
I SISTEMI GASSOSI

TABELLA 12-2	Composizione
	dell'aria secca

Gas	% in volume		
N_2	78.09		
O_2	20.94		
Ar	0.93		
CO ₂	0.03*		
He, Ne, Kr, Xe	0.002		
CH_4	0.00015*		
H_2	0.00005		
Altri [†]	< 0.00004		

^{*} Variabile.

si espande ⇒ le molecole non interagiscono tra loro si comprime ⇒ spazi vuoti tra le molecole occupa qualsiasi volume ⇒ le molecole si muovono

velocemente

[†]L'umidità atmosferica varia molto.

I SISTEMI GASSOSI

La teoria cinetica dei gas

I gas sono costituiti da particelle puntiformi, cioè particelle che non hanno volume proprio;

Le molecole di gas si muovono in modo rapido, continuo e caotico, subiscono frequenti collisioni (urti) tra di loro e con le pareti del recipiente;

Gli urti sono elastici;

L'energia cinetica media delle particelle è proporzionale alla temperatura del gas. Tutti i gas, indipendentemente dalla loro massa molare, alla stessa temperatura hanno la stessa energia cinetica media, data dall'equazione:

$$E_c = \frac{3}{2} \text{ KT}$$

$$K = \frac{R}{N_A}$$
costante di Boltzmann

LA PRESSIONE

La pressione:

MICROSCOPICO:

è il risultato degli urti delle particelle di gas con le pareti del recipiente.

MACROSCOPICO:

è la forza esercitata dal gas sulla superficie del recipiente.

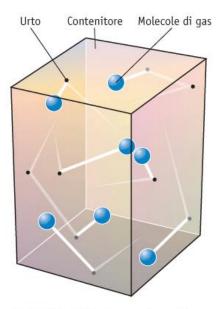
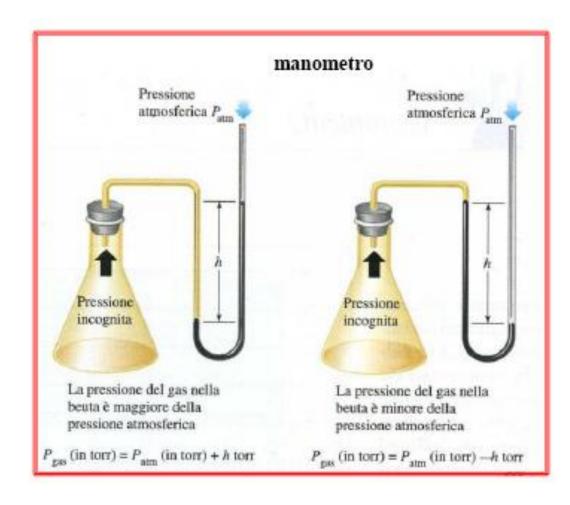



FIGURA 11.16. La pressione di un gas. In accordo con la teoria cinetica molecolare, la pressione di un gas è causata dalle collisioni delle molecole gassose contro le pareti del contenitore.

UNITA' DI MISURA DELLA PRESSIONE

La pressione esercitata dall'atmosfera si misura con un barometro mentre la pressione esercitata da un gas incognito si misura con un manometro.

UNITA' DI MISURA DELLA PRESSIONE

Nel sistema SI la pressione si misura in Pascal che è la forza di un newton (N) su un m²

$$1,00 \text{ Pa} = \frac{1,00 \text{ N}}{\text{m}^2}$$

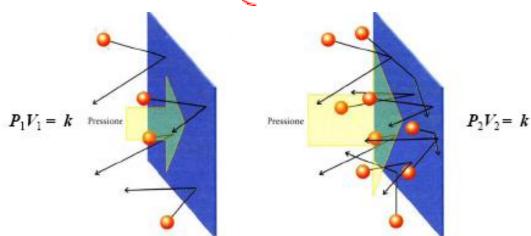
Newton = forza richiesta per impartire alla massa di 1,00 kg un'accelerazione di 1,00 metro al secondo quadrato

$$1,00 \text{ N} = \frac{1,00 \text{ kg x m}}{s^2}$$
 $\Rightarrow 1,00 \text{ Pa} = \frac{\text{kg x m}}{s^2 \text{ x m}^2} = 1,00 \frac{\text{kg}}{s^2 \text{ x m}}$

Charles D. Winters

LA LEGGE DI BOYLE

Comprimendo un gas a temperatura costante la pressione aumenta ⇒ una diminuzione del volume del gas implica un aumento della pressione.


La pressione di una determinata quantità di gas mantenuto a temperatura costante è inversamente proporzionale al volume

$$P = \frac{\text{costante}}{V} \Rightarrow PV = k \text{ (costante)}$$
 a T costante!

