ISTITUZIONI DI ANALISI E GEOMETRIA MOD A PROVA SCRITTA DEL 13/6/16

(1) Sia dato uno spazio con misura (X, \mathcal{A}, μ) . Sia $\{E_n\}$ una successione di insiemi misurabili di misura finita tali che

$$\mu(E_n \triangle E_m) \to 0$$
, per $n, m \to \infty$.

Provare che esiste E misurabile di misura finita tale che

$$\mu(E_n \triangle E) \to 0$$
, per $n \to \infty$.

(2) Sia $f \in L^2(\mathbb{R})$, calcolare, se esiste,

$$\lim_{k \to \infty} \int_{\mathbb{R}} f(x - k^2) f(x + k) d\mu(x) .$$

(3) Sia $f \in L^1(\mathbb{R}), f \geq 0$. Sia $\{a_k\}$ una successione di numeri positivi. Posto $f_k(x) = f(a_k x)$ per ogni $k = 1, 2, \ldots$, si definisca per induzione

$$F_1 = f_1$$
,
 $F_{k+1} = f_{k+1} * F_k$, $k = 1, 2, \dots$.

a) Calcolare

$$\int_{\mathbb{P}} F_k , \text{ per ogni } k = 1, 2, \dots .$$

b) Supponendo inoltre $a_k \leq \int_{\mathbb{R}} f$ per ogni k, stabilire sotto quali condizioni esiste finito

$$\lim_{k\to\infty}\int_{\mathbb{R}}F_k.$$