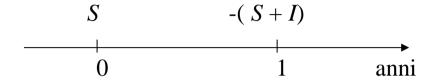
INTRODUZIONE ALLE LEGGI FINANZIARIE

Operazione finanziaria su due date:



Legge di equivalenza intertemporale introdotta dal contratto finanziario:

$$\begin{cases} W(0) = S \\ W(1) = S + I \end{cases}$$
 $W(t), t \in \{0,1\}, \grave{e} \text{ detta funzione valore}$

$$W(1) - W(0)$$
 è l'interesse

$$i = \frac{W(1) - W(0)}{W(0)}$$
 è il tasso annuo di interesse

$$d = \frac{W(1) - W(0)}{W(1)}$$
 è il tasso annuo di sconto

Introduzione alle leggi finanziarie

Acquisto di un titolo a cedola nulla

Legge di equivalenza intertemporale introdotta dal contratto finanziario:

$$\begin{cases} W(t) = P \\ W(s) = C \end{cases}$$

 $W(t), t \in \{t, s\},$ è la funzione valore

$$W(s) - W(t) = C - P$$

è l'interesse relativo all'intervallo [t, s]

$$j(t,s) = \frac{W(s) - W(t)}{W(t)} = \frac{C - P}{P}$$

è il tasso di interesse relativo all'intervallo [t, s]

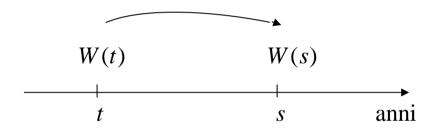
$$\frac{W(s) - W(t)}{W(s)}$$

è il tasso di sconto relativo all'intervallo [t, s]

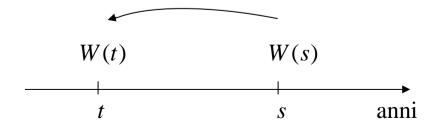
Nella pratica, per costruire operazioni finanziarie, si introducono delle funzioni valore che consentono di esprimere l'interesse in funzione della durata dell'operazione.

$$j(t,s) = \frac{W(s)}{W(t)} - 1$$

$$\Rightarrow$$
 $W(s) = W(t)[1 + j(t,s)]$



$$\Rightarrow$$
 $W(t) = W(s)[1 + j(t,s)]^{-1}$



LEGGI FINANZIARIE

Nella pratica molte operazioni finanziarie sono regolate secondo delle funzioni, **leggi finanziarie**, che dipendono dalla <u>durata</u> dell'operazione e da un parametro, tipicamente il <u>tasso annuo d'interesse</u>.

Consideriamo una operazione finanziaria elementare in cui l'importo C esigibile in t_0 viene scambiato con l'importo M esigibile in t_1 .

Dal punto di vista dell'investitore si ha <u>l'operazione di investimento</u> o di **capitalizzazione**

C capitale investito

M montante in t_1 di C esigibile in t_0

L'importo C esigibile in t_0 è capitalizzato nell'istante t_1 . Si dice che C è "portato avanti" nel tempo in quanto si trasforma una disponibilità immediata (C) in una disponibilità futura (M).

Leggi finanziarie

Dal punto di vista del debitore si ha l'operazione di finanziamento o di attualizzazione

$$+C$$
 $-M$ $-M$ con $t = t_1 - t_0$ la durata in anni t_0 t_1

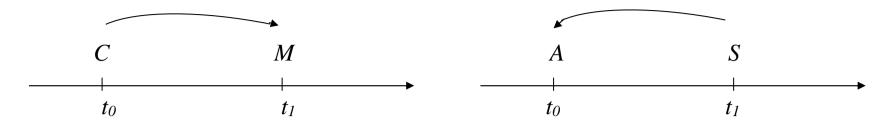
Si ottiene una disponibilità immediata (C) rinunciando ad una disponibilità futura (M). Si dice che l'importo M esigibile in t_1 è attualizzato ("portato indietro" nel tempo) nell'istante t_0 .