A temperatura costante e a parità di numero di moli

$$\boldsymbol{P}_1\boldsymbol{V}_1 = \boldsymbol{P}_2\boldsymbol{V}_2$$

N.B { le due pressioni e i due volumi devono essere espressi nelle medesime unità di misura

LA LEGGE DI CHARLES

Il volume di una determinata quantità di gas mantenuto a pressione costante è direttamente proporzionale alla temperatura

Riscaldando un gas a pressione costante il volume aumenta \Rightarrow un aumento della temperatura del gas implica un aumento del volume

$$V = k T$$
T espressa in gradi kelvin (K)

a P costante!

$$V_1 = k T_1 \ e \ V_2 = k T_2 \implies k = V_1 / T_1 \ e \ k = V_2 / T_2 \implies V_1 / T_1 = V_2 / T_2$$

IL PRINCIPIO DI AVOGADRO

Alla stessa temperatura e pressione, volumi uguali di gas diversi contengono lo stesso numero di molecole *cioè* un dato numero di moli di gas occupa più o meno lo stesso volume indipendentemente dalla natura chimica.

Il volume occupato da un campione di gas a temperatura e pressione costanti è proporzionale al numero delle moli presenti.

V = k n dove n = numero di moli del gas

a T e P costanti!

L'EQUAZIONE DEI GAS IDEALI

$$...quindi \begin{cases} \text{legge di Boyle} & \Rightarrow PV = k \Rightarrow V = k/P \\ \text{legge di Charles} & \Rightarrow V = k T \\ \text{legge di Avogadro} & \Rightarrow V = k n \end{cases}$$

$$V = R \frac{nT}{P} \Rightarrow PV = nRT$$

La legge dei gas ideali contiene tutte le relazioni che descrivono la risposta del gas ai cambiamenti di pressione, volume, temperatura e numero di moli.

In queste condizioni la costante dei gas R = 0.082057 (L atm)/(mol K)

L'equazione dei gas ideali (gas con interazioni nulle tra le molecole) si usa per calcolare il peso molecolare e la formula molecolare della sostanza gassosa.

per uno stesso gas cambiando
$$P$$
, $T \in V \Rightarrow \begin{cases} P_1V_1 = nRT_1 \\ P_2V_2 = nRT_2 \end{cases} \Rightarrow \frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2}$

L'EQUAZIONE DEI GAS IDEALI

$$V = R \frac{nT}{P} \Rightarrow PV = nRT$$

N.B. Nei calcoli usare atmosfere per le pressioni, litri per i volumi, gradi kelvin per le temperature

In queste condizioni la costante dei gas R = 0.082057 (L atm)/(mol K)

Tabella 5.1 Valori di	R in diverse unità	
Valore	Dove usato	Come ottenuto
0.0821 L · atm mol · K	Problemi sulla legge dei gas con V in litri, P in atm	Da valori noti di P, V, T, n
8.31 J mol · K	Equazioni con l'energia espressa in joule	1 L · atm = 101.3 J
$8.31\times 10^3 \frac{g\cdot m^2}{s^2\cdot mol\cdot K}$	Calcoli della velocità molecolare (pagina 119)	$1 J = 10^3 \frac{g \cdot m^2}{s^2}$

IL VOLUME MOLARE

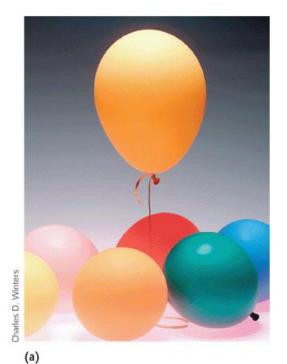
Volume molare = volume occupato da una mole di sostanza

 6.02×10^{23}

	He	N_2	CH ₄	gas ideale	22,41 L / mole
				CO ₂	22,26 L / mole
	-0-	-0-	-	N_2	22,40 L / mole
Volume	22,4 L	22,4 L	22,4 L	O ₂	22,40 L / mole
Pressione	1 atm	1 atm	1 atm	O_2	22,40 L7 IIIOIC
Temperatura	0°℃	0°C	0°C	H_2	22,43 L / mole
Massa del gas	4,00 g	28,0 g	16,0 g		

Nelle **condizioni** standard una mole di gas ideale occupa il volume di 22.414 L alla temperatura di 273.15 K(0 C) e alla pressione di 1.000 atm (760 torr).

 6.02×10^{23}


 6.02×10^{23}

Numero di molecole di gas

Il volume molare. Il cubo ha un volume di 22.4 L, che è il volume di una mole a TPS.

