for 48 h at 480 °C (900 °F) after solution treating and air cooling. Structure: dark particles of precipitated α in β grains. 2 mL HF, 10 mL HNO₃, 88 mL H₂O. 250×.

[graphic]

Fig. 113 Ti-8.5Mo-0.5Si water quenched from 1000 °C (1830 °F), Thin-foil transmission electron micrograph illustrating heavily twinned athermal α'' martensite. 5000× . (J.C. Williams)

Fig. 114 Ti-10V-2Fe-3Al pancake forging, β forged about 50% + α - β finish forged about 5%, with heat treatment at 750 °C (1385 °F), 1 h, water quench, + 540 °C (1000 °F), 8 h. Lamellor α with a small amount of equiaxed α in an aged β matrix. 10 s with Kroll's reagent, then 50 mL of 10% oxalic acid, 50 mL of 0.5% HF. 400×. (R. Boyer)

Fig. 115 Same as Fig. 114, but amount of $\alpha + \beta$ finish forging is 2%. Micrograph illustrates darkened aged β surrounding a lighter etched β fleck. See also Fig. 116. Same etch as Fig. 114. 50×. (T. Long)

Fig. 116 Same as $Fig. 115$, but at higher magnification to demonstrate the reduced amount of α in the β fleck. The α observed (light) is primary α ; the α that forms upon aging is too fine to resolve. Same etch as Fig. 114. 200×. (T. Long)

[graphic]

Fig. 117 A titanium-iron binary alloy, β solution treated, water quenched, and aged to form ω . The is the light precipitate in this thin-foil transmission electron micrograph. In alloys where the

has a high lattice misfit, the ω is cuboidal to minimize elastic strain in the matrix. 320,000 \times . (J.C. Williams)

[graphic]

Fig. 120

Fig. 121

[graphic]

[graphic]

Fig. 122

Fig. 123

Ti-15V-3Cr-3Al-3Sn cold-rolled strip that has been annealed at 790 °C (1450 °F) for 10 min and aged at various times to illustrate the progression of aging and what is termed "decorative aging," a technique used to determine the extent of recrystallization. Equiaxed β grains are observed in Fig. 120, which was not aged. Fig. 121 has been aged 2 h at 540 °C (1000 °F) and shows dark aciculor α that forms upon aging. Grains in center are completely aged (uniform α precipitation throughout the grains), which means they were not recrystallized (had more stored energy), resulting in rapid aging. Fig. 122 and 123 carry the progression further with 4- and 8-h aging, respectively. An 8-h age results in a fully aged structure. All etched with Kroll's reagent. All 200×. (P. Bania)

Fig. 124 Ti-40 at.% Nb, β solution heat treated at 900 °C (1650 °F), water quenched, then aged at 400 °C (750 °F) for 24 h. The dark precipitate is β ' (solute-lean β phase) in a solute-enriched matrix. Thin-foil transmission electron micrograph. 31,000×. (J.C. Williams)

Fig. 125 Ti-10V-2Fe-3Al, β solution treated, water quenched, and strained 5% at room temperature. This Nomarski interference micrograph illustrates deformation-induced α " martensite in a β matrix. No etch. 500×. (J.E. Costa)

Copyright © 2002 ASM International®. All Rights Reserved.

<Previous section in this article