In generale, in una operazione di attualizzazione, un importo S disponibile in un istante futuro è attualizzato in un istante precedente.

$$A$$
 S $Con $t = t_1 - t_0$ la durata in anni t_0 $t_1$$

- S valore nominale o valore a scadenza
- A valore attuale in t_0 di S esigibile in t_1

Leggi finanziarie



Definizioni

Si definisce fattore di capitalizzazione o fattore di montante $f = \frac{M}{C}$

$$\Rightarrow$$
 $M = C \cdot f$

Si definisce fattore di attualizzazione o fattore di sconto $\varphi = \frac{A}{S}$

$$\Rightarrow$$
 $A = S \cdot \varphi$

Nell'operazione di capitalizzazione si definiscono gli **interessi** I = M - C

Nell'operazione di attualizzazione si definisce lo **sconto** D = S - A

Si ha

$$I = M - C = C \cdot f - C = C(f - 1)$$
 dove $f - 1$ è il tasso di interesse

$$D = S - A = S - S \cdot \varphi = S(1 - \varphi)$$
 dove $1 - \varphi$ è il tasso di sconto

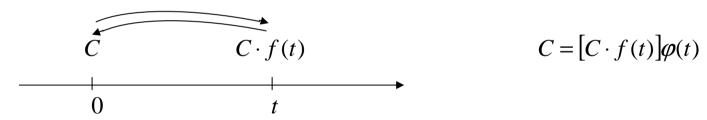
Leggi finanziarie

Per costruire contratti finanziari si introducono delle funzioni che consentono, per esempio, di esprimere il fattore di capitalizzazione in dipendenza della durata t dell'operazione di investimento e di un parametro α che esprime il "costo del finanziamento"

$$f(t, \alpha)$$

Fissato il parametro α la funzione dipende dalla sola durata t: f(t)

Fissata una <u>funzione di capitalizzazione</u> f(t), $t \ge 0$, rimane individuata la corrispondente funzione di attualizzazione $\varphi(t)$, $t \ge 0$, tale che



cioè, tale che,
$$f(t) \cdot \varphi(t) = 1$$
 \Rightarrow $\varphi(t) = \frac{1}{f(t)}$

Se $f(t) \cdot \varphi(t) = 1$, $\forall t \ge 0$, si dice che $\varphi(t)$ è il **fattore coniugato** di f(t) e viceversa.

Vedremo tre funzioni $f(t,\alpha)$ che definiscono altrettanti **regimi finanziari**. Fissato il parametro α rimane individuata una **legge finanziaria**.

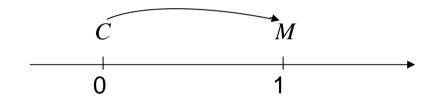
DEFINIZIONI FONDAMENTALI

Siano

 $f(t), t \ge 0$, una legge di capitalizzazione

 $\varphi(t)$, $t \ge 0$, la legge di attualizzazione associata, cioè tale che $f(t) \cdot \varphi(t) = 1$

Consideriamo una operazione finanziaria con durata unitaria (1 anno)



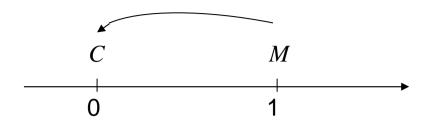
Si definisce

I = M - C interesse

 $i = \frac{I}{C}$ tasso annuo di interesse

 $u = \frac{M}{C} = 1 + i = f(1)$ fattore di capitalizzazione annuo

Definizioni fondamentali



Si definisce

$$D=M-C$$
 sconto
$$d=\frac{D}{M}$$
 tasso annuo di sconto
$$v=\frac{C}{M}=\frac{1}{1+i}=\frac{1}{f(1)}=\varphi(1)$$
 fattore di attualizzazione annuo

Osservazione

$$d = \frac{D}{M} = 1 - v = \frac{i}{1+i} = i \cdot v$$

è detto tasso di interesse anticipato.

Si ha d < i