LA DENSITA' DEI GAS

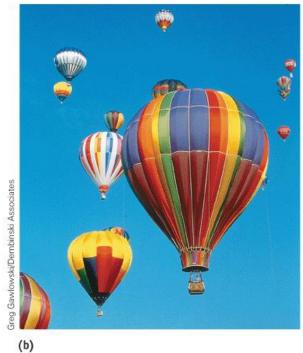
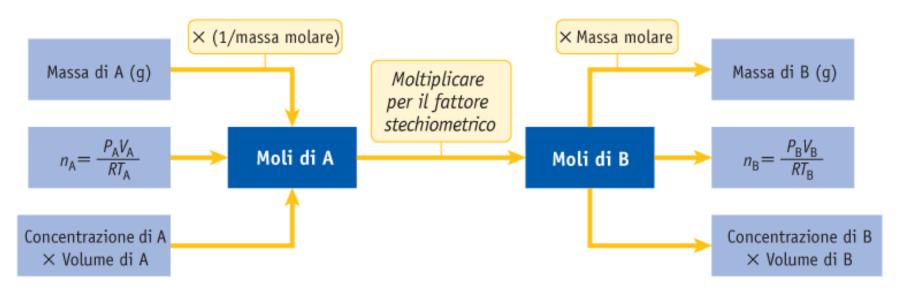



FIGURA 11.8 La densità di un gas. (a) I palloncini sono riempiti con circa la stessa quantità di gas alle medesime temperature e pressioni. Il palloncino giallo contiene elio, un gas poco denso (d=0.179 g/L in SPT). Gli altri palloncini contengono aria, un gas a elevata densità (d=1.2 g/L in SPT). (b) Una mongolfiera si solleva da terra perché l'aria scaldata al suo interno ha una minore densità rispetto all'aria dell'am-

biente circostante.

I GAS E LA STECHIOMETRIA

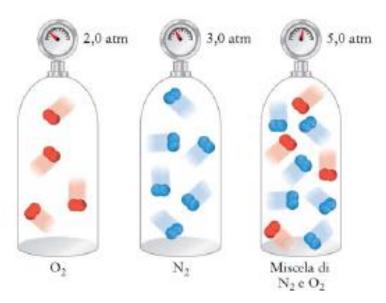


FIGURA 11.10 Uno schema per i calcoli stechiometrici. In questo schema, A e B possono essere sia reagenti che prodotti. La quantità di A (in moli) può essere calcolata dalla sua massa in grammi e dalla sua massa molare, dalla concentrazione ed il volume della soluzione, o da *P*, *V* e T usando la legge dei gas ideali. Una volta che la quantità di B è stata determinata, questo valore può essere convertito a una massa, o a una concentrazione o ad un volume, oppure a un volume di gas a una data pressione e temperatura.

Figura 5.5

LA LEGGE DI DALTON DELLE PRESSIONI PARZIALI

Quando due gas A (es.O₂) e B (es. N₂) sono mescolati nello stesso recipiente alla stessa temperatura, esercitano una pressione totale uguale alla somma delle loro pressioni parziali.

$$\Rightarrow P_{\text{totale}} = P_{\text{A}} + P_{\text{B}} + P_{\text{C}} + \text{etc}$$
La pressione totale esercitata da una miscela di gas è data dalla somma delle loro pressioni parziali

La pressione parziale di un gas è la pressione che esso eserciterebbe se si trovasse da solo nel recipiente considerato.

N.B. i gas non devono reagire tra loro!

LA LEGGE DI DALTON DELLE PRESSIONI PARZIALI

La legge di Dalton è utile anche per conoscere le frazioni molari di ciascun componente gassoso in una miscela

$$PV = nRT$$
 \Rightarrow $n = PV/RT$ \Rightarrow $n_A = P_AV/RT$ e $n_{\text{totali}} = P_{\text{totale}}V/RT$

Se
$$V \in T$$
 sono costanti $\Rightarrow \frac{n_A}{n_{\text{totali}}} = \frac{P_A V R T}{P_{\text{totale}} V R T} = \frac{P_A}{P_{\text{totale}}}$

ma
$$n_{\rm A}/n_{
m totali}={
m X}_{
m A}$$
 \Rightarrow $m P_{
m A}={
m X}_{
m A}$ x $m P_{
m totale}$

La pressione parziale di ogni singolo gas presente in una miscela è uguale al prodotto tra la sua frazione molare e la pressione totale della miscela stessa

LA LEGGE DI HENRY

La quantità di gas che si scioglie in un liquido è direttamente proporzionale alla sua pressione parziale.

$$S_{gas} = \mathbf{k_{H^{-}}} \, \mathbf{P}_{gas}$$

TABELLA 14.2 Costanti della legge di Henry (25°C)*

Gas	k _H (mol/kg·bar)
N ₂	6.0×10^{-4}
02	1.3×10^{-3}
CO_2	0.034

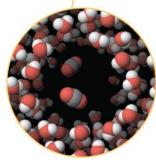


FIGURA 14.10 Solubilità di un gas e pressione. Le bevande gassate sono imbottigliate sotto pressione di CO_2 . Quando si apre la bottiglia, la pressione bruscamente diminuisce e nel liquido si formano bolle di CO_2 che poi risalgono in superficie. Dopo un certo tempo, si raggiunge un equilibrio tra CO_2 disciolta e CO_2 atmosferica. Poiché CO_2 dà un certo gusto alla bevanda, la bevanda perde sapore quando la maggior parte di CO_2 disciolta è rilasciata.

(a)

